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ABSTRACT

This paper addresses the problem of pattern noise encountered
in single-stage delta-sigma modulators in the presence of a DC in-
put signal. By utilizing state-space matrices, we explain the cause
of these undesired cyclic patterns and show how a modulator’s sus-
ceptibility to tonal behavior can be determined by inspection of the
system matrix A. By example of two frequently used single-stage
architectures, a

�����
and a ��� � order system, we demonstrate that

simple topological modifications can render a given system im-
mune to cyclic sequences. The two examples prove that this im-
munity can be achieved without visibly degrading the modulator’s
noise shaping capability. In fact, the modification applied to the� ���

order system even improves the quantization noise suppres-
sion.

1. INTRODUCTION

If the input of a single-stage delta-sigma modulator (DSM) re-
mains constant over a sufficiently long time interval or varies very
slowly, it is possible that the quantizer output stream becomes
cyclic. Such an undesired periodic output pattern generates dis-
crete noise components commonly referred to as tones. Due to
the high oversampling rate (OSR), most of these tonal compo-
nents will be located outside the modulator passband, where they
do little harm. However, some cycles will be long enough to
leave their signature in the band of interest, i.e, between DC and�
	���
 ���������

. Typically, the power of the resulting spectral com-
ponents is very low. However, the human ear is particularly sus-
ceptible to discrete tones and their presence can seriously degrade
the spurious free dynamic range (SFDR) of the entire system. Low
order single-stage DSM’s are particularly prone to exhibit tonal
frequency components in their output spectrum.

Although great efforts have been applied to analyze the cyclic
behavior of these systems [1, 2, 3] and mitigate this performance
degrading effect by incorporating dithering schemes [4, 5, 6, 7],
there exists no comprehensive analysis procedure for higher order
systems, which would allow a designer to predict the spectral dis-
tribution of possible limits cycles and their expected power levels.

This paper attempts to shed more light onto this subject by
explaining the cause of limit cycles and suggesting some topologi-
cal modifications that can prevent the occurrence of cyclic patterns
altogether.
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Figure 1: Block diagram of an ����� order discrete-time single-bit
DSM.

2. CAUSE OF LIMIT CYCLES

Figure 1 shows a simplified block diagram of a discrete-time single-
stage DSM topology. If we describe the linear, time-invariant (LTI)
block of this discrete-time system in state-space notation, we can
express the next state vector by the following matrix equation [8]
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where A represents the N . N system matrix (of an � ��� or-
der system), while

%
and

*
denote the N . 1 feedback and input

vectors, respectively. Since we assume a single-bit quantizer, the
output sequence can be written as
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where 5 6 represents the quantizer input (generally a weighted
sum of state variables) and

1
specifies the magnitude of the quan-

tizer output, e.g. a fixed reference voltage.
The entire system can now be described by the following set

of difference equations
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If
,A
�� �

is equal to a constant C , we can rewrite these two dif-
ference equations as
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where
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The difference between two successive samples of the state
vector � 
�� � can be expressed as
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If the input remains constant over
�

cycles, we can utilize this
recursive formula to express the state vector � 
�� � as follows
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The superscripts
� @����

and
� @����

are exponents, which depend
on the specific limit cycle sequence. Note that all powers of matrix
A absent in the second term on the right hand side of equation 7
will appear in the third term. If the system is trapped in a limit
cycle of length

�
, vector � 
�� � must be identical to its initial value� 
 ? � . We can therefore write
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In most practical DSM circuits, matrix (

� @<$ �
) turns out to

be N-1 dimensional. In this case, matrix

 �H@ $ � �

is singular and
there exist infinitely many solutions for � 
 ?�� . In other words, each
cyclic pattern possesses infinitely many initial conditions. Hence,
limit cycles are very likely to occur. If we subject matrix


 �>@ $! �
to a singular value decomposition (SVD), we obtain
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where
) # is an N-1 . N-1 diagonal matrix.

The solutions for the initial state vector � 
 ?�� can now be pa-
rameterized by a 1-dimensional vector as follows

� 
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where 0 represents an arbitrary scaling constant, which can be
adjusted to find a specific initial condition.

3. TOPOLOGIES WITH HIGH IMMUNITY TO LIMIT
CYCLES

In the recent past, several practical solutions have been presented
for the prevention of limit cycles. Since these undesired cyclic pat-
ters are relatively fragile [8], they can be disrupted and thus termi-
nated by a weak stochastic dither signal [4]. Alternative methods
make use of the chaotic nature of a marginal stable DSM loop [5]
or alter the system topology [6]. While all these methods can pre-
vent tonal patters, they also penalize the maximum signal to noise
plus distortion ratio (SNDR) of the system. In what follows, we

will present a solution, which minimizes this penalty or even im-
proves the maximum SNDR.

