
ELE548 Research Essay: Topic 3

Java Applets vs. Java Servlets

Zhengqiang Shan

April 12, 1999



Abstract

An applet is a Java program that can be included in an HTML page and executed by a Java

technology-enabled browser. It can be used in web-page enhancement and on enterprise

intranets for sharing resource and data. Applets allow local validation of data entered by

the user, can Using database to perform list of values lookups and data validation, and

have Complex GUI widgets. Servlets are protocol- and platform-independent server side

components, which runs as part of a network servic and dynamically extend Java-enabled

servers. With applets, servlets can provide interactivity/dynamic Web content generation.

Servlets can accept form input and generate HTMLWeb pages dynamically like CGI, support

collaborative applications by synchronizing request, partition a single logical service between

several servers, act as active agents sharing data. Servles support di�erent protocol, can be

part of middle tiers in enterprise networks. Servlet are mor appropriated when involves

loading large pieces of code over a slow communication channel; when a large part of the

computation for generating the Web page can be done on the server side or when processing

involves operations that applets cannot perform due to security restrictions. If a sophisticated

user interface is desired, applets are appropriate. Applets and servlets can share data and

communicate, so the processing can be split between them. Client-side Java is a glorious

vision that does and will not change the way most people use the Internet anytime soon.

Sun has taken some dramatic steps to insure that Java remains ubiquitous by creating a new

set of APIs that allow developers to use Java as a server-side development tool.



ELE548 Research Essay 1

1 Java Applets

1.1 Introduction

An applet is a program written in the Java programming language that can be included in an

HTML page, much in the same way an image is included. When you use a Java technology-

enabled browser to view a page that contains an applet, the applet's code is transferred to

your system and executed by the browser. Web browser severely restricts what an applet

can do in terms of �le system and network access in order to prevent accidental or deliberate

security violations. With applets you have the ability to perform serious high end interactive

programming tasks that cannot be performed with Dynamic HTML.

1.2 Capabilities and Limitations of Applets

Java applets obviously have many potential capabilities because of their tight security model,

their generally small size, their and network awareness.

Java applets can be used to build full-featured graphical user interfaces, communicate

over the Internet to a host server, and even communicate with other applets on a form. All

of this can be done in an operating-environment-neutral manner, which is what makes this

such a great technology. For Java to be truly successful, however, the client security has to

be completely assured. Because of this, security measures place some limitations on Java

applets. By default, applets cannot communicate with any server other than the originating

server. Applets also cannot read or write �les to the local �le system.

The growth of technologies such as Web-based client/server application development and

electronic commerce has been severely limited by the lack of "industrial-strength" security.

Because the underlying Internet was never designed to handle secure transactions (the De-

partment of Defense has a separate net for this purpose), the entire infrastructure of the

Internet was somewhat unprepared for the phenomenal growth of the World Wide Web over

the last few years. The concept of applets (or related technologies such as software agents)

has been discussed in academic circles for years, yet most theoreticians realized the security



ELE548 Research Essay 2

shortcomings of the current programming languages such as C and C++.

1.3 Life Cycle of Applet

An applet as an object inherits the properties of its parent object, the applet template.

The Applet Package contains a few methods that have some very special functions. These

methods, called the lifecycle methods, control how an applet behaves during the course of

execution.

When you load a Web page that contains an applet, the applet goes through several

stages during the time you see it on-screen. During each of these stages, the applet performs

very di�erent tasks, although most of these tasks are invisible to the end-user. These stages

are initialization, running, and exiting.

During the initialization stage, the applet is loading the images, sound clips, and other

resources that it needs to run. When the applet has all the resources it needs to run, the

initialization stage is over, and the applet is ready to run.

When the applet is running, it is performing whatever tasks it has been designed to

perform. Conversely, when an applet is not running, it is just sitting idle, waiting for a user

to re-enter the Web page. Because applets start and stop when you enter and leave a Web

page, running consists of two distinct states, starting and stopping. These states could really

be thought of as two separate stages, and in fact, each has a corresponding lifecycle method.

You can control what an applet does during both starting and stopping.

Because applets are loaded into your machine's memory and use CPU time, you wouldn't

want the applet to remain in memory once you've left the Web browser. During the �nal

exiting stage, the Java Virtual Machine completes some garbage collecting functions, making

sure that the resources the applet used are removed from memory and that the applet is

completely destroyed when you quit.

Breaking up applets into these stages has some very distinct advantages. For example, if

you were writing an animator that used a large number of images, you would want to make

sure the images were loaded before the applet started running. Otherwise, your animation



ELE548 Research Essay 3

might seem jerky or have frames missing. Manipulating these stages can come in handy, and

fortunately the Applet Package contains methods to do just that.

