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Abstract 
 

While snapshots have been commonly used in data 
storages for backup and data protections, little is known 
in the open literature how such snapshots impact 
application performance. This paper presents an 
implementation and performance evaluation of two 
snapshot techniques: copy-on-write snapshot and 
redirect-on-write snapshot. Our implementation is 
carried out at block level on a standard iSCSI target. 
We carry out quantitative performance evaluations and 
comparisons of the two snapshot implementations using 
TPC-C, TPC-W, IoMeter, and PostMark benchmarks. 
Our measurements reveal many interesting observations 
regarding the performance characteristics of the two 
snapshot techniques. Depending on the applications 
and different I/O workloads, the two snapshot 
techniques perform quite differently. In general, 
copy-on-write performs well on read-intensive 
applications while redirect-on-write performs well on 
write-intensive applications. 

 
1. Introduction 

 
As organizations and businesses depend more and 

more on digital information, data protection and disaster 
recovery have become the top challenge for data storage 
designers and administrators. In most storage systems, 
data protection relies on periodic backup [1] and remote 
replications [2,3]. Both backup and replication often 
make use of snapshot technologies to enhance and 
simplify recovery process by reducing recovery time 
and providing more recovery points. A snapshot creates 
a point-in-time image of a data storage volume by 
making a full copy (clone) or a differential copy of the 
volume. The differential copy snapshot improves space 

efficiency upon full copy snapshot because only 
changes to the volume are stored after the snapshot. 
There are basically two types of differential snapshots: 
copy-on-write [16] and redirect-on-write [8].  

 
Copy-on-write snapshot: At the time when the 

snapshot is created, a small volume is allocated as a 
snapshot volume with respect to the source volume. 
Upon the first write to a data block after the snapshot, 
the original data of the block is copied from the source 
volume to the snapshot volume. After copying, the 
write operation is performed on the block in the source 
volume. As a result, the data image at the time of the 
snapshot is preserved. The combination of the source 
volume and the snapshot volume presents the 
point-in-time image of the data. After the snapshot is 
created, all subsequent read I/Os are performed on the 
source volume. Write I/Os after the first change to a 
block is also performed on the source volume, i.e. only 
the first write to a block copies the original data to the 
snapshot volume.  

 
Redirect-on-write snapshot: Copy-on-write 

requires 3 I/O operations upon the first write to a block 
[16]: (1) read the original block from the source volume, 
(2) write the original block to the snapshot volume, and 
(3) write the new data in the source volume. These I/O 
operations are done at production time, which may 
negatively impact application performance. To 
overcome this, one can do redirect-on-write that leaves 
the original block in the source volume intact and the 
new write operation is performed on the snapshot 
volume. This eliminates the extra I/O operations of the 
copy-on-write method. After the snapshot, all 
subsequent write I/Os are performed on the snapshot 
volume while read I/Os may be from source volume or 
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snapshot volume depending on whether the block has 
been changed since the snapshot. The point-in-time 
image of the data at the time of a snapshot is the source 
volume itself since the source volume has been 
read-only since the snapshot time. The source volume 
will be updated at a later time, hopefully not in 
production time, by copying data from the snapshot 
volume. 

Clearly, the two different snapshot methods 
described above have different performance 
characteristics. While they have been used in various 
storage products, little is known in the open literature 
about their impact on application performance except 
for some scattered product information from vendors. 
For example, Microsoft suggests that users should not 
create shadow copies more frequently than once per 
hour with the default configuration being two shadow 
copies per day (Microsoft’s snapshot is done in Virtual 
Shadow Copy Service). Otherwise, performance impact 
would be significant [4]. We believe that it is desirable 
and important to have a clear understanding of the 
performance characteristics of various snapshot 
technologies independent of specific vendor products. 
Such clear understanding will benefit storage designers 
in making design decisions and in playing tradeoffs 
between performance and cost. It will also benefit 
storage users in their storage configuration and planning 
for data protection and recovery. We therefore present 
in this paper an implementation and quantitative 
performance evaluation of the two snapshot methods.  

While there are existing snapshot implementations 
on various storage products, direct measurements on 
these products may not provide exact performance 
characteristics of the different snapshot methods 
because of variety of storage optimizations built in each 
storage product. In order to accurately characterize 
performance of different snapshot methods independent 
of other storage optimization techniques, we have 
developed and implemented an iSCSI target software. 
Our iSCSI target implementation is a user level program 
running on Windows platform. The target program 
communicates directly with the standard iSCSI initiator 
available on Linux and Windows. We have tested our 
target program for many applications such as MySQL 
database, Postgres database, NTFS,  Tomcat 4.1, MS 
Office, VC++6.0, gcc, VMWare, RedHat installation, 
Windows XP installation, and more to show that it is 
fairly robust and we plan to make the program available 
to the research community online.  

