
 1

Implementation and Performance Evaluation of Two Snapshot Methods on iSCSI
Target Storages

Weijun Xiao, Yinan Liu, and Qing (Ken) Yang
Dept. of Electrical and Computer Engineering

University of Rhode Island, Kingston RI 02881
Tel: (401) 874-5880, Fax: (401) 782-6422
Email: {wjxiao,yinan,qyang}@ele.uri.edu

Jin Ren and Changsheng Xie

National Laboratory for Data Storage Systems
Huazhong University of Science and Technology

Wuhan, Hubei, P. R. China

Abstract

While snapshots have been commonly used in data
storages for backup and data protections, little is known
in the open literature how such snapshots impact
application performance. This paper presents an
implementation and performance evaluation of two
snapshot techniques: copy-on-write snapshot and
redirect-on-write snapshot. Our implementation is
carried out at block level on a standard iSCSI target.
We carry out quantitative performance evaluations and
comparisons of the two snapshot implementations using
TPC-C, TPC-W, IoMeter, and PostMark benchmarks.
Our measurements reveal many interesting observations
regarding the performance characteristics of the two
snapshot techniques. Depending on the applications
and different I/O workloads, the two snapshot
techniques perform quite differently. In general,
copy-on-write performs well on read-intensive
applications while redirect-on-write performs well on
write-intensive applications.

1. Introduction

As organizations and businesses depend more and

more on digital information, data protection and disaster
recovery have become the top challenge for data storage
designers and administrators. In most storage systems,
data protection relies on periodic backup [1] and remote
replications [2,3]. Both backup and replication often
make use of snapshot technologies to enhance and
simplify recovery process by reducing recovery time
and providing more recovery points. A snapshot creates
a point-in-time image of a data storage volume by
making a full copy (clone) or a differential copy of the
volume. The differential copy snapshot improves space

efficiency upon full copy snapshot because only
changes to the volume are stored after the snapshot.
There are basically two types of differential snapshots:
copy-on-write [16] and redirect-on-write [8].

Copy-on-write snapshot: At the time when the

snapshot is created, a small volume is allocated as a
snapshot volume with respect to the source volume.
Upon the first write to a data block after the snapshot,
the original data of the block is copied from the source
volume to the snapshot volume. After copying, the
write operation is performed on the block in the source
volume. As a result, the data image at the time of the
snapshot is preserved. The combination of the source
volume and the snapshot volume presents the
point-in-time image of the data. After the snapshot is
created, all subsequent read I/Os are performed on the
source volume. Write I/Os after the first change to a
block is also performed on the source volume, i.e. only
the first write to a block copies the original data to the
snapshot volume.

Redirect-on-write snapshot: Copy-on-write

requires 3 I/O operations upon the first write to a block
[16]: (1) read the original block from the source volume,
(2) write the original block to the snapshot volume, and
(3) write the new data in the source volume. These I/O
operations are done at production time, which may
negatively impact application performance. To
overcome this, one can do redirect-on-write that leaves
the original block in the source volume intact and the
new write operation is performed on the snapshot
volume. This eliminates the extra I/O operations of the
copy-on-write method. After the snapshot, all
subsequent write I/Os are performed on the snapshot
volume while read I/Os may be from source volume or

 2

snapshot volume depending on whether the block has
been changed since the snapshot. The point-in-time
image of the data at the time of a snapshot is the source
volume itself since the source volume has been
read-only since the snapshot time. The source volume
will be updated at a later time, hopefully not in
production time, by copying data from the snapshot
volume.

Clearly, the two different snapshot methods
described above have different performance
characteristics. While they have been used in various
storage products, little is known in the open literature
about their impact on application performance except
for some scattered product information from vendors.
For example, Microsoft suggests that users should not
create shadow copies more frequently than once per
hour with the default configuration being two shadow
copies per day (Microsoft’s snapshot is done in Virtual
Shadow Copy Service). Otherwise, performance impact
would be significant [4]. We believe that it is desirable
and important to have a clear understanding of the
performance characteristics of various snapshot
technologies independent of specific vendor products.
Such clear understanding will benefit storage designers
in making design decisions and in playing tradeoffs
between performance and cost. It will also benefit
storage users in their storage configuration and planning
for data protection and recovery. We therefore present
in this paper an implementation and quantitative
performance evaluation of the two snapshot methods.

While there are existing snapshot implementations
on various storage products, direct measurements on
these products may not provide exact performance
characteristics of the different snapshot methods
because of variety of storage optimizations built in each
storage product. In order to accurately characterize
performance of different snapshot methods independent
of other storage optimization techniques, we have
developed and implemented an iSCSI target software.
Our iSCSI target implementation is a user level program
running on Windows platform. The target program
communicates directly with the standard iSCSI initiator
available on Linux and Windows. We have tested our
target program for many applications such as MySQL
database, Postgres database, NTFS, Tomcat 4.1, MS
Office, VC++6.0, gcc, VMWare, RedHat installation,
Windows XP installation, and more to show that it is
fairly robust and we plan to make the program available
to the research community online.

