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1 Introduction

Modulation can be defined as the systematic alteration of a carrier wave in accordance
with a message (i.e. the information carrying signal). For example, in communications,
modulation by a single frequency signal (carrier signal) allows a low frequency signal such
as voice to be transformed into a narrow band signal at a high center frequency (with
similar modulation returning the high frequency centered signal to its original form).
Modulation of a signal by a periodic sequence of impulses (formally delta functions spaced
uniformly in time) plays an important role in conversion of analog, time-varying signals
into a digital format for storage, transmission, processing, coding, etc. In this case, the
modulator replaces the continually varying signal by pulses, which correspond to sampled
values of the analog signal in the time domain. This implies that the continually varying
amplitude of the analog signal is approximated (or quantized) to a set of discrete signal
levels. This discrete-time modulation is referred to as pulse code modulation (PCM).
The Delta-Sigma (XA) modulator is an offspring of the PCM family [1] and combines the
quantization operation within a feedback loop configuration. In contrast to conventional
PCM, which represents the sampled signal levels in form of multi-bit digital words, the
YA modulator encodes the signal levels in the time domain by generating a corresponding
sequence of (densely spaced) pulses. Hence, the modulator output, often limited to a

single amplitude level (i.e., quantized to one bit), represents a pulse density modulated



(PDM) version of the input signal. Consequently, the original signal can be reconstructed
(or demodulated) by time averaging, or lowpass filtering, this PDM signal. Due to the
specific sequence of operations in the feedback loop configuration, the AY. modulator
sharply discriminates between the signal and the resulting quantization error. Despite
the low number of output signal levels, this can provide a AY modulated signal with an
extremely high dynamic range. AY modulators are therefore predominantly applied in
high-resolution data conversion systems (e.g. systems with 12 or more bit resolution).
The basic AY modulator uses a feedback loop, which computes the difference be-
tween the instantaneous input signal and the previous (quantized) output (hence the
name delta), followed by a (typically) discrete-time integrator or accumulator (denoted
by the symbol sigma). The actual modulator output is a coarsely quantized version of the
integrator output signal. Figure 1 shows a simplified block diagram of a single integrator
or first-order AY. modulator loop. If the input is a digital signal, the A¥ modulator can
be realized using digital signal processing only and the digital-to-analog converter (DAC),
shown by dashed lines in figure 1, is not required. In the special case of a 2-level or 1-bit
quantizer, the DAC reduces to a simple voltage or current reference, which provides the

appropriate analog signal levels £V, or £1,.f, respectively.
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Figure 1: Block diagram of first-order AY modulator, consisting of a difference stage A,

an integrator 3, a (coarse) quantizer and (possibly) a D/A converter in the feedback path.

Like its older cousin, the delta modulator [2], the AY modulator employs oversam-
pling and feedback to allow coarse quantization while preserving a small in-band noise
level. The major difference between these two techniques lies in the positioning of the in-
tegrator within the modulator loop. While the delta modulator places the integrator into
the feedback path, the AY. modulator integrates the signal prior to the quantization pro-
cess. Consequently, the delta modulator generates a differentiated (or highpass filtered)
version of the input signal while the A modulator, by differentiating and integrating in
the forward path, passes the signal essentially unchanged through the system. Therefore,

the output of the AY modulator contains a precise, albeit quantization noise corrupted,



replica of the input signal. Since the negative feedback inherently differentiates the quan-
tization error sequence, the corresponding noise spectrum is highpass filtered, with little
quantization noise overlapping the low frequency signal spectrum. This spectral discrim-
ination between signal and noise, also referred to as noise shaping, is a unique property
of AY modulators. Depending on the relative signal bandwidth, this feature enables an
extremely wide dynamic range and explains the popularity of the AY approach in the
field of high resolution data conversion.

AY based data converters can be found in many of today’s commercial communication
products. A common feature of all applications is the objective of high-resolution (e.g.
12 bit or more). Due to the required oversampling ratio (OSR), defined as sampling
rate divided by twice the signal bandwidth, the conversion speed is rather moderate
(typically below 1IMHz). An important reason for the frequent use of AY modulators in
high-resolution data converters is their comparatively low implementation cost, which is
a consequence of the insensitivity of the modulator performance with respect to minor
element ratio deviations. This eliminates an expensive component trimming procedure
and paves the way for a completely monolithic implementation using standard CMOS
technology.