Based on this iSCSI target program, we 
implemented the two snapshot methods: copy-on-write 

and redirect-on-write. Databases, file systems and 
benchmarks are set up on the machines with a standard 
iSCSI initiator. We then carry out our performance 
evaluations on the implementations of the two snapshot 
methods with all other storage configurations being the 
same. We use the real world benchmarks including 
TPC-C, TPC-W, IoMeter, and PostMark to drive our 
tests. Our measurements allow us to make several 
interesting observations on the two snapshot techniques. 
For example, for applications with large proportion of 
write I/Os, redirect-on-write performs better than 
copy-on-write snapshot for small block sizes. As the 
block size increases, such difference diminishes. For 
read-intensive applications, the results are quite 
different. There are many factors affecting the snapshot 
performance including basic hashing unit for doing the 
snapshot, write frequency, I/O request sizes, and 
overwrite rate etc. We use our measurement results to 
analyze in detail how these factors affect storage 
performance. 

The paper is organized as follows. In the next 
section, we present in detail our design and 
implementation of the iSCSI target program and the two 
snapshot methods. Section 3 describes our experimental 
settings for our performance evaluation.  Numerical 
results and discussions are given in Section 4. Section 5 
discusses related research work followed by our 
conclusions in Section 6. 

 
2. System Design and Implementation 

To enable quantitative performance evaluation, we 
have designed and implemented a complete block level 
storage target using iSCSI protocol. Our implementation 
of the iSCSI target is on top of the TCP/IP stack, as 
shown in Figure 1. In the iSCSI protocol, there are two 
communication parties, namely iSCSI initiator and 
iSCSI target [5]. An iSCSI initiator runs under the file 
system or database system as a device driver. When I/O 
operations come from the host, the initiator generates 
I/O requests using SCSI commands encapsulated inside 
the TCP/IP packets that are sent to the designated iSCSI 
target. The iSCSI target unwraps the TCP/IP packets to 
obtain the SCSI commands and data. It then finishes the 
requested I/O operations on the target side. 

Our iSCSI target conforms to the IPS draft (20) [5] 
and runs on the Windows machine as a user mode 
program. It can export any disk file, disk volume or the 
whole disk as a device to provide block level services to 
the iSCSI initiator. User authentication is based on the 
IP address of the machine running the iSCSI initiator.  
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The iSCSI target includes four modules: User 

Interface (UI), basic I/O module, disk and volume 
manager, and iSCSI protocol module. The UI module 
deals with user interactions and setting up configuration 
parameters. Configuration parameters include target 
device designation, user access authorization, and status 
monitoring. We can easily designate any disk file, disk 
volume and the whole disk as a serving device in the 
iSCSI target for an initiator. The basic I/O module 
provides transparent functions for the designated device 
to deal with basic I/O operations. The basic I/O 
operations include device open, close, read and write. 
Disk and volume manager is responsible for disk and 
volume start, close, deletion, designation and status 
message collection. The iSCSI protocol module includes 
front-end target layer and STML (SCSI Target Mid-level) 
layer similar to the UNH iSCSI implementation [6]. The 
entire target is implemented using MS Visual C++ 6.0 
and has been tested extensively to show that it is fairly 
robust and performs well. We are currently trying to 
integrate iCache mechanism [ 7 ] to improve the 
performance further.  

Based on our iSCSI target implementation, we have 
designed and implemented the two snapshot methods, 
copy-on-write and redirect-on-write. The snapshots are 
implemented as an independent module, called snapshot 
module, embedded in the iSCSI target. Upon receiving a 
snapshot request from the host, the snapshot module 
allocates a small volume as the snapshot volume. The 
size of snapshot volume is determined by the size of the 
source volume and the change rate of the source volume. 
This size can be configurable and dynamically 
changeable. Currently we allocate 10% of the space of 
the source volume as the size of the snapshot volume. 
To simplify our implementation, the snapshot volume is 
managed using a fixed block size similar to the paging 
mechanism. That is, all accesses to the data in the 
snapshot volume are done using the fixed data units 
referred as snap_block. This snap_block size is a user 
configurable parameter ranging from 512B to 64KB. 
Using fixed data unit simplifies the indexing structure 

and recovery process. However, it may suffer from 
performance penalty when actual I/O request sizes differ 
greatly from the snap_block size in the snapshot volume. 
The penalty comes from frequent fragmentations of the 
I/O request data to fit the snap_block size. Alternatively, 
one can manage the snapshot volume using variable 
block sizes to optimize performance with the extra cost 
of complicated indexing structure and recovery process. 
Because of the time limit, in this paper we only report 
the fixed snap_block size implementation.  