Based on this iSCSI target program, we
implemented the two snapshot methods: copy-on-write

and redirect-on-write. Databases, file systems and
benchmarks are set up on the machines with a standard
iSCSI initiator. We then carry out our performance
evaluations on the implementations of the two snapshot
methods with all other storage configurations being the
same. We use the real world benchmarks including
TPC-C, TPC-W, IoMeter, and PostMark to drive our
tests. Our measurements allow us to make several
interesting observations on the two snapshot techniques.
For example, for applications with large proportion of
write I/Os, redirect-on-write performs better than
copy-on-write snapshot for small block sizes. As the
block size increases, such difference diminishes. For
read-intensive applications, the results are quite
different. There are many factors affecting the snapshot
performance including basic hashing unit for doing the
snapshot, write frequency, I/O request sizes, and
overwrite rate etc. We use our measurement results to
analyze in detail how these factors affect storage
performance.

The paper is organized as follows. In the next
section, we present in detail our design and
implementation of the iSCSI target program and the two
snapshot methods. Section 3 describes our experimental
settings for our performance evaluation. Numerical
results and discussions are given in Section 4. Section 5
discusses related research work followed by our
conclusions in Section 6.

2. System Design and Implementation

To enable quantitative performance evaluation, we
have designed and implemented a complete block level
storage target using iSCSI protocol. Our implementation
of the iSCSI target is on top of the TCP/IP stack, as
shown in Figure 1. In the iSCSI protocol, there are two
communication parties, namely iSCSI initiator and
iSCSI target [5]. An iSCSI initiator runs under the file
system or database system as a device driver. When I/O
operations come from the host, the initiator generates
I/O requests using SCSI commands encapsulated inside
the TCP/IP packets that are sent to the designated iSCSI
target. The iSCSI target unwraps the TCP/IP packets to
obtain the SCSI commands and data. It then finishes the
requested I/O operations on the target side.

Our iSCSI target conforms to the IPS draft (20) [5]
and runs on the Windows machine as a user mode
program. It can export any disk file, disk volume or the
whole disk as a device to provide block level services to
the iSCSI initiator. User authentication is based on the
IP address of the machine running the iSCSI initiator.

 3

TCP/IP
Network

Snapshot Module

iSCSI Target
TCP/IP Stack

Storage Server

Source Volume

Snapshot Volume

Figure 1. Software Stack of the iSCSI Implementation

FS/DBMS
iSCSI Initiator

TCP/IP

Application Server

Benchmarks

The iSCSI target includes four modules: User

Interface (UI), basic I/O module, disk and volume
manager, and iSCSI protocol module. The UI module
deals with user interactions and setting up configuration
parameters. Configuration parameters include target
device designation, user access authorization, and status
monitoring. We can easily designate any disk file, disk
volume and the whole disk as a serving device in the
iSCSI target for an initiator. The basic I/O module
provides transparent functions for the designated device
to deal with basic I/O operations. The basic I/O
operations include device open, close, read and write.
Disk and volume manager is responsible for disk and
volume start, close, deletion, designation and status
message collection. The iSCSI protocol module includes
front-end target layer and STML (SCSI Target Mid-level)
layer similar to the UNH iSCSI implementation [6]. The
entire target is implemented using MS Visual C++ 6.0
and has been tested extensively to show that it is fairly
robust and performs well. We are currently trying to
integrate iCache mechanism [7] to improve the
performance further.

Based on our iSCSI target implementation, we have
designed and implemented the two snapshot methods,
copy-on-write and redirect-on-write. The snapshots are
implemented as an independent module, called snapshot
module, embedded in the iSCSI target. Upon receiving a
snapshot request from the host, the snapshot module
allocates a small volume as the snapshot volume. The
size of snapshot volume is determined by the size of the
source volume and the change rate of the source volume.
This size can be configurable and dynamically
changeable. Currently we allocate 10% of the space of
the source volume as the size of the snapshot volume.
To simplify our implementation, the snapshot volume is
managed using a fixed block size similar to the paging
mechanism. That is, all accesses to the data in the
snapshot volume are done using the fixed data units
referred as snap_block. This snap_block size is a user
configurable parameter ranging from 512B to 64KB.
Using fixed data unit simplifies the indexing structure

and recovery process. However, it may suffer from
performance penalty when actual I/O request sizes differ
greatly from the snap_block size in the snapshot volume.
The penalty comes from frequent fragmentations of the
I/O request data to fit the snap_block size. Alternatively,
one can manage the snapshot volume using variable
block sizes to optimize performance with the extra cost
of complicated indexing structure and recovery process.
Because of the time limit, in this paper we only report
the fixed snap_block size implementation.