Digital telephony provides many opportunities for the application of AY modulators
[3]. There exist many subsets in this field with varying requirements such as voiceband
codecs for the public switched telephone networks (requiring 13 bit linear resolution),
echo-canceling modems (with 12-16 bit resolution) or Integrated Service Digital Network
(ISDN) interface transceivers (with 13-16 bit resolution). Digital cellular phones utilize
AY modulators both for voiceband speech coding and for IF-to-baseband radio interface
data conversion. Another field most readers will be familiar with is digital audio. With
14-18 bit resolution for consumer grade equipment and up to 4 times as much precision for
professional audio equipment, no other conversion technique can seriously compete with
the AY approach as far as the cost/resolution ratio is concerned. A third area where AY
modulation has achieved prominence is in sonar signal processing, particularly in beam-
forming applications. Due to the high element count in sonar arrays, power efficient
and compact analog-to-digital converters (ADC’s) are of paramount importance. Finally,
there is the field of metrology with its ever increasing demand for more precision. Since
most measurement systems acquire the raw data in analog form while the subsequent data
processing is carried out in the digital domain, there exists a high demand for precise data

conversion. A modulation is likely to assume a prominent role in this field as well.



The large majority of today’s commercially available AY> ADC’s are realized by switched
capacitor (SC) techniques, a fully CMOS compatible discrete-time analog circuit design
technique [4]. A few ADC implementations employ switched current (SI) circuits, the
alternative (CMOS compatible) discrete-time analog technique.

As technology continues to advance, a variety of other fields are likely to be influenced
by the advent of AY modulation. Chief among the new areas will be video and image
coding applications. This field will require system sampling rates beyond 100 MHz, a range
that is within reach of contemporary silicon technology. Apart from improving the existing
silicon implementations by gradually increasing resolution and/or conversion rates, some
researchers have begun to investigate the possibility of applying the AY. approach to an
altogether different fabrication technology such as circuits realized by super-conducting
devices [5]. If successful, these efforts will enable additional applications, particularly

those involving very high frequency signals.

2 Basic Concepts

The most prominent feature of a A modulator is its capability to shape the quantization
noise, as explained in the following subsection. We then derive a simple parametric
expression for the modulator output noise power. The last subsection reveals how the
noise shaping concept is utilized as a key element in high-resolution data conversion

systems.

2.1 Noise Shaping

Modulation is an inherently nonlinear process. This considerably complicates the modu-
lator analysis. In fact, there exists no rigorous mathematically treatment that allows the
designer to predict the exact behavior of a AY modulator under all practical operating
conditions. In lieu of a better alternative, we adopt the frequently applied technique of
describing the modulator by a linearized model, whereby the nonlinear quantizer is re-
placed by an additive (white) noise source. Such a model is sufficient to explain the most
fundamental characteristic of a AY modulator, namely the shaping of the quantization
noise. It is also capable of estimating the performance of a wide variety of modulator
architectures. However, the linear model breaks down when we ponder questions related
to stability. At present, stability issues and other nonlinearity related problems such as



the occurrence of spurious passband tones have to be dealt with on an ad hoc basis or,
alternatively, by evoking a numerical simulator, which closely mimics the modulator’s

behavior in the time domain, such as the program DelSi [6].
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Figure 2: Block diagram of a discrete-time linearized first-order AY modulator with an

integrator scaling factor a.

Figure 2 shows a linearized, discrete-time model of the first-oder (or single integrator)
AY. modulator. The quantizer has been replaced by an additive noise source and the
accumulator (sigma) has been modeled as a forward difference (or forward Euler) integra-
tor. For the ideal un-scaled case (i.e., a = 1), this first-order system is governed by the
following difference equations

w(lk+1T) = w(kT)+ z(kT) — y(kT) (1)
y(kT) = w(kT) + n(kT) (2)
T represents the cycle time of the sampling frequency, which, for the sake of conve-

nience, is often equated to unity and not explicitly listed as an argument. Transforming

this equation set into the z-domain yields

W(z)= [W(z)+X(2) - Y(2)]z"" (3)
Y(z) = W(z)+ N(z) (4)

Finally, by using (4) to eliminate W(z) in (3) and solving for Y(z), we obtain

Y(2) = X(2) 27t + N(2) [1 — 271 (5)

This result shows that the modulator output Y (z) consists of a delayed but otherwise
intact version of the input signal X(z) plus an additive, digitally differentiated term

representing the quantization error. We deduce from equation (5) that AY modulators
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can generally be represented by two transfer functions: a signal transfer function (STF)
defined as the ratio Y/X (in the absence of noise) and a noise transfer function (NTF)
defined as the quotient Y/N (in the absence of an input signal).
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Figure 3: Time domain response of first-order AY modulator to a 10 kHz sinusoidal input

signal (DelSi simulation with f; = 10 MHz).