The Applet Package has four lifecycle methods, each of which corresponds directly to

the stages of an applet. Each of these methods is automatically called as the applet loads,

runs, and exits, so you might not always use each of these methods in your own applets.

Also, you only need to use these methods if you need something speci�c to occur during a

particular stage, like stopping a sound when you leave the page. Often, you will use one or

two lifecycle methods, but not all of them. The decision to use a lifecycle method depends

largely on what you are trying to do with your applet. You will �nd that init(), start(), and

stop() are all used fairly commonly because these stages each have practical implications for

applets. You want to make sure images and sounds load �rst, you want to make sure sounds

stop playing, and so on. Evaluating the need to use one of these methods is a part of the

planning process when writing your applets.

The �rst method called by an applet once it has been loaded by the browser is init().

Because the applet is not running when init() is called, this method is an excellent place

to take care of any groundwork that must be laid for the applet to carry out its goals.

Some good tasks to take care of during init() include loading images or establishing the user

interface. Take, for example, an applet that plays an audio clip at the click of a button.

In such an applet, you would need to load the audio clip and set up the button before the

applet began to run.

After the applet has been loaded into the browser and is ready to begin, the start()

method is called automatically. The start() method generally contains the meat of your

applets. After all, this method is what you want the applet to do. In most applets, you will

de�ne the init() and start() methods. You can put any kind of code in the start() method;

you could draw images, play sounds, and accept user input, essentially any of the functions

you might expect a program to perform.

The stop() method is the counterpart to the start() method. It is called automatically

when an applet should stop execution, when you leave an applet's Web page. If you use the



ELE548 Research Essay 4

start() method to start some functions that need to be stopped before the user moves on,

you stop them with the stop() method. You don't necessarily have to rede�ne the stop()

method in all your applets. If an applet is simple enough, you could let the stop() method

automatically terminate any methods that might be running. But if you have any sounds

playing, or especially if you have any threads running, it is a good idea to invoke the stop()

method on your own to keep your applet under control.

The destroy() method is essentially the death of an applet. When you leave your browser,

this method is called automatically to do any cleanup that might be necessary. Just as the

name would imply, the destroy() method eliminates any trace of your applet. It purges

any memory that was used by your applet, and it stops any running threads or methods.

Generally speaking, you do not have to do anything to use the destroy() method, a base

destroy() method is prede�ned and automatically called, so all you have to do is sit back

and let it do the dirty work.

1.4 Applet vs. HTML

Applets allow local validation of data entered by the user. Local validation of data is possible

using HTML combined with JavaScript but variances in JavaScript implementations make

JavaScript di�cult to generally use.

An applet can use the database to perform list of values lookups and data validation.

HTML (even if combined with JavaScript) can not do that without invoking a CGI or servlet

program and drawing a new HTML page.

Once an applet is downloaded, the amount of data transferred between the Web browser

and the server is reduced. HTML requires that the server transfer the presentation of the

data (the HTML tags) along with the data itself. The HTML tags can easily be 1/4 to 1/2

of the data transferred from the server to the client.

Applets allow the designer to use complex GUI widgets such as grids, spin controls, and

scrollbars. These widgets are not available to HTML.



ELE548 Research Essay 5

2 Java Servlets

2.1 Introduction

Java code that runs as part of a network service, typically an HTTP server and responds to

requests from clients is called Java Servlet. Servlets are protocol- and platform-independent

server side components, which dynamically extend Java-enabled servers. They provide a

general framework for services built using the request-response paradigm. For example, a

client may need information from a database; a servlet can be written that receives the

request, gets and processes the data as needed by the client and then returns the result to

the client. Their initial use is to provide secure web-based access to data which is presented

using HTML web pages, interactively viewing or modifying that data using dynamic web

page generation techniques. Since servlets run inside servers, they do not need a graphical

user interface. Otherwise, they are the server side counterpart to applets: they are Java

application components which are downloaded, on demand, to the part of the system which

needs them.

Servlets are most often provided by organizations which provide customized multi-user

services to their customer bases. However, servlets are also 
exible enough to support stan-

dardized services such as serving static web pages through the HTTP (or HTTPS) protocols,

and proxying services. And since they are used for dynamic extensibility, they may be used

in a plug-in style, supporting facilities such as search engines and semi-custom applications

2.2 Java Servlet Usage

� Protocol support is one of the most viable uses for servlets. For example, a �le ser-

vice can start with NFS and move on to as many protocols as desired; the transfer

between the protocols would be made transparent by servlets. Servlets could be used

for tunneling over HTTP to provide chat, newsgroup or other �le server functions.

� Servlets could play a major role as part of middle tiers in enterprise networks by



ELE548 Research Essay 6

connecting to SQL databases via JDBC. Corporate developers could use this for several

applications over the Intranet, extranet, and Internet.