With fixed snap_block size, we designed a hash table
to store the metadata about the snapshot volume. The
hash table uses an LBA as the key. The hash structure is
as follows:

typedef struct _HASH_ITEM{

unsigned long lba; //lba address
__int64 data_offset; //offset for snapshot volume
unsigned int read_count, write_count;// counters

}HASH_ITEM;
typedef struct _HASH_T{

HASH_ITEM *bucket; //basic hash table
int collisions;
int insertions;
int n; //length of basic table
__int64 data_len;
HASH_ITEM *ext; //extend hash table

}HASH_T, *PHASH_T;

2.1 Copy-on-write Snapshot Implementation

For the copy-on-write implementation, a write I/O
request goes through the process of determining whether
or not it is the first write to the block after the snapshot.
This process involves the hash table lookup using the
LBA of the write I/O. Depending on the snap_block size
and the write I/O size, LBA alignment and data
fragmentation may need to be done. The details of
alignment and fragmentation will be discussed shortly.
If the write I/O goes across snap_block boundaries
either because the data size is larger than the snap_block
size or the LBA of the I/O is not aligned with the
snap_block, the write I/O is decomposed into several
small writes of the snap_block size. For every small
write, we use its LBA as the key to look up the hash
table. If the LBA cannot be found in the hash table, this
indicates that this write is the first time to this block.
The original data block is copied from the source
volume to the snapshot volume. In addition, a new hash
entry with this LBA is inserted into the hash table. On
the other hand, if the LBA is found in the hash table,
this shows that this write is not the first time to this

 4

block, nothing needs to be done on the snapshot volume
for this snap_block. After copying all data blocks
pertaining to this I/O write from the source volume to
the snapshot volume, the write I/O is performed on the
source volume.

For read I/Os, there is no need to access the hash
table. Our snapshot module will forward read I/Os
directly to the source volume. The read operations are
performed as usual disk operations in the source
volume.

2.2 Redirect-on-write Snapshot Implementation

For the redirect-on-write implementation, a write I/O
request goes through the similar process of the hash
table lookup, LBA alignment and fragmentation. The
difference is that if the LBA is found in the hash table,
an overwrite operation is performed on the snapshot
volume. No write operation is performed on the source
volume. If the LBA of the write is not found in the hash
table, a new entry with the LBA is inserted into the hash
table and a new write is performed on the snapshot
volume. Redirect-on-write leaves the source volume
intact. As a result, original data is preserved in the
source volume and all changes happen in the snapshot
volume. The point-in-time snapshot image is completely
contained in the source volume. The source volume will
be updated afterward when backup is done or another
snapshot is created. Therefore, redirect-on-write
snapshot does not eliminate copying but defer it to a
later time and hopefully not in the production time [8].

Because the latest changed data are in the snapshot
volume and unchanged data in the source volume, read
I/Os need to merge data from the two volumes. When a
read I/O request comes, the read request is fragmented
to one or several requests based on the snap_block size
and the LBA. For every fragmented read request, we use
its LBA as the key to look up the hash table. If the LBA
is found, it indicates the fresh data to this block is in the
snapshot volume. We read the data block from the
snapshot volume. Otherwise the data is from the source
volume. When all the fragmented reads are done, we
merge all required data blocks to the read buffer and
send the read response to the requestor. Several
optimizations are possible for read I/Os. One
straightforward optimization is using Bloomfilter
technique to quickly determine which volume we will
read data from [9]. Because the data size of the snapshot
volume in our implementation is limited, the simple
hash table performs fairly well. We are currently trying
to incorporate various optimizations in our

implementation but not yet reported in this paper
because of time constraint.

2.3. Fragmentation and Alignment

For both copy-on-write and redirect-on-write,
fragmentations and alignments are necessary.
Fragmentation divides a request into several small
requests. The LBA of an I/O request needs to be aligned
with an LBA of a snap_block since an I/O request can
start from any address that might be in the middle of a
snap_block. Suppose the starting LBA of a I/O is A, the
snap_block size is B, and the data size of the I/O request
is L. Assume that an LBA is the logical sector address
and a sector has 512 bytes. The fragmentation and
alignment are done as follows:

Fragmentation

Remain = A & (B/512-1);
If (Remain>0)
{

The starting LBA of the first fragmented request is
A-Remain;

}
if (L<=(B-Remain)*512)
{

This Fragmentation only generates one fragmented
request;

 Exit Fragmentation;
}
Count = (L-(B-Remain)*512)/B;
Leftsize = (L-(B-Remain)*512) MOD B;
Generate Count fragmented requests;
If (Leftsize>0)
{

Generate the last fragmented requests with starting
LBA as A-Remain+B/512+Count*B/512;

}

From the above algorithm, one can see that the first

fragmented request and the last fragmented request may
deal with partial data of a block. In our current
implementation, we simplify this process by aligning the
LBA address to A-Remain and fill up the rest of data
from the source volume for the first and the last block
fragments. The fact that a snap_block is filled with
partial data is known as internal fragmentation. Such
internal fragmentations cause performance loss because
an internal fragmentation not only takes additional space
in the snapshot volume but also involves additional I/O
operations. Several optimizations are possible to avoid
this additional cost such as using variable block sizes.