Figure 3 depicts the time domain response of the first-order system to a 10 kHz
sinusoidal input signal. We have normalized the two quantizer output levels in this DelSi
simulation to +1 while the sampling rate has been set to 10 MHz. The plot shows the
input signal (top trace), the integrator output (center curve) and the final AY modulated
output (bottom trace). In order to limit the output swing of the noisy integrator to the
depicted range of £1, a scaling factor a = 0.5 was used. For this more general case with
a # 1, equation (5) changes to

az ! 1—21
1—271-a +N(2) 1—2711—-d] (6)

By choosing a < 1, we have actually modified the loop gain and with it the position

Y(2) = X(2)

of the only pole of the system. It moved from the z-domain origin (z=0) to the positive
real value [1 — a]. The output of the scaled loop still comprises the same two signal
components. This time, however, the input signal is spectrally shaped by a first-order
lowpass filter while the NTF becomes a highpass filter rather than an ideal differentiator.
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Since the lowpass filter yields unity gain in the passband, the finite pole does not corrupt
the signal as long as the signal energy resides within that band. The passband gain of
the NTF, however, has been enhanced by a factor of 1/a. Fortunately, this noise gain is
neutralized by a corresponding reduction of the quantization error. The quantization error
is defined as the difference between the quantizer input and output signal. Hence, scaling
the quantizer input by a < 1 reduces the quantization error, which in turn neutralizes the
increased noise gain. The noise shaping property is therefore not affected by this scaling
procedure.

The presented linearized analysis procedure served well to explain the noise shaping
property and, as will be seen, provides useful design guidelines and an efficient means to
estimate the modulator performance. However, it fails to explain some of the more subtle
non-ideal features of AY modulators such as the occurrence of passband tones or the
potential instability of higher order loops. For a more rigorous mathematical treatment
of quantization noise related questions in single-loop AY. modulators, the interested reader
is referred to [7].

2.2 Output Noise Power

A crucial parameter for the assessment of the modulator performance is the total output
noise power, or, in presence of a deterministic input signal, the corresponding signal-to-
noise ratio (SNR).

Provided the quantization error represents the dominant system noise source, we can
compute the total mean square in-band noise at the output of the modulator loop as
follows:

2 2 2 BW 2
o /0 | NTF [? df (7)

=e, 7.

where e,? represents the mean square quantization error, f; the applied sampling rate
and BW the effective signal bandwidth. By normalizing all frequency related terms in
(7), (i-e., fs, BW and df) to the oversampling rate OSR = f;/2BW, we can reduce the
dependency of the output noise power to three parameters: the mean square quantization
error e,%, the modulator OSR and the squared magnitude of the NTF.

th order system by

If we expand the first-order modulator (cf. figure 1) to an m
replacing the single integrator with a cascade of m identical cells, the un-scaled z-domain

NTF becomes [1 — z~']™. Using z = e/?"f/#s and employing Euler’s formula for the sine



function, we can rewrite the squared magnitude of the m™” order NTF in the frequency

domain as

| NTFu(f) = 2 sin(nf/£,)]" (8)

Furthermore, since f/f; < 1 in the passband region of the modulator, we can approx-
imate the sine function by its argument (7 f/f;). The in-band noise power present at the
output of an ideal m™ order modulator (including the case m=1) can thus be written as

2 , T [2m+1]
Nom- = € OSR™™ 9
om “2m+1 )

Apart from the actual quantization error e,, the output noise power strongly depends

on the OSR and the system order, or integrator multiplicity, m. For example, adding one
more integrator to the modulator loop reduces the output noise power by approximately
a factor of (OSR/7)?. Likewise, doubling the OSR suppresses the noise by an additional
factor of 2?™+1, Both values manifest a very significant noise reduction.

2.3 A/D and D/A Conversion

With the above background, we next consider AY modulation with analog input signals
in more detail. Consider the sample curves depicted in figure 3 for a first-order modulator.
The bottom trace, the modulator output, consists of a dense sequence of clock synchro-
nized pulses, which are restricted in amplitude to the two levels +1 (e.g. corresponding
to voltage levels +V/.s). This constitutes the digital output of the AX modulator. The
signal information (a sine function in figure 3) resides in the density of the pulses, which,
for sufficiently small time granularity (i.e. high oversampling rate), provides an accurate
coding of the input signal. The input signal can be reconstructed from the modulator
output either in the analog domain (by time averaging the discrete pulse train via an
analog lowpass filter) or in the digital domain (by down-sampling or decimating using a
digital lowpass filter and re-sampling at the Nyquist rate f;"2BW). Figure 4 illustrates
two distinct converter systems, each comprising a AY modulator as its centerpiece, but
one serving as an ADC and the other as a DAC.