We have shown in the previous section that cyclic patterns are
bound to occur if the difference vector 2�5 between two consec-
utive states (cf. equation 6) is less than N-dimensional, in other
words, if 2�5 is restricted to a subspace of the entire state space.
For this to happen, matrix 4 $ @3� 8

must be of rank N-1 or lower.
Conversely, if we find a topology where the rank of matrix 4 $ @�� 8
is equal to the system order N, limit cycles become virtually im-
possible, since equation 8 can be satisfied by exactly one initial
state vector � 
 ?�� . This unique solution will hardly be encountered
in a practical system or may even lie outside the range of practi-
cally possible state vectors. Thus, by simply inspecting the rank
of matrix 4 $ @3� 8

, we can predict whether or not a DSM system is
likely to suffer from cyclic patterns.
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Figure 2: Block diagram of
� ���

order DSM with additional feed-
back 4�5 to prevent cyclic output patterns.

To illustrate this crucial point, let us consider the frequently
used

�����
order DSM topology depicted in figure 2. If we include

the proposed additional feedback path 4 5 , the 4 $ @�� 8
matrix of

this system becomes

4 $ @3� 876 " ( ? @ 4 58 6 @ 8 6 4�5 * (11)

Evidently, the additional feedback 4 5 keeps the rank of matrix
4 $ @�� 8 6

equal to N=2. Tonal patterns should therefore rarely oc-
cur. As far as the noise noise shaping property of this modulator
is concerned, 4 5 can even be beneficial, since the double integrator
loop, comprising the coefficients 4�5 and 8 6 , realizes a finite pass-
band zero. To minimize the passband quantization noise power,
the gain of this zero loop should be chosen as

��9 6 " 8 6 4�5 "  
�;:

6
���0� 6 (12)

If the coefficient product 8 6 4�5 satisfies equation 12, the quan-
tization noise should be suppressed by an additional factor of 9/4
or 3.5 dB, respectively.
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Figure 3: Block diagram of � � � order DSM with additional feed-
back < to prevent cyclic output patterns.



Figure 3 shows a common � � � order modulator architecture,
which has been complemented by an additional feedback path < .
The 4 $ @�� 8

matrix of this modified � � � order system turns out to
be

4 $ @�� 8 5 " � ? ? @ <8 6 ? @ 4��8 6 8 5 8 5 @ 8 5 4 ��� (13)

As can be seen, the additional feedback < guarantees that the
above matrix maintains rank N=3. In contrast to the

� ���
order

example, however, where the additional path improved the noise
shaping property, the feedback < will degrade the noise suppres-
sion of this � � � order system. To find an expression for the ex-
pected loss, we have inspected the modified noise transfer function
(NTF). Since the resulting noise suppression is almost exclusively
determined by the numerator of the NTF, we will only list this
polynomial. The corresponding z-domain function is

� 5 
�� �#" 
  @ � � . � 
  @ � �/. 4 �-@ 8 5�4�� 8 ��� � 6 � � < 8 6 8 5 � � 6 (14)

The last term in the above equation indicates that the addi-
tional feedback < creates an undesired leakage path for the quanti-
zation error. In order to minimize the resulting loss in noise sup-
pression, < must be chosen just large enough to prevent tonal pat-
terns. Since we cannot express this optimization problem in simple
mathematical terms, we have deduced the optimum value for the
coefficient < via a numerical simulator. The results of this opti-
mization procedure will be presented in the next section.

4. NUMERICAL RESULTS

To reveal the impact of the proposed topological modifications,
we have carried out various numerical simulations with the two
example circuits shown in the previous section. The applied loop
filter coefficients of the two systems are listed in table 4. Note that
the given values represent a compromise between stability, noise
shaping efficiency and dynamic range.
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Table 1: Coefficient values of the two exemplary modulator
topologies.

In all tonal simulations, we have assumed an idle input, since
this is a frequently occurring situation in a practical application
(e.g. a pause between words in an audio recording system). To
avoid any correlation among the many output sequences, we started
each simulation with a different initial state vector � 
 ? � by using

random values in the range � ? 
  . To exclude any residual tran-
sients, we have ignored the first 50,000 samples of each output
vector. The patterns have been detected via an autocorrelation
function. To investigate the two original topologies, we applied
a frame length of 5,000 clock periods. This provided as with tonal
frequencies as low as

��	
/5,000. In case of the modified topolo-

gies, we had to reduce the window length to 1,000 periods, since
we observed that the number of tones drastically diminished with
increasing frame length. We attribute this observation to the rela-
tively short lifetime of the remaining cyclic patterns. Recall that
for any practical sampling rate in the MHz range, even a lifetime
of 1,000 periods translates into a duration of a fraction of a mil-
lisecond. This renders the few surviving patterns very elusive.
However, these temporary phenomena can still harm the dynamic
range.