 5

But these optimizations generally require additional data
structure in the hash table. This will make the hash table
complicated and the effectiveness remains to be seen.
Our current implementation uses the fixed snap_block
size that is user configurable.

3. Experimental Methodology

This section presents experimental methodology and
the test-bed that we use to study quantitatively the
performance of the two different snapshot technologies.

3.1 Experiment Setup

Using our implementation described in the last
section, we installed our prototype software on a PC
serving as a storage server, as shown in Figure 1. Two
PCs are interconnected using the Intel’s NetStructure
10/100/1000Mbps 470T switch. One of the PCs acts as
an application server running benchmarks with iSCSI
initiator installed and the other acts as the storage server
with our iSCSI target installed. The hardware
characteristics of the PCs are shown in Table 1.

In order to test our iSCSI target and snapshot
module under different applications and different
software environments, we set up both Linux and
Windows operating systems in our experiments. The
software environments on these PCs are listed in Table 1.
We install Fedora 2 (Linux Kernel 2.4.20) and Microsoft
Windows XP Professional on the PCs. On the Linux
machine, the UNH iSCSI initiator [6] is installed. On the
Windows machines the Microsoft iSCSI initiator [10] is
installed.

On top of the iSCSI target and the snapshot module,
we set up two different types of databases and two types
of file systems. Postgres Database 7.1.3 is installed on
Fedora 2. MySQL 5.0 database is set up on Windows.
To be able to run real world web applications, we install
Tomcat 4.1 application server for processing web
application requests issued by benchmarks. For File
system benchmarks, IoMeter runs on Windows and
PostMark runs on Fedora 2.

3.2 Workload Characteristics

The first benchmark, TPC-C, is a well-known
benchmark used to model the operational end of
businesses where real-time transactions are processed
[11]. TPC-C simulates the execution of a set of
distributed and on-line transactions (OLTP) for a period
of two to eight hours. It is set in the context of a

wholesale supplier operating on a number of warehouses
and their associated sales districts. TPC-C incorporates
five types of transactions with different complexity for
online and deferred execution on a database system.
These transactions perform the basic operations on
databases such as inserts, deletes, updates and so on.
From data storage point of view, these transactions will
generate reads and writes that will change data blocks
on disks. For Postgres Database, we use the
implementation from TPCC-UVA [12]. 5 warehouses
with 50 users are built on Postgres database taking 2GB
storage space. Details regarding TPC-C workloads
specification can be found in [11].

PC 1 P4 2.8GHz/256M RAM/80G+10G Hard Disks
PC 2 P4 2.4GHz/2GB RAM/200G+10G Hard Disks

Windows XP Professional SP2 OS
 Fedora 2 (Linux Kernel 2.4.20)

Postgres 7.1.3 for Linux Database

 MySQL 5.0 for Microsoft Windows

UNH iSCSI Initiator 1.6 iSCSI
 Microsoft iSCSI Initiator 2.0

TPC-C for Postgres(TPCC-UVA)
TPC-W Java Implementation

IoMeter

Benchmark

PostMark
Intel NetStructure 470T Switch Network

 Intel PRO/1000 XT Server Adapter (NIC)

 Table 1. Hardware and Software
Environments

Our second benchmark, TPC-W, is a transactional
web benchmark developed by Transaction Processing
Performance Council that models an on-line bookstore.
The benchmark comprises a set of operations on a web
server and a backend database system. It simulates a
typical on-line/E-commerce application environment.
Typical operations include web browsing, shopping, and
order processing. We use the Java TPC-W
implementation of University of Wisconsin-Madison
[13] and build an experimental environment. This
implementation uses Tomcat 4.1 as an application server
and MySQL 5.0 as a backend database. The configured
workload includes 30 emulated browsers and 10,000
items in the ITEM TABLE.

Besides benchmarks running on databases, we have
also run two file system benchmarks PostMark and
IoMeter. PostMark is a widely used file system

 6

benchmark tool written by Network Appliance, Inc [14].
It measures performance in terms of transaction rates in
an ephemeral small-file environment by creating a large
pool of continually changing files. Once the pool has
been created, a specified number of transactions occur.
Each transaction consists of a pair of smaller
transactions, i.e. Create file/Delete file and Read
file/Append file. Each transaction’s type and files it
affected are chosen randomly. The read and write block
size can be tuned. In our experiments, we set PostMark
workload to include 50,000 files and to perform 100,000
transactions. Read and Write buffer sizes are set to 4KB.
IoMeter is another flexible and configurable benchmark
tool that is also widely used in industries and the
research community [15]. It can be used to measure the
performance of a mounted file system or a block device.
We run the IoMeter on NTFS with 4K-block size for
two types of workloads: 100% random writes, and 50%
writes and 50% reads.