Although two out of the three cells in the ADC system in figure 4 (top) are analog,
the main burden of the implementation cost falls onto the digital side. Due to oversam-
pling, the anti-alias filter specifications are very relaxed. Therefore, the pre-filter can be

emulated by a low order lowpass circuit. By contrast, the digital lowpass/decimation
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Figure 4: Block diagram of a complete AY based A/D (top) and D/A converter system
(bottom).

stage may be a complex filter system with a very narrow transition band that becomes
smaller relative to the sampling rate (or the OSR). Its implementation is therefore costly
and requires a significant amount of silicon real estate. For example, realizing the low-
pass/decimator by a single-stage FIR filter may require a delay line with as many as 4,000
taps [8]. Fortunately, the data path at the filter input is rarely more than a few bits wide.
Furthermore, the down-sampling process reduces the computation rate by almost a factor
of OSR, which in turn enables a very compact hardware implementation. The DAC im-
plementation, finally, with the smoothing filter as its only analog cell, is a predominantly
digital system.

The growing popularity of the AY. approach is part of an ongoing digital revolution
that not only affects micro-electronics but also many of its adjacent fields, most promi-
nently computers and communications. As figure 4 illustrates, the AY. approach reflects
this trend very well by allowing a larger percentage of the total implementation cost
to be paid in digital currency. Despite this digital dominance, the system performance
continues to be tightly linked to the performance of the few remaining analog cells, i.e.,
the modulator loop in case of an ADC implementation or the smoothing filter in a DAC

realization.

3 Modulator Architectures

Good design is characterized by a well-balanced compromise between system performance

and implementation cost. In the context of AY, modulation, we equate performance to



a weighted sum of dynamic range (or resolution) and signal bandwidth (or conversion
rate). The cost function comprises parameters such as circuit complexity (silicon real
estate, power), modulator robustness (non-ideal effects, yield) and required OSR (power,
signal bandwidth). The following section considers the performance versus cost trade-offs
that exist among the most frequently applied modulator architectures.

Equation (9) provides an ideal starting point for our investigation. It describes the
output noise power of an (ideal) m™ order modulator as a function of the three charac-
teristic parameters mean square quantization error e,?, required OSR and system order
m. Accordingly, one can minimize the modulator output noise in three ways.

The first solution aims at reducing the quantization error power e,? at its very origin.
This can be achieved by replacing the typical 2-level (1-bit) quantizer at the modulator
output with a multi-level quantizer. For instance, trading the 1-bit quantizer for a ternary
system (with signal levels £1 and 0) already reduces the noise power by a factor of 4.
Apart from increasing the dynamic range of the converter, this measure also linearizes all
intermediate signals inside the modulator loop. Consequently, a multi-level system is less
likely to suffer from nonlinear effects such as limit cycles and residual inter-modulation
products, which give rise to spurious tones in the modulator passband. The major draw-
back of this solution is the extremely high linearity requirement for the DAC located
either in the feedback path of the modulator (in case of an ADC implementation) or in
front of the smoothing filter (for a DAC realization). In contrast to errors stemming from
the quantizer in the forward path, nonlinear effects occurring in the feedback branch of
the modulator are not noise shaped. Consequently, they can severely limit the system
performance. Since component trimming is not an option in a monolithic implementation,
the designer is left with two possible remedies. The first one is to apply an adaptive error
correction algorithm, which automatically compensates for the encountered nonlinearities
[9]. The second measure is based on the principle of dynamic element matching [10]. This
technique presumes that the p output levels of the DAC are realized by p identical unit
elements (e.g. capacitors or current sources). These elements are then selectively switched
in parallel such that their sum corresponds to the desired output level, while the switch
selection algorithm time-averages (or lowpass filters) the conversion error sequence. An
efficient solution for such a spectral shaping of DAC errors is presented in [11].

The second solution for improving the modulator noise shaping characteristic is to
increase the OSR. This measure is simple and effective, but it severely limits the signal

bandwidth (for given sampling rate) or else requires a correspondingly higher sampling



rate (for given signal bandwidth). In this context, it is important to recall that the
corresponding resolution versus bandwidth trade-off is highly nonlinear. For instance,
doubling the OSR of a 3"¢ order system, while maintaining the sampling rate, can increase
the dynamic range by as much as 21 dB (or more than 3 bits). The bandwidth, on the
other hand, will be reduced by a mere factor of 2.

In many implementations, the OSR does not constitute an integral part of the modula-
tor architecture and remains a free parameter. This allows the user to trade-in bandwidth
for resolution even after device fabrication (provided the pre- and post-filters flanking the
modulator cell support this kind of flexibility).