� Servlets often work in conjunction with applets to provide a high degree of interactivity

and dynamic Web content generation.

� The most common use for servlets is to accept form input and generate HTML Web

pages dynamically, similar to traditional CGI programs written in other languages.

A simple servlet can process data which was POSTed over HTTPS using an HTML

FORM, passing data such as a purchase order (with credit card data). This would

be part of an order entry and processing system, working with product and inventory

databases and perhaps an on-line payment system.

� A community of servlets could act as active agents which share data with each other.

� Since servlets handle multiple requests concurrently, the requests can be synchronized

with each other to support collaborative applications such as on-line conferencing. One

could de�ne a community of active agents, which share work among each other. The

code for each agent would be loaded as a servlet, and the agents would pass data to

each other.

� One servlet could forward requests other servers. This technique can balance load

among several servers which mirror the same content. Or, it could be used to partition

a single logical service between several servers, routing requests according to task type

or organizational boundaries.

2.3 Life Cycle of Servlet

Servlets support the familiar programming model of accepting requests and generating re-

sponses. This model is used with a variety of distributed system programming toolsets,

ranging from remote procedure calls to the HTTP requests made to web servers. Servlets

implement the Servlet interface, usually by extending either the generic or an HTTP-speci�c



ELE548 Research Essay 7

implementation. The simplest possible servlet de�nes a single method, service. The service

method is provided with Request and Response parameters. These encapsulate the data sent

by the client, providing access to parameters and allowing servlets to report status including

errors. Servlets normally retrieve most of their parameters through an input stream, and

send their responses using an output stream.

Servlets are always dynamically loaded, although servers will usually provide an admin-

istrative option to force loading and initializing particular servlets when the server starts

up. Servlets are loaded using normal Java class loading facilities, which means that they

may be loaded from remote directories as easily as from the local �lesystem. This allows for

increased 
exibility in system architecture and easier distribution of services in a network.

The life cycle of a servlet is:

� Server loads and initializes the servlet: When a server loads a servlet, the server runs

the servlet's init method. Initialization completes before client requests are handled

and before the servlet is destroyed.

� The servlet handles client requests: An HTTP Servlet handles client requests through

its service method. The service method supports standard HTTP client requests by

dispatching each request to a method designed to handle that request. HTTP servlets

are typically capable of serving multiple clients concurrently.

� The server removes the servlet: Servlets run until the server are destroy them. When

a server destroys a servlet, the server runs the servlet's destroy method. The method

is run once; the server will not run that servlet again until after the server reloads and

reinitializes the servlet.

2.4 CGI and Servlets

Servlets provide an alternative mechanism to CGI programs for generating dynamic data.

CGI programs have existed for a while; they are stable and universally accepted. They are



ELE548 Research Essay 8

language-independent (although they are not platform-independent). The main advantages

of servlets over CGI scripts are:

� Performance Servlets o�er a substantial improvement in performance over CGI. Each

CGI request on the same server results in the creation of a new process. On the

other hand, a servlet can continue to run in the background after servicing a request.

Also, CGI programs are not threaded. Servlets can use threading to process multiple

requests e�ciently, provided that the JVM embedded in the Web server o�ers thread

support.

� Platform Independence CGI programs are platform-dependent. Servlets are Java

classes and follow the "write once, run everywhere" doctrine. Therefore, they are

truly portable across platforms.

� State Information CGI programs are stateless because they result in the creation of a

new process each time a request is serviced. A servlet has memory of its state once it

is loaded by the server. The JVM running on the Web server loads the servlet when

it is called. The servlet does not have to be reloaded until it changes, and a modi�ed

servlet may be dynamically reloaded without restarting the server. Maintaining state

information allows multiple servlets to share information.

� Network Programming Your Java servlets have full access to Java's networking features.

The servlets can connect with other networked computers using sockets or Remote

Method Invocation (RMI). Also, the servlet can easily connect to a relational database

using the Java Database Connection (JDBC). By using the networking features of Java,

servlets can be used to easily develop middleware.

� Reuse and Modularity One shortfall of server-side programming in scripting languages

such as Perl and VBScript is that of reuse. If you have to create another server-side

module based on existing code then the only reuse you have with scripting languages

is "cut-and-paste" reuse.



ELE548 Research Essay 9

Since servlets are written in Java, you gain all the object-oriented features of Java

such as reuse. You can create an object framework of common servlets and reuse them

in future applications. For example, you can create a simple servlet for processing of

HTML form data. Later, another developer can use this servlet as is or extend it to

add custom functionality.

Supporting the idea of modularity, servlets can communicate with other servlets on

the Web server. This mechanism, known as servlet chaining, allows the output of one

servlet to be passed as input to another servlet. As an example, a database query

servlet can retrieve sales data and pass this data to a charting servlet. The charting

servlet simply prepares a graphical representation of the data and returns it to the

client.