4. Numerical Results and Discussions

Using our implementations and the experimental

settings described in the previous sections, we carried
out extensive experiments to measure snapshot
performances. In order to isolate the effects of various
file systems, we use two raw partitions for the source
volume and the snapshot volume in our experiments. All
results reported here are measured using the two raw
partitions. We consider 5 different snap_block sizes for
TPC-C and TPC-W: 512B, 4KB, 8KB, 16KB, and 64KB.
For IoMeter and PostMark, we run our experiments for
snap_block sizes of 512B, 4KB, 8KB, and 64KB.

Our first experiment is to measure the throughputs
of TPC-C benchmark running on Postgres database
using our iSCSI target as the block level storage with
each of the two different snapshots enabled. Figure 2
shows the measured results in terms of tpmC that is the
number of transactions finished per minute. For the
snap_block size of 512B, we observed noticeable
difference between copy-on-write and redirect-on-write.
As the snap_block size increases, the performance
difference reduces. It is interesting to note that the
performance of both snapshot methods increases as we
increase the snap_block size from 512B to 8KB. As
discussed before, large snap_block sizes increase the
chance of internal fragmentations and LBA alignments,
giving rise to performance penalties. However, our
experiments show that this penalty is compensated by
large and integrated I/O operations on the snapshot
volume. But if we increase the snap_block size further

beyond 8KB, performance drops because of excessive
internal fragmentations.

Throughput results for TPC-W are shown in Figure
3. We run the TPC-W benchmark on MySQL database
to measure the throughputs in terms of WIPS that is the
web interactions finished per second. The TPC-W results
are quite different from the TPC-C results. For the
snap_block size of 512B, copy-on-write method
performs much better than redirect-on-write for TPC-W
benchmark as shown in Figure 3. This is in a quite
contrast to TPC-C. There are two major reasons for this
phenomenon. First, the ratio between read I/Os and write
I/Os in TPC-C is about 1:9 whereas the ratio in TPC-W
is 3:2. With large proportion of read I/Os in the TPC-W
benchmark, copy-on-write snapshot shows better
performance because read I/Os are not affected by the
snapshot, while redirect-on-write suffers from
performance penalty because of read merging. Secondly
and more importantly, we noticed in TPC-W that the
average write size is about 11KB whereas the average
read size is about 16KB. For the small snap_block size
of 512B, consecutive data blocks may be scattered in the
snapshot volume. As a result, merging small blocks
scattered on a disk volume takes a lot of slow I/O
operations, giving rise to large I/O response time. Our
analysis is further proved by the fact the

 7

redirect-on-write performs very well and better than
copy-on-write for the snap_block size of 16KB as shown
in the figure. In this case, both reads and writes are
performed sequentially with the size matching the
average I/O size.

Figure 4 shows the measured results in terms of
average I/O response time for IOMeter benchmark with
100% random write I/Os. For such write-intensive
benchmarks, we observed the similar performance
characteristics to that of TPC-C benchmark.
Redirect-on-write performs better than copy-on-write for
all snap_block sizes except for 64KB when internal
fragmentations and LAB alignments become excessive.
For the snap_block size of 512B, the redirect-on-write
snapshot implementation performs 4 times better than
the copy-on-write implementation. For snap_block size
of 4KB, the performance difference is about 40%. The
performance difference can mainly be attributed to the
reduced I/O operations of the redirect-on-write
compared to the copy-on-write. Recall that 3 I/Os are
needed for the first write to each data block after the
snapshot. Note that the redirect-on-write snapshot does
not eliminate the copy operations but defer them to a
later time. If the copy operations can be done off line

and not during production time, one can benefit from
such deferring of data copies.

In order to observe how the two snapshots impact
application performances with mixed read and write I/Os
for the IOMeter benchmark, we measured again the
IOMeter performance with 50% random reads and 50%
random writes. The average I/O response times are
shown in Figure 5. Similar performance results to that of
Figure 4 are observed except for smaller differences
between the two snapshot methods. The performance
difference is small because read operations of the
copy-on-write perform better than redirect-on-write.
This observation suggests that there is a room for
performance optimization of the redirect-on-write
implementation. We are currently working on various
optimization techniques as discussed in Section 2.
Notice that in both Figures 4 and 5 the average read and
write I/O sizes are about 4KB.

snap_block size WriteTime(ms) ReadTime(ms)

64K 8.328 1.906
16K 8.359 2.344
8K 8.484 2.593
4K 12.516 3.594

0.5K 39.562 10.219

Table 2 I/O Time Measurements with different
snap_block sizes

PostMark results are shown in Figure 6 in terms of

total running time for 100,000 transactions on 50,000
files. For this benchmark, it seems that the two snapshot
methods show similar performance across all block sizes
considered with the difference less than a few percents.
One observation that is consistent with all other
benchmarks is that the performance of 512B snap_block
size is not as good as other block sizes. This observation
suggests that using sector size to do snapshot is not an

 8

optimal solution even though it does not incur any
internal fragmentation. To further clarify this observation,
we carried out a small experiment of reading and writing
a 64KB data in a buffer to a disk using different block
sizes at block device level. We measured the read and
write I/O times in the experiment. The results are listed
in Table 2. As shown in Table 2, larger block sizes take
shorter time to write than smaller block sizes. However,
the time differences for the block sizes of 8KB, 16KB,
and 64KB are not significant. Noticeable longer time is
observed when the block size changes from 8KB to 4KB.
There is a dramatic increase in time for the block size of
512B. This result explains again why 512B snap_block
performs poorly in all the benchmarks studied.