In the third approach, the noise shaping efficiency is improved by increasing the order
of the modulator loop filter. Unfortunately, simply inserting m integrators into the forward
path of the modulator does not yield a stable solution if m exceeds two. This instability
can be traced back to the spectral shape of the ideal (z-domain) differentiator function.
At very low frequencies, where z ~ 1, the term (1 — z~!)"™ approaches zero and suppresses
the noise correspondingly. At high frequencies however, where z ~ —1, the gain of the
m! order differentiator approaches 2™. This increase in the gain of high frequency noise
can exceed the modulator’s noise tolerance and render the system unstable. There exist
two practical solutions to this problem. In the first case, the single modulator loop
is replaced by a multi-stage configuration, which consists of stable first and/or second-
order modules only. Each additional stage creates an estimate of the quantization noise
of its predecessor. This noise estimate is subsequently (digitally) subtracted from the
output of the previous stage. This approach was first proposed for delta modulation
and was later expanded to delta-sigma modulation [12]. This implementation is known
as a cascade encoder or multi-stage modulator. As an additional benefit, the correlated
noise subtraction of the multi-stage solution whitens the quantization noise spectrum and
so prevents the occurrence of spurious tones. However, noise reduction by subtraction
requires well matched element ratios (e.g. capacitors or current mirrors) in the analog
modulator loop and typically high op-amp open-loop gains to avoid integrator pole shifts,
which otherwise cause leakage.

In the alternative high-order solution, the original cascade of m integrators is comple-
mented by additional feedback paths, which enable the designer to precisely control the
placing of the system poles. With properly placed poles, it is possible to obtain a con-
ditionally stable solution. Similar to the multi-stage approach, the multiple feedbacks of

the modified system tend to de-correlate the quantization error from the input signal and
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thus whiten the noise spectrum. In contrast to the multi-bit solution, however, high-order
single-bit modulators preserve the insensitivity of single-bit low-order circuits with respect
to minor variations of the analog component values. The major obstacle in this case is
the difficulty of designing these high-order loops such that stability can be guaranteed
under the typical operating conditions. Since stability is a mandatory condition for any
practical system, this issue has been thoroughly researched during the late 1980’s and
early 1990’s. Although an unconditionally stable solution or a comprehensive stability
analysis procedure for m > 3 has not yet been found, numerical optimization techniques
have enabled several successful circuit implementations (e.g. [13], [14]). As a matter of
fact, most of today’s commercial AY. type ADC’s are based on single-stage high-order
modulator topologies.

The following two subsections present four of the most widely used modulator topolo-
gies. They are separated into two categories, termed multi-stage and single-stage modu-

lators.

3.1 Multi-stage Modulators

The two most frequently applied multi-stage topologies are the triple cascade of first-order
modulators, referred to as MASH [15], and the cascade of a second-order and a first-order
(SOFO) modulator [16]. The two architectures are illustrated by their respective block
diagrams in figure 5 and figure 6. If we simplify the z-domain analysis by replacing the
denominator function of each modulator stage by its dc value, we can describe the MASH

modulator by the following equation set

Vi(z) = X(2)z7'+ Ni(2)(1 — 271 (10)
NG = NE) W) (1)
Yo(2) = —Ni(2)z7 1+ No(2)(1 — 27 1) (12)
Ny(z) = Ya(2) — Wa(2) o (13)
Vi(z) = —Na(2)z7 + Na(2)(1 — 277) (14)

In order to eliminate the in-band quantization noise contributions N; and N, of the
first and second stage, respectively, the following digital noise cancellation (digital filter)

can be applied
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Y(2) = Yi(2)272+Yo(2)271(1 — 271 + Y3(2)(1 — 271)
= X(2)27% + N3(2)(1 — z71)° (15)
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Figure 5: Triple first-order cascade or MASH modulator topology with corresponding

-1

digital noise cancellation circuit.

The dominant remaining in-band noise term after this operation is the triple differ-
entiated quantization noise introduced by the 3™ (or last) stage. The total output noise
power of the ideal MASH can therefore be computed as indicated by equation (9) when
setting m = 3.
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Figure 6: Cascade of a second-order first-order modulator with corresponding digital noise

cancellation scheme.

The SOFO circuit depicted in figure 6 has been slightly modified from its originally
proposed version [17]. The block diagram shows no signal path between the quantized first

stage output and the second stage input. While this simplifies the analog implementation,
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it requires a slightly more complex digital noise cancellation procedure. Applying the

previous analysis procedure to the SOFO yields the following equation set

Yi(z) = X(2)27 + Ni(2)(1 —2z71)? (16)
M= Y- W) (1"
Ya(z) = Wi(2)z P+ Na(2)(1—271) (18)

The first stage noise contribution, Ny, is eliminated by the following procedure

Y(z) = Yi(2)z! = Yi(2)z 11— 271)" 4 Ya(2) - (1 — 271)°

a1a2

= X(2)278 + No(2)—=(1— 271 (19)

a1a2

Obviously, the SOFO modulator is not as efficient a noise shaping circuit as the MASH.
According to our simple linear analysis, the difference in noise suppression is equal to the
product of the two forward coefficients in the first stage of the SOFO cascade, i.e., aias.

