
2-level Cache vs Single-level Cache

(Research Essay #3)

Seok Bum Ko

kosby@ele.uri.edu

ELE548 Computer Architecture

9 April, 1999

1

1. Introduction
2. Simulation Methodolgy
3. Simulation Results
4. Conclusions
5. References

1. INTRODUCTION

The performance gap between processors and memory leads the architect to this question:
Should I make the cache faster to keep pace with the speed of CPUs, or make the cache larger to
overcome the widening gap between the CPU and main memory?
By adding another level of cache between the original cache and memory, the first-level cache can
be small enough to match the clock cycle time of the fast CPU, while the second-level cache can
be large enough to capture many accesses that would go to main memory, thereby lessening the
effective miss penalty.
A secondary cache is bigger than the primary cache (and is usually in the same chip as the
CPU) and fits between the primary cache and the main memory (RAM). The secondary cache
is faster than the main memory, but slower than the primary cache memory. The main
functionality of the secondary cache is that, it reduces the miss penalty of the primary cache,
by prefetching the data from the main memory. And the blocks in the secondary cache are
replaced whena miss occurs in the secondary cache based on any one of the replacement
algorithms like the LRU, FIFO or the RANDOM replacement policy. The position of a
secondary cache in the memory hierarchy is shown in a simplified manner in Figure 1.

Figure 1. Memory Hierarchy

2. SIMULATION METHODOLOGY

The simulator dineroIV was used, which is available at WARTS (Wisconsin Architectural
Research Tools) to determine the performance of the caches. This simulator evaluates only one
uniprocessor cache at a time but produces more performance metrics (e.g., traffic to and from
memory) and allows various cache design options to be varied which was the main reason and
the motivation for it's choice as the simulator.
dineroIV is a trace-driven cache simulator that supports sub-block placement. Simulation
results are determined by the input trace and the cache parameters. A trace is a finite sequence

PROCESSOR

L1 CACHE

L2 CACHE

MEMORY

Small, Fast Level 1 cache

Larger, Slower L-2 cache

2

of memory references usually obtained by the interpretive execution of a program or a set of
programs. Trace input is read in din format. Cache parameters, e.g. block size and
associativity, are set with the command line options. dineroIV uses the priority stack method
of memory hierarchy simulation to increase flexibility and improve simulator performance in
highly associative caches. This simulator lets one to simulate either a unified cache (mixed,
data and instructions cached together) or separate instruction and data caches.
dineroIV differs from most other cache simulators because it supports sub-block placement
(also known as sector placement) in which address tags are still associated with cache blocks
but data is transferred to and from the cache in smaller sub-blocks. This organization is useful
for on-chip microprocessor caches which have to load data on cache misses over a limited
number of pins. Sub-block placement allows a cache to have small sub-blocks for fast data
transfer and large blocks to associate with the address tags.
dineroIV reads the trace input in the din format from stdin. A din record is a two-tuple label
address. Each line of the trace file consists one din record. The rest of the line is ignored so that
any comments could be included in the trace file. In the two-tuple label address record the
label gives the access type of a reference :

0 read data
1 write data
2 instruction fetch
3 escape record (treated as unknown access type)
4 escape record (causes cache flush)
And the address is a hexadecimal byte-address between 0 and ffffffff inclusively.

Trace-driven simulation is used to evaluate the cache performance because the simulations are
repeatable and it allows to vary the cache design parameters and above all it does not require
the access to or the existence of the architecture being studied. The objective is to compare the
performance of a cache that has a level-2 cache with a cache that does not have a level-2 cache
by varying the various parameters of the caches such as the cache size, block size, associativity,
replacement policy, write policy and the fetch policy.
Input traces: Spice.din, tex.din, cc1.din: traces for GCC, TeX and Spice
The objective is to compare the performance of a cache that has a level-2 cache with a cache that
does not have a level-2 cache by varying the various parameters of the caches such as the cache
size, block size, associativity, replacement policy.
Parameters: cache size, block size, associativity, replacement algorithm, write policy
Performance metrics: average memory access time, hit ratio

3

3. SIMULATION RESULTS

Table 1. Miss rate versus block size
Cache SizeBlock

Size 32K 64K 128K 256K 512K 1024K 2048K 4096K 8192K
16 0.0381 0.0271 0.0195 0.0158 0.0142 0.0136 0.0136 0.0136 0.0091
32 0.0284 0.0197 0.0126 0.0098 0.0087 0.0082 0.0082 0.0082 0.0075
64 0.0236 0.0162 0.0092 0.0067 0.0060 0.0055 0.0055 0.0055 0.0041
128 0.0213 0.0148 0.0076 0.0053 0.0047 0.0042 0.0042 0.0042 0.0025
256 0.0215 0.0147 0.0071 0.0045 0.0040 0.0035 0.0035 0.0035 0.0015
512 0.0311 0.0191 0.0078 0.0049 0.0042 0.0035 0.0035 0.0035 0.0009

Assume the memory system takes 40 clock cycles of overhead and then delivers 16 bytes every 2
clock , cycles, and so on. Thus, it can supply 16 bytes in 42 clock cycles, 32 bits in 44 clock cycles,
and so on.