Small block sizes not only slow down I/O operations
but also require large index data structure for hashing.
Figures 7 and 8 show the space used for the snapshot
volume and the sizes of the index data structure for
different block sizes. For 512B block size, the index

structure takes about 10% of the snapshot volume size
whereas for 8KB block size the index structure takes
about half of a percent of the snapshot volume. For
64KB block size, the index structure is less than 0.08%
of the snapshot volume. These two figures clearly show
that the larger the snap_block size is, the smaller the
index structure will be. Therefore, to limit the overhead
in the index data structure, one would like to use large
block sizes.

On the other hand, large block sizes incur internal
fragmentations as discussed previously. The internal
fragmentation not only wastes storage space but also add
more unnecessary I/O operations in the snapshot volume.
To quantitatively observe internal fragmentations, we
measured the space efficiency defined as the average
ratio between the size of the write I/O coming from the
host and the actual data size written in the snapshot
volume because of the write I/O. The space efficiency is
an indicator of the degree of internal fragmentations. The
efficiency of 100% means that the data size written in
the snapshot volume is exactly the same as the write I/O
data size from the host with no storage waste. A smaller
efficiency implies a large internal fragmentation. To see
how the internal fragmentation occurs, consider the
following example. Suppose two consecutive 16KB
snap_blocks with the LBAs of A and A + 32,
respectively. If the host issues a write I/O of size 2KB
with starting LBA of A + 30, the write I/O will result in
changes in both of the two snap_blocks. 1KB is written
at the end of the first snap_block with the LBA of A and
the other 1KB at the beginning the second snap_block
with the LBA of A+32. The total internal fragmentation
is 30KB.

Figure 9 shows the space efficiency of the two

 9

snapshot methods for different benchmark runs. Note
that the two snapshot methods use the same amount of
storage space in our implementation. As can be seen in
the figure, the efficiency for the block size of 512B is
100% with no storage waste. The space efficiency drops
rapidly as block size increases implying large internal
fragmentations. For 64KB block size, the efficiency
drops below 20%. Therefore, to minimize internal
fragmentations, one would like to use small block sizes.

It is very interesting to observe the two contradicting
objectives: increasing block size for better performance
(Figures 1 through 8) and decreasing block size for
better space efficiency (Figure 9). Therefore, there is a
tradeoff between performance and space efficiency in
selecting the snap_block size in designing a snapshot
implementation. Clearly, our experiments suggest
against sector size and favor 8KB or 16KB block sizes
depending on applications.

5. Related Work

Snapshot has been widely used in the storage

industry for data protection and data recovery. A good
summary of various snapshot methods can be found in
[16]. In general, a snapshot can be used in a file system
for versioning or it can be used in a block level device
for backup and recovery of a data volume.

For file versioning, a snapshot can be implemented
efficiently with the availability of file system
intelligence and access of indexes. For example,
Peterson and Burns [17] recently designed a
versioning file system named Ext3cow that uses
snapshot functionality. Although the snapshot is called
copy-on-write, the actual implementation allocates a new
block for a new write and preserves a copy of the old
block in the old version. The pointer in the I-node will
be updated to reflect different versions of the file.
Similarly, NetApp’s WAFL (Write Anywhere File
Layout) writes a new data block to another place on the
disk, and changes the I-node to point to the new block.
The point-in-time snapshot image still references to the
original block that is unmodified on the disk [18]. From
performance point of view, these file system based
snapshots should be similar to the redirect-on-write
described in this paper. There are many versioning file
systems such as Tops-20 [19], VMS [20], Elephant [21],
and CVFS [22] that make use of copy-on-write snapshot.

For data backup and recovery, Plan 9 [23], Petal [24],
Microsoft Volume Shadow Copy Service (VSS) [25],
and Spiralog [26] backup systems use copy-on-write to
create snapshots. Plan 9 backups data daily by creating

snapshots of the file system. When creating a snapshot,
it freezes the state of the file system and makes
subsequent modifications to a copy of the frozen data
[1,23]. Petal creates a virtual disk backup using tar
command through snapshots [24]. VSS provides a
backup infrastructure for Microsoft Windows XP and
Microsoft Windows Server 2003 operating systems, as
well as a mechanism for creating consistent
point-in-time copies [25]. Spiralog provides on-line
backup of a log-structured file system (LFS) [27].