A practical value of this product is . Hence, the difference in noise suppression should

1

amount to approximately 12 dB. To confirm this result, we have carried out a DelSi
simulation with both topologies. In so doing, we have assumed a 20 kHz sinusoidal input
signal of 0.707 V amplitude (i.e., -6 dB relative power) and a sampling rate of 10 MHz.
The simulation results are displayed in figure 7. To reduce the variance of the noise, the
two output spectra (solid line for MASH, dotted line for SOFQO) have been computed by
averaging two 2'® point FFT’s. The plot reveals an average noise power difference between
the two curves of approximately 10 dB. This agrees well with the theoretical prediction
derived from the crude linear models.

The monotonically increasing noise floors in figure 7 reveal further that both topologies
allow the designer to treat the OSR as a free parameter. Table I illustrates some possible
trade-offs between OSR, signal bandwidth (BW) and maximum SNR.

Despite the excellent noise shaping capability of the MASH topology, an analog de-
signer may be reluctant to utilize this solution since the superior performance implies
a perfect noise cancellation that will be difficult to achieve with practical circuits. Due
to amplifier non-idealities and the inherent parametric variations of micro-fabricated de-
vices, this is not possible. The two main problems confronting the designer are integrator
leakage (caused by a shift of its pole) and coefficient mismatch (due to statistical pro-
cess variations). Integrator leakage is particularly severe because it adds an additional
parasitic term to the ideal m* order NTF of the form
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Figure 7: Frequency spectrum of MASH (solid line) and SOFO modulator (dotted line)
in presence of a 20kHz sinusoidal input signal (DelSi simulation with f; = 10 MHz).

NTF(z) X NTF(2)mgy + €lear (1 — 2711 (20)

Mactual

where €., denotes the magnitude of the integrator leakage term. Even though leakage
affects both of the presented topologies, its effect is more pronounced in the MASH case
since the leakage term of its first integrator is not noise shaped at all. In the SOFO
implementation, the first stage is a second-order circuit, yielding a first-order noise shaped
leakage term. Consequently, its contribution to the total output noise power will be on
the order of (OSR/x)” smaller than the parasitic first-stage contribution of the MASH.

Similar reasoning can be applied to the ratio mismatch problem with the notable
exception that ratio matching errors stemming from an m* order circuit are m** order
noise shaped. Therefore, ratio (or integrator gain) errors weigh approximately a factor
(OSR/m)? less heavily than integrator leakage terms.

For a more detailed discussion regarding parasitic effects in SC based modulator cir-
cuits, the reader is referred to [18].
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3.2 Single-stage Modulators

Most single-stage modulators can be derived from two basic topologies. The two archi-
tectures have originally been referred to as noise-shaping coders of form I and form II,
respectively [19]. This nomenclature indicates that they form a transpose pair. In classi-
cal filter theory, the corresponding two feedback arrangements are called follow-the-leader
feedback (FLF) and inverse follow-the-leader feedback (IFLF). In what follows, we will
refer to them by the latter two acronyms. The block diagrams of the FLF and the IFLF
topology are displayed in figure 8 and figure 9, respectively. Note that both diagrams
exhibit an additional feedback path, i.e., by, which leap-frogs two integrator stages. This
extra feedback loop significantly improves the quantization noise suppression by placing
a finite zero into the stopband of the NTF. This zero insertion technique requires the
cascade of integrators to consist of alternating backward and forward Euler equivalent
functions. Since the passband zero is located near the frequency origin (where z=1), the
corresponding zero loop gain becomes very small. The finite zero loop thus hardly affects

the STF and can be ignored in the initial pole placement procedure.
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Figure 8: Single-stage 3" order modulator in FLF topology with additional feedback path
b, yielding a finite NTF zero.
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Figure 9: Single-stage 3™ order modulator in IFLF topology with additional feedback
path b, realizing a finite NTF zero.
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By minimizing the magnitude of the NTF (in the mean square sense) over the entire
modulator passband, we obtain the following analytic expression for the optimum zero

loop gain G, of a 3" order system

3 7
Gy = 5 OSR2

If we include the above expression in our linear circuit analysis procedure, we can

(21)

approximate the total noise power at the output of a 3"¢ order FLF or IFLF modulator
by

. 1 47
n03FLF/IFLF ~ €y (b1a2)2 % 7

This approximation features two additional quantities, which do not appear in the

OSR™" (22)

generic expression of equation (9), namely the squared coefficient product (bla2)2 due
to the pole placement and the fraction 4/25 introduced by the finite NTF zero. The
maximum value of the coefficient product is dictated by stability considerations and lies
somewhere between 0.06 and 0.08. It is interesting to note that the zero loop gain G,
scales as the inverse square of the OSR while the resulting additional noise suppression
factor remains constant. This observation also applies to higher order circuits which may
possess more than just one passband zero.