To obtain statistically significant numbers from the above de-
scribed numerical pattern search procedure, we have simulated
each modulator configuration 1,000 times.

In addition to detecting tonal patterns, we have also evaluated
the maximum SNDR of each topology via a

� .
	
point FFT. To

obtain a reliable SNDR value, we have averaged the results of 4
simulations carried out with 4 different sinusoidal inputs spanning
the entire modulator passband range. Each input signal possessed
a normalized amplitude of 0.5, or a power of -9 dB, respectively.

Figure 4 shows two possible responses of a single-stage � � �
order DSM to a DC input. One response reflects the system while
trapped in a limit cycle. Consequently, the spectrum consists of
a train of discrete tones. The other response displays the alter-
native random quantization noise spectrum shaped by the NTF of
the modulator to minimize the passband noise power. While both
cases yield a similar total in-band quantization noise power of ap-
proximately -104 dB, it is obvious that the random noise response
will be preferred since it enables a higher SFDR.
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Figure 4: Typical quantization noise spectrum of a single-stage � � �
order DSM for a DC input superimposed with a possible cyclic
response of the same system.

Table 2 summarizes the numerical results we obtained from
our exemplary

� ���
order system (cf. figure 2).

The values listed in this table clearly demonstrate the effi-
ciency of the proposed limit cycle prevention procedure. For the
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96
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Table 2: Detected tonal patterns among 1,000 simulation runs and
maximum SNDR of

� ���
order DSM with and without additional

feedback 4 5 .
two lower OSR values, the additional feedback path 4 5 has elim-
inated all cyclic patterns. For the OSR of 128, the number of de-
tected patterns has been reduced from several hundred to merely 4.
The reason for the not entirely successful prevention of cyclic pat-
terns in the latter case is the fact that 4 5 must shrink as the square
of the OSR to keep the passband noise power at a minimum (cf.
equation 12). However, as expected, all three modified systems
display an approximately 3.5 dB higher peak SNDR value.

As stated previously, our main objective in investigating the
��� � order system has been to find the optimum value for the addi-
tional feedback path < , i.e., the smallest value that effectively pre-
vents tonal patterns. To obtain some meaningful results, we have
simulated the system for three typical OSR values. In each case,
we have logarithmically incremented < by factors of 2. In addi-
tion, we have also evaluated the resulting penalty in the maximum
SNDR. The numerical results are listed in table 3.

OSR < Passband Tones
� � � ������� 4 
�� 8
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0 305 89.3
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0 283 96.6
80
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Table 3: Detected tonal patterns among 1,000 simulation runs and
maximum SNDR of � � � order DSM for various OSR and < values.

When viewing the values listed in table 3, it is important to
mention that the additional feedback < not only drastically reduced
the number of cyclic patterns, but also diminished their survival
rate. In fact, if we extended the tonal search procedure over a
window length of 2,500 clock periods, no cyclic patterns were to
be found any more. Table 3 also reveals that the minimum < val-
ues required to prevent the occurrence of limit cycles turned out
to be very small. Consequently, the resulting penalty in the max-
imum SNDR proved to be inconsequential. While this represents
are very welcome result, the small < values may limit the appli-
cation of the proposed method to digital circuitry, since it is dif-
ficult to implement such small coefficients by analog means (e.g
due to the resulting large coefficient spread). In addition, in case
of frequently utilized switched-capacitor circuits, the small sam-
pling capacitor implementing < or the additional feedback coeffi-

cient 4 5 would generate a prohibitive amount of kT/C noise. On
the other hand, analog techniques possess a natural passive dither-
ing scheme in form of thermal noise. If the power of the equivalent
thermal noise source is on the order of the total in-band quantiza-
tion noise, tonal patterns are very unlikely to occur. For example, if
a designer targets a dynamic range of approximately 100 dB with
an OSR of 64, a tonal free performance would require the input
sampling capacitor to be smaller than 1 pF.

5. CONCLUSIONS

By utilizing state space matrix notation, we have shown that the
likelihood of encountering limit cycles in DSM systems, when
connected to a DC input, can directly be linked to a property of
the system matrix A. Provided matrix A-I maintains rank N, the
chances for encountering cyclic output patterns will be extremely
low. In case the original A matrix fails to satisfy this condition, we
have shown that it is possible to achieve an excellent limit cycle
immunity by simply adding another feedback path to the modu-
lator loop filter. In contrast to previous limit cycle suppression
techniques, the proposed topological modifications are readily im-
plemented, at least in a digital system, without visibly penalizing
the system’s SNDR. In fact, the modified

� ���
order DSM performs

even slightly better than the original system by yielding a 3.5 dB
higher SNDR.
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