Home Work Assignment #3

ELE 447

University of Rhode Island, Kingston, RI 02881-0805, U.S.A.

Physical Constants:

$$q = 1.6x10^{-19}C \qquad \epsilon_o = 8.85x10^{-14}F/cm$$
 Parameters:
$$\epsilon_{ox} = 3.9\epsilon_o = 3.45x10^{-13}F/cm \quad \epsilon_{Si} = 11.7\epsilon_o = 1.04x10^{-12}F/cm$$
 Parameters:
$$\lambda = 0.6\mu m \qquad t_{ox} = 20nm$$
 nMOS & pMOS
$$C_{j-sw} = 0.2fF/\mu m \qquad C_{j-sw} = 0.25fF/\mu m$$

$$C_{j-A} = 0.24fF/\mu m^2 \qquad C_{j-A} = 0.4fF/\mu m^2$$

1) Assume:

$$R_n = 12k\Omega \ for \ \left(\frac{W}{L}\right)_n = \left(\frac{2.4\mu m}{1.2\mu m}\right)$$

 $R_p = 12k\Omega \ for \ \left(\frac{W}{L}\right)_p = \left(\frac{6\mu m}{1.2\mu m}\right)$

- a) Text Book Problem 1.14: ignore equation (1.21), use $(W/L)_n = (1.2\mu m/0.6\mu m)$, $(W/L)_p = (2.4\mu m/0.6\mu m)$ & $C_L = 50$ fF.
- b) Text Book Problem 1.15: use $L_p = L_n = 0.6 \mu m$ (instead of $0.8 \mu m$) & use the W_p 's, W_n 's from figure P1.15 (note the sizes in figure P1.15 are $\mu m!!$).
- 2) Text Book Problems
 - a) 1.5
 - b) 1.6
- 3) Provide a gate-level description and the logic function, V_o , of the circuit shown in figure 1.

Figure 1. Circuit for Problem 3.

4) Find the capacitance of the parallel plate capacitor shown in figure 2 using dielectrics of air, SiO_2 , Si and Si_3N_4 for each of the geometries provided:

Figure 2. Circuit for Problem 4.

- a) d = 2mm, L = 40mm and W = 30mm
- b) $d = 10^{-2} \mu m$, L = 0.6 mm and W = 0.3 mm
- c) d = 20Å, $L = 3\mu m$ and $W = 8\mu m$
- d) Find the capacitance of the parallel and series combination of a 850 fF, 30fF and a 130 fF capacitor.
- 5) Find the electric field between the top and bottom plates for the capacitor shown in figure 2 for distances given (assume that the voltage across the terminals is 5V):
 - a) d = 2mm
 - b) $d = 10^{-2} \mu m$
 - c) $d = 20\mathring{A}$