If we replace the coefficient product (bjas) in equation (22) by a typical value of,
say 0.07, we deduce that 3" order FLF or IFLF modulators realize approximately 30
times (or 15 dB) less noise suppression than an ideal 37 order noise shaped modulator
(cf. equation (9)). Since this numerical value has been derived from the simple linear
modulator model, it requires further verification. To do so, we have performed studies
using the service of our behavioral simulator DelSi. All simulations have been carried
out with a 20 kHz sinusoidal input of 0.707 V amplitude and a sampling rate of 10 MHz.
In each case, the noise power has been computed via a 2% point FFT. The results are

summarized in table 1.
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OSR| BW | SNRyasn | SNRsoro | SNRuyrir
32 | 156 kHz | 83 dB 73 dB 72 dB
48 |104kHz | 95dB 86 dB 83 dB
64 | 78kHz | 105 dB 95 dB 93 dB
96 | 52kHz | 117dB | 107dB | 105dB
128 | 39kHz | 126dB | 115dB | 114dB

Table I. Signal bandwidth and maximum SNR versus OSR for the SOFO, the MASH
and the 37 order FLF/IFLF architecture. The listed values are DelSi results obtained
with f; = 10 MHz).

The SNR values listed in table I are in good agreement with equation (9), which
predicted a 21 dB reduction of the output noise power for every doubling of the OSR.
Although all topologies yield essentially the same SNR improvement as the OSR increases,
the reader should bear in mind that the non-monotonic shape of the NTF of high-order
single-stage modulators requires a physical adjustment of the zero frequency, i.e. the loop
gain factor G, as indicated by equation (21).

As far as the efficiency of the noise suppression is concerned, FLF/IFLF circuits are
inferior to their multi-stage counterparts, above all to the MASH topology, which closely
On the other hand,

single-stage circuits exhibit the highest tolerance with regard to non-ideal effects such as

approaches the theoretical maximum expressed by equation (9).

integrator leakage or coefficient mismatch. This renders them very attractive for ADC
implementations, where the modulator cell is realized by analog means (cf. figure 4).
Finally, it is important to recall that only single-stage topologies can realize the desired
simple 1-bit output format. The digital noise cancellation procedure in multi-stage circuits
invariably creates a multi-bit output by differentiating and summing several 1-bit signals.
This last property is probably the most important reason for the popularity of the single-

stage approach in commercial AY ADC circuits.

4 Design Example

This last section presents a simple ADC design example. We assume the converter to be
intended for a signal bandwidth of 100 kHz or, equivalently, a Nyquist conversion rate of
200 kHz. A typical resolution for such an extended audio or sonar application is 14-16 bit.

To minimize the implementation cost for the digital decimator, we require a simple 1-bit
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output format. Finally, to keep the total power dissipation low, we impose a maximum
OSR of 32. This mandates a minimum modulator sampling rate of 6.4 MHz.

The above specifications require a minimum system order of five. Among the two
competing single-stage topologies, we have chosen the IFLF implementation, because it
requires no additional analog summing stage (cf. figure 8). The block diagram of the 5%
order IFLF circuit, called IFLF5, is shown in figure 10. Apart from the two additional
feedbacks bg and b7, which realize two finite passband zeros, the depicted IFLF topology
also features a second feed-in path, i.e., ag;. This second input enables the designer to
compensate for a possible excess signal gain in the vicinity of the system poles by placing
an additional zero into the STF. Although the poles are located outside the modulator
passband, an excess signal gain can trigger additional nonlinear effects, which in turn can
significantly reduce the maximum input swing. Since the additional feed-in path does not

form any loop, the NTF is not affected by this measure.

3 N z-1 N z- 1 L 1
In - 1-z21 _ 1-z1 R 1-271 _Z 1-z271 R 1-z271 Out
bl b2 b3 b4 b5

Figure 10: Block diagram of IFLF5 modulator complemented by two finite NTF zero
feedbacks (bg and b7) and an additional STF zero feed-forward path (as;).

The design procedure for the NTF is similar to the design of a regular highpass filter.
One notable distinction is that the focal point of the design is the filter stopband rather
than the passband. As a matter of fact, there hardly exist any specifications for the NTF
passband (i.e., the signal stopband) other than limiting the high-frequency noise gain to
avoid a modulator overload. This leaves few restrictions for the pole placement procedure.

Figure 11 shows the frequency characteristics of an STF-NTF pair customized to the
given specifications using the DelSi simulator. This particular numerical solution has
been derived under the additional constraint of keeping the swings of the five integrator
outputs balanced while assuming equal feed-forward and the feed-back coefficient in each
stage to simplify the physical implementation. The resulting set of filter coefficients is

shown below.
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Figure 11: Numerically optimized STF and NTF of the ILFL5 modulator (f; = 6.4 MHz).

ap =b; = 0.166667 as = by = 0.300000
as = by = 0.125000 as = bs = 0.500000
a3 = by = 0.333333 bs 0.009357

a1 = 0.152500 b; = 0.016304

Note that apart from the zero placing coefficients a3y, bg and b7, all values represent
simple integer fractions. Since the coefficients will be realized by element area ratios (e.g.
of capacitors), this simplifies the layout.