3 Java Applets vs. Java Servelets

Servlets are named after applets which are also written in Java but which run inside the

JVM of a HTML browser on the client. Servlets and applets allow the server and client to

be extended in a modular way by dynamically loading code which communicates with the

main program via a standard programming interface.

Basically, a servlet is the opposite end of an applet. A servlet can almost be thought of

as a server-side applet. Servlets run inside the Web server in the way that applets run inside

the Web browser. The browser can submit a request to execute a servlet directly; it can be

stand-alone in terms of its actions { as a browser can request an applet directly.

Since servlets run inside servers, they do not need a graphical user interface, often referred

to as faceless applets. Servlets are free of the security restrictions that apply to applets. This

is because they run within a Web server on the server-side. Thus, they are trusted programs,

Java application components which are downloaded, on demand, to the part of the system

which needs them.

Like applets, servlets may be called from HTML �les dynamically and there are several



ELE548 Research Essay 10

cases in which the two could be used interchangeably. So when should we design servlets and

when should we design applets? The answer to this question goes back to the basic issue of

load distribution between the client and the server. The distributed client/server paradigm

has shifted over the past few years from fat clients to thin clients and subsequently from thin

servers to fat servers. Applets are representative of the client side of the architecture and

servlets represent the server side. Some scenarios in which servlets are more appropriate are

given below:

1. Applet classes are downloaded over the Internet to the client and then executed in a

JVM running on the client. If this involves loading large pieces of code over slow modem

lines, applets are not the appropriate choice.

2. If a large part of the computation for generating the Web page can be done on the

server side, it is pointless to load the part of the code that does the computation to the

client. The computation should be done on the server and the results passed back to the

client.

3. If processing involves operations that applets cannot perform due to security restric-

tions, then a local servlet may be used.

Applets are more appropriate in the following scenarios:

1. Applets basically have a well-de�ned user interface (remember that they derive from

Panel). In servlets, on the other hand, a user interface would have to be built from scratch.

Therefore, when a sophisticated user interface is desired applets are appropriate.

2. If the speed of the communication channel is adequate, then the overhead involved in

downloading applets may not be an issue.

Applets and servlets can also share data and communicate. Therefore, the processing

can be split between them.



ELE548 Research Essay 11

4 Discussion

It's a peculiar moment in the industry's history. The Java buzz is intense. And yet when

you look at the Web applications that people actually use every day to do their work, you

invariably �nd that there are no Java applets in the mix. The universal client today is

still the HTML browser. The universal client of tomorrow will be the HTML/JavaScript

browser. Client-side Java is a glorious vision that will not change the way most people use

the Internet anytime soon. It's just more than what the majority of today's computers and

networks can readily push. So what are millions of people running every day? Server-based

applications that feed the universal HTML client.

Server-side scripting is still very popular for several reasons:

� totally independent of the browser since everything takes place on the server;

� complex requests may execute faster on the server;

� can be made safer since the programs run under direct control of the server adminis-

trator.

Java servlets give you the capability to develop complex server-side applications. Servlets

leverage Java's object-oriented features to build reusable and modular components. You can

easily create servlets to replace CGI applications, access databases and communicate with

remote computers.

As promising as applet development is, developers' frequent lack of control over the �nal

appearance and performance of their products is often frustrating. The limitations on applet

capabilities and the changes between Java versions make it di�cult to apply the full strength

of Java's incredibly powerful programming structures, restricting the real-world use of Java

fairly severely. As applet development becomes a specialized �eld for multimedia toys and

carefully-built applications, Sun has taken some dramatic steps to insure that Java remains

ubiquitous { and useful { by creating a new set of APIs that allow developers to use Java as

a server-side development tool.



ELE548 Research Essay 12

5 Reference

1. http://jserv.javasoft.com:80/products/java-server/documentation/ webserver1.0.2/servlets/api.html

2. http://www.sys-con.com/java/feature/3-1/servletsfriends/

3. http://www.sys-con.com/java/feature/3-1/cgi-scripts/index.html

4. http://www.servletcentral.com/common/articlelist.dchtml

5. http://webreview.com/wr/pub/97/10/10/feature/colton.html

6. http://www.developer.com/news/techfocus/021698 servlet.html

7. http://www.sys-con.com/java/feature/3-2/3-tier/index.html

8. http://www.servletcentral.com/

9. http://javaboutique.internet.com/

10. http://www.javasoft.com/applets/index.html

11. http://www.javasoft.com/features/1997/oct/applets.html

12. http://www.javasoft.com/features/1997/dec/applets2.html

13. http://www.javasoft.com/features/1998/07/applet.power.iii.html