At block device level, there are many storage
products using snapshot technologies. Typical products
include EMC’s TimeFinder/Snap [28], HDS’s
copy-on-write Snapshot [29], Microsoft’s VSS, and
NetApp’s Snapshot [30]. Most of these products use
copy-on-write method [16] with the exception of
NetApp that uses a method similar to the
redirect-on-write described in this paper.

Although snapshots have been implemented in many
file systems and storage products, there has been no
quantitative performance evaluation of different
snapshot methods at block device level. To the best of
our knowledge, we are the first one to implement two
different snapshot methods on the same storage target
and to accurately compare the performances of the two
snapshot methods.

Extensive research has been reported in the literature
on iSCSI protocol including storage implementations [6,
31 , 32 , 33], and performance evaluations using
simulations [7,34] and measurements [35,36,37]. It has
been shown in these studies that iSCSI performs very
well as a block level data storage. Radkov et al [35] have
shown that iSCSI outperforms NFS by a factor of 2 or
more for meta-data intensive workloads. Most of the
iSCSI target implementations reported in the literature
are on Linux system. Few Windows based target
implementations are reported in the open literature
except for one or two commercial products. Furthermore,
our primary purpose here is the quantitative evaluation
of the two snapshot techniques that we have
implemented in the iSCSI target.

6. Conclusions

In this paper, we have presented an implementation

and performance evaluation of two differential snapshot
methods: copy-on-write and redirect-on-write. Our
implementation is based on the standard iSCSI protocol.
A robust iSCSI target program for Windows has been
developed and tested that works smoothly with two
publicly available initiators: Windows’ initiator and

 10

Linux initiator. The two snapshot methods are
implemented as an independent program module
embedded in the iSCSI target. Extensive experiments
have been carried out to measure the performance
impacts of the two snapshot methods. We use real world
benchmarks such as TPC-C, TPC-W, IOMeter, and
Postmark to measure the performances. Our numerical
results uncover many important performance
characteristics that were unknown before. Our analysis
can provide a useful guide to storage designers in
making their design decisions and to storage users in
planning their data protection and recovery. We plan to
make our implementation program available to the
research community online.

As a future research work, we plan to optimize our
iSCSI target program as well as the snapshot
implementations. Possible optimizations include proper
caching at the iSCSI target, different hashing functions,
efficient merging of read I/Os on redirect-on-write
snapshot, variable snap_block sizes, and so forth.

Acknowledgments

This research is sponsored in part by National
Science Foundation under grants CCR-0073377 and
CCR-0312613. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views
of the National Science Foundation. We also thank Slater
Interactive Office of Rhode Island Economic Council
and Gemini Storage Corporation for the generous
financial support on part of this research work.

References

[1] A.L. Chervenak, V. Vellanki, and Z. Kurmas, “Protecting

file systems: A survey of backup techniques,” In Proc. of
Joint NASA and IEEE Mass Storage Conference, College
Park, MD, March 1998.

[2] Minwen Ji, Alistair Veitch, and John Wilkes, “Seneca:
remote mirroring done write,” In Proceedings of the 2003
USENIX Annual Technical Conference, San Antonio, TX,
pp. 253-268

[3] Ming Zhang, Yinan Liu, and Qing Yang, "Cost- Effective
Remote Mirroring Using the iSCSI Protocol," In 21st IEEE
Conference on Mass Storage Systems and Technologies,
April, 2004, pp.385-398.

[4] Novastor Corporation, “Microsoft Shadow-Copy Service
and its Role in a Organization’s Total Backup Strategy,”
http://www.novastor.com/graphics/VSS_White_Paper.pdf.

[5] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E.
Zeidner, “iSCSI draft standard,”

http://www.ietf.org/internet-drafts/draftietf-ips-iscsi-20.txt,
Jan. 2003.

[6] UNH, “iSCSI reference implementation,” 2005,
http://unh-iscsi.sourceforge.net.

[7] Xubin He, Qing Yang, and Ming Zhang, "A Caching
Strategy to Improve iSCSI Performance," in Proceedings of
IEEE Annual Conference on Local Computer Networks,
Nov. 6-8,2002.

[8] H. Simitci, “Backups using snapshots,” In Storage
Network Performance Analysis, Wiley Publishing, Inc.,
2003, pp. 280-282

[9] B. Bloom, “Space/time trade-offs in hashing coding with
allowable errors, ” Communication of the ACM, Vol.13 (7),
pp. 422-426, July 1970.

[10] Microsoft Corp., “Microsoft iSCSI Software
Initiator Version 2.0,” 2005, http://www.microsoft.
com/windowsserversystem/storage/default.mspx.

[11] Transaction Processing Performance Council, “TPC
BenchmarkTM C Standard Specification,” 2005,
http://www.tpc.org/tpcc.

[12] J. Piernas, T. Cortes and J. M. García, “TPCC- UVA: A
free, open-source implementation of the TPC-C
Benchmark,” 2005, http://www.infor.uva.es
/~diego/tpcc-uva.html.