As mentioned before, high-order single-bit converters are only conditionally stable.
The above solution is no exception. In fact, the presented 5 order modulator is likely to
saturate or fall into a cyclic behavior, i.e., become unstable, if its input signal exceeds a
critical value of approximately 60% of the analog feedback signal for any extended amount
of time (e.g. several dozen clock cycles). To avoid such an overload condition, the input
signal must be limited in amplitude. In addition, practical modulators are equipped with
an overload detection circuit, which resets the entire system as soon as an unstable mode
of operation is detected.

Figure 12 shows the output spectrum of the given IFLF5 modulator in presence of a
8 kHz sinusoidal input signal of -9 dB relative power. The displayed spectrum, a DelSi
simulation, has been computed by averaging the results of eight 27 point FFT’s. The
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Figure 12: Spectral response of ILFL5 modulator in presence of a 8 kHz sinusoidal input
signal (DelSi simulation with f;=6.4 MHz).

displayed example yields an SNR of 91 dB. This corresponds to a resolution of 15 bits.
The plot also reveals a characteristic 3"¢ harmonic located approximately 100 dB below
the input signal. Such a low harmonic power is deemed harmless. We thus conclude that

the presented solution conforms well to the given modulator specifications.
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Figure 13: Fully-Differential SC implementation of IFLF5 modulator.

The last step in the design procedure is the actual physical implementation. The
most common monolithic solution for an extended audio range application is an SC cir-
cuit. Figure 13 depicts the schematic of a fully-differential SC implementation of the
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presented IFLF5 modulator. The presented circuit employs a standard 2-phase non-
overlapping clocking scheme. Furthermore, it exploits the symmetry between the feed-
forward and feed-back coefficients of each integrator stage by realizing both coefficients by
time-multiplexing a single capacitor. Another special feature of this circuit is the modified
feedback path bg/as. By eliminating the switches in the corresponding feedback path, this
zero loop could be extended over three amplifier stages. This not only saved two switch
pairs but also reduced the coefficient spread.

Figure 14: Micro-photograph of complete IFLF5 modulator in 1.2um double-poly CMOS
technology (Size: 820um x 470um).

Figure 14 shows a micro-photograph of the modulator circuit. An important objec-
tive of this layout has been to maximize the physical distance between analog and digital
sub-units to minimize crosstalk. The top row shows the five fully-differential CMOS am-
plifiers required to emulate the discrete-time integrators. They have been realized by
folded-cascode transconductance gain stages [20] and exhibit a bandwidth of approxi-
mately 50 MHz. The middle section of the layout accommodates the linear double-poly
capacitors forming the filter coefficients. One can easily discern the pairwise identical
unit-element arrays representing the complementary capacitors of the two signal paths.
The bottom portion of the picture, finally, shows the digital section. It consists of the
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switches (realized by CMOS transmission gates), the adjacent clock bus below and the
necessary non-overlapping clock generator (bottom right). The comparator and the two
multiplexers are realized by the two small cells on the lower right periphery in figure 14.

The depicted circuit occupies a chip area of less than 0.4 mm? and, when operated
from a single 5 V supply, dissipates approximately 25 mW of power.

Figure 15 shows a measured spectrum of the IFLF5 modulator obtained with an 8
kHz sinusoidal input signal and a sampling rate of 6.4 MHz. To minimize the variance
of the output noise, we have averaged 200 FFT’s computed from 2!7 time samples each.
The resulting plot confirms the high dynamic range of the system. The two NTF zeros,
while partially submerged in white noise, are still visible. The recorded white noise stems
predominantly from the first integrator stage, in particular the kT /C contribution of the

two input capacitors.

0
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Figure 15: Measured spectrum of IFLF5 modulator obtained with a sinusoidal input
signal of 8 kHz and a sampling rate of 6.4 MHz.

To complete the entire ADC system, the modulator circuit in figure 14 has to be
embedded between a continuous-time pre-filter (to avoid aliasing) and a digital low-
pass/decimator circuit (to lower the sampling rate to the Nyquist frequency and convert
the 1-bit modulator output to a standard 16 bit format). Both of these cells can be real-
ized by a standard CMOS process. However, a detailed discussion of their implementation

would exceed the scope of this article and will therefore not be attempted here.
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In conclusion, we would like to repeat that the quintessential element of a AY based

C is the analog modulator loop. It represents the most sensitive system component

and thus bears most of the burden of satisfying the converter specifications.
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