Block Size Clock Cycles(=Miss Penalty)
16 42
32 44
64 48

128 56
256 72
512 104

Miss Ratio vs Block Size

0

0.02

0.04

0.06

16 32 64 128 256 512

Block Size

M
is

s
R

at
io

32K

64K

128K

256K

512K

1024K

2048K

4096K

8192K

4

Table 2. Average Memory Access Time versus block size
Cache SizeBlock

Size 32K 64K 128K 256K 512K 1024K 2048K 4096K 8192K
16 2.6002 2.2382 1.819 1.6636 1.5964 1.5712 1.5712 1.5712 1.3822
32 2.2496 1.8668 1.5544 1.4312 1.3828 1.3608 1.3608 1.3608 1.33
64 2.1328 1.7776 1.4416 1.3216 1.288 1.264 1.264 1.264 1.1968

128 2.1928 1.8288 1.4256 1.2968 1.2632 1.2352 1.2352 1.2352 1.14
256 2.5480 2.0584 1.5112 1.324 1.288 1.252 1.252 1.252 1.108
512 4.2344 2.9864 1.8112 1.5096 1.4368 1.364 1.364 1.364 1.0936

Table 3. Miss ratio versus Cache size
L2Cache Size L1

L1 L2
 32K/ 512K; 64/128 0.0236 0.0236 0.1647
 64K/1024K; 64/128 0.0162 0.0162 0.2204
128K/2048K; 128/128 0.0076 0.0076 0.5038
256K/4096K; 128/128 0.0053 0.0053 0.7291
512K/8192K; 128/256 0.0047 0.0047 0.2850

AMAT vs Block Size

0

2

4

6

16 32 64 128 256 512

Block Size

A
M

A
T

32K

64K

128K

256K

512K

1024K

2048K

4096K

8192K

Miss Ratio vs Cache Size

 32/512 64/1024128/2048256/4096512/8192
 32/512 64/1024

128/2048

256/4096

512/8192

0

0.2

0.4

0.6

0.8

Cache Size(L1/L2;K)

M
is

s
R

at
io

L1

L2

5

AMAT = tl1 + pl1(tl2+pl2*tmem)
tl1 : level-1 cache hit time – 1 cycle
pl1 : level-1 cache miss rate
tl2 : level-2 cache hit time – 6 cycles
pl2 : level-2 cache local miss rate
tmem: memory access time – 48 for 64 bytes, 56 for
 128 bytes and 72 for 256 bytes.

In the case of 256K in L1 cache, 2-level cache’s AMAT is calculated as follows:
1 + 0.0053(6+0.7291*56) = 1.2482 clock cycles

Table 4. Average Memory Access Time versus cache size
Cache Size(L1/L2) L1 L2

 32K/ 512K; 64/128 2.1328 1.3593
 64K/1024K; 64/128 1.7776 1.2971
128K/2048K; 128/128 1.4256 1.2600
256K/4096K; 128/128 1.2968 1.2482
512K/8192K; 128/256 1.2632 1.1246

Table 5. Miss Ratio versus Set Associativity
AssociativityL2 Cache Size L1 Miss Ratio

1-way 2-way 4-way 8-way
512K 0.0236 0.1647 0.0978 0.0936 0.0917
1024K 0.1621 0.2204 0.1352 0.1338 0.1337
2048K 0.0076 0.5038 0.2919 0.2919 0.2919
4096K 0.0053 0.7291 0.4211 0.4211 0.4211
8192K 0.0047 0.2850 0.2850 0.2850 0.2850

AMAT vs Cache Size

0

1

2

3

32K 64K 128K 256K 512K

Cache Size

A
M

A
T L1

L2

6

Table 6. Average Memory Access Time(Set-Associativity)
AssociativityL2 Cache Size

1-way 2-way 4-way 8-way
512K 1.36 1.33 1.35 1.37
1024K 1.30 1.28 1.30 1.32
2048K 1.26 1.23 1.25 1.27
4096K 1.25 1.22 1.24 1.26
8192K 1.12 1.18 1.20 1.22

4. CONCLUSIONS

A comparison of the performance between a cache with a level-2 cache and a cache without a
level-2 cache is made based on trace driven simulation studies using selected input data on the
cache simulator dineroIV by varying the different parameters of the cache design. It was found
that the performance of a cache with a level-2 cache was better than that of a cache without a
level-2 cache.

Miss Ratio versus Set Associativity

0
0.2
0.4
0.6
0.8

512K 1024K 2048K 4096K 8192K

L2 Cache Size

M
is

s
R

at
io

1-way

2-way

4-way

8-way

Average Memory Access Time
versus Set Associativity

0
0.5

1
1.5

512K 1024K 2048K 4096K 8192K

L2 Cache Size

A
M

A
T 1-way

2-way

4-way

8-way

7

5. REFERENCES

1. Computer architecture: a quantitative approach by John Hennessy and David Patterson
2. Architectural choices for multi-level cache hierarchies by J.L Baer and W.H Wang
3. The Cache memory book by Jim Handy