[13] H.W. Cain, R. Rajwar, M. Marden and M.H. Lipasti, “An
Architectural Evaluation of Java TPC-W,” HPCA 2001,
Nuevo Leone, Mexico, Jan. 2001.

[14] J. Katcher, “PostMark: A new file system bench -mark,”
Network Appliance, Tech. Rep. 3022, 1997.

[15] Intel, “IoMeter: Performance Analysis Tool,”
http://www.iometer.org/.

[16] G. Duzy, “Match snaps to apps,” Storage, Special Issue
on Managing the information that drives the enterprise, pp.
46-52, Sept. 2005.

[17] Z. Peterson and R. C. Burns, “Ext3cow: A Time-Shifting
File System for Regulatory Compliance”, ACM
Transactions on Storage, Vol.1, No.2, pp. 190-212, 2005.

[18] D. Hitz, J. Lau, and M. Malcolm, “File system design for
an NFS file server appliance,” In Proc. of the USENIX
Winter Technical Conference, San Francisco, CA, 1994, pp.
235-245.

[19] L. Moses, “An introductory guide to TOPS-20,” Tech.
Report TM-82-22, USC/Information Sciences Institutes,
1982.

[20] K. McCoy, “VMS File System Internals,” Digital Press,
1990.

[21] D. S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Veitch,
R.W. Carton, and J. Ofir, “Deciding when to forget in the
Elephant file system,” In Proc. of 17th ACM Symposium on
Operating System Principles, Charleston, SC, Dec. 1999, pp.
110-123.

[22] C.A.N. Soules, G. R. Goodson, J. D. Strunk, and G.R.
Ganger, “Metadata efficieny in versioning file systems,” In
Proc. of the 2nd USENIX Conference on File and Storage
Technologies, San Francisco, CA, March 2003, pp. 43-58.

 11

[23] R. Pike, D. Presotto, K. Thompson, and et al, “Plan 9 for

Bell Labs,” http://plan9.bell-labs.com /sys/doc/
[24] E. K. Lee and C. A. Thekkath, “Petal: Distributed virtual

disks,” In Proc. of the 7th International Conference on
Architecture Support for Programming Languages an
Operating Systems (ASPLOS-7), Cambridge, MA, 1996.

[25] A. Sankaran, K. Guinn, and D. Nguyen, “Volume
Shadow Copy Service,” March 2004,
http://www.microsoft.com.

[26] R. Green, A. Baird, and C. Davies, “Designing a Fast,
On-line Backup System for a Log-structured File System,”
Digital Technical Journal, Oct. 1996.

[27] M. Rosenblum and J. Ousterhout, “Log-Structured File
System,” In Proceedings of the 13th ACM Symposium on
Operating Systems Principles, June 1991, pp. 1-15.

[28] EMC Corporation, “EMC TimeFinder Family,”
http://www.emc.com/products/software/timefinder.jsp

[29] Hitachi Ltd., “Hitachi ShadowImage implementation service,”
June 2001,http://www.hds.com /copy_on_
write_snapshot_467_02.pdf.

[30] NetAppliance Corporation, “Snapshot Technology,”
http://www.netapp.com/products/snapshot.html.

[31] Hui Xiong, Renuga Kanagavelu, Yaolong Zhu, Khai
Leong Yong, "An iSCSI Design and Implementation," in
Proc. of the Twelfth NASA Goddard / Twenty-First IEEE
Conference on Mass Storage Systems and Technologies
NASA / IEEE MSST2004

[32] Intel Co. "Intel iSCSI Reference Implementation,"
http://sourceforge.net/projects/intel-iscsi.

[33] Cisco, "Linux-iSCSI Project," http://linux-iscsi.source
forge.net/.

[34] Yingping Lu, Farrukh Noman, and David H.C. Du,
“Simulation Study of iSCSI-based Storage System,” in Proc.
of The Twelfth NASA Goddard /Twenty-First IEEE
Conference on Mass Storage Systems and Technologies
NASA / IEEE MSST2004, pp. 399-408

[35] P. Radkov, Li Yin, P. Goyal, P. Sarkar, and P. Shenoy,
"A performance comparison of NFS and iSCSI for
IP-Network Storage," Proceedings of FAST 2004.

[36] Stephen Aiken , Dirk Grunwald , Andrew R. Pleszkun ,
Jesse Willeke, “A Performance Analysis of the iSCSI
Protocol,” In Proceedings of the 20 th IEEE/11 th NASA
Goddard Conference on Mass Storage Systems and
Technologies (MSS'03), April 07-10, 2003.

[37] Ismail Dalgic, Kadir Ozdemir, Rajkumar Velpuri, Jason
Weber, Umesh Kukreja, Atrica, and Helen Chen, and
Umesh Kukreja, “Comparative Performance Evaluation of
iSCSI Protocol over Metro, Local, and Wide Area
Networks,” In Proc. of Twelfth NASA Goddard /
Twenty-First IEEE Conference on Mass Storage Systems
and Technologies NASA / IEEE MSST2004.