With fixed snap_block size, we designed a hash table 
to store the metadata about the snapshot volume. The 
hash table uses an LBA as the key. The hash structure is 
as follows: 

 
typedef struct  _HASH_ITEM{ 

unsigned long lba; //lba address 
__int64 data_offset; //offset for snapshot volume 
unsigned int read_count, write_count;// counters 

}HASH_ITEM; 
typedef struct  _HASH_T{ 

HASH_ITEM *bucket; //basic hash table 
int collisions; 
int insertions; 
int n;            //length of basic table 
__int64 data_len; 
HASH_ITEM *ext; //extend hash table 

}HASH_T, *PHASH_T; 
 
2.1 Copy-on-write Snapshot Implementation 
 

For the copy-on-write implementation, a write I/O 
request goes through the process of determining whether 
or not it is the first write to the block after the snapshot. 
This process involves the hash table lookup using the 
LBA of the write I/O. Depending on the snap_block size 
and the write I/O size, LBA alignment and data 
fragmentation may need to be done. The details of 
alignment and fragmentation will be discussed shortly. 
If the write I/O goes across snap_block boundaries 
either because the data size is larger than the snap_block 
size or the LBA of the I/O is not aligned with the 
snap_block, the write I/O is decomposed into several 
small writes of the snap_block size. For every small 
write, we use its LBA as the key to look up the hash 
table. If the LBA cannot be found in the hash table, this 
indicates that this write is the first time to this block. 
The original data block is copied from the source 
volume to the snapshot volume. In addition, a new hash 
entry with this LBA is inserted into the hash table. On 
the other hand, if the LBA is found in the hash table, 
this shows that this write is not the first time to this 
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block, nothing needs to be done on the snapshot volume 
for this snap_block. After copying all data blocks 
pertaining to this I/O write from the source volume to 
the snapshot volume, the write I/O is performed on the 
source volume.  

For read I/Os, there is no need to access the hash 
table. Our snapshot module will forward read I/Os 
directly to the source volume. The read operations are 
performed as usual disk operations in the source 
volume.  

 
2.2 Redirect-on-write Snapshot Implementation 
 

For the redirect-on-write implementation, a write I/O 
request goes through the similar process of the hash 
table lookup, LBA alignment and fragmentation. The 
difference is that if the LBA is found in the hash table, 
an overwrite operation is performed on the snapshot 
volume. No write operation is performed on the source 
volume. If the LBA of the write is not found in the hash 
table, a new entry with the LBA is inserted into the hash 
table and a new write is performed on the snapshot 
volume. Redirect-on-write leaves the source volume 
intact. As a result, original data is preserved in the 
source volume and all changes happen in the snapshot 
volume. The point-in-time snapshot image is completely 
contained in the source volume. The source volume will 
be updated afterward when backup is done or another 
snapshot is created. Therefore, redirect-on-write 
snapshot does not eliminate copying but defer it to a 
later time and hopefully not in the production time [8]. 

Because the latest changed data are in the snapshot 
volume and unchanged data in the source volume, read 
I/Os need to merge data from the two volumes. When a 
read I/O request comes, the read request is fragmented 
to one or several requests based on the snap_block size 
and the LBA. For every fragmented read request, we use 
its LBA as the key to look up the hash table. If the LBA 
is found, it indicates the fresh data to this block is in the 
snapshot volume. We read the data block from the 
snapshot volume. Otherwise the data is from the source 
volume. When all the fragmented reads are done, we 
merge all required data blocks to the read buffer and 
send the read response to the requestor. Several 
optimizations are possible for read I/Os. One 
straightforward optimization is using Bloomfilter 
technique to quickly determine which volume we will 
read data from [9]. Because the data size of the snapshot 
volume in our implementation is limited, the simple 
hash table performs fairly well. We are currently trying 
to incorporate various optimizations in our 

implementation but not yet reported in this paper 
because of time constraint. 
 
2.3. Fragmentation and Alignment 
 

For both copy-on-write and redirect-on-write, 
fragmentations and alignments are necessary. 
Fragmentation divides a request into several small 
requests. The LBA of an I/O request needs to be aligned 
with an LBA of a snap_block since an I/O request can 
start from any address that might be in the middle of a 
snap_block. Suppose the starting LBA of a I/O is A, the 
snap_block size is B, and the data size of the I/O request 
is L. Assume that an LBA is the logical sector address 
and a sector has 512 bytes. The fragmentation and 
alignment are done as follows: 
 
Fragmentation 

Remain = A & (B/512-1); 
If (Remain>0) 
{ 

The starting LBA of the first fragmented request is 
A-Remain; 

} 
if (L<=(B-Remain)*512) 
{ 

This Fragmentation only generates one fragmented 
request; 

 Exit Fragmentation; 
} 
Count = (L-(B-Remain)*512)/B; 
Leftsize = (L-(B-Remain)*512) MOD B; 
Generate Count fragmented requests; 
If (Leftsize>0) 
{ 

Generate the last fragmented requests with starting 
LBA as A-Remain+B/512+Count*B/512; 

} 

 
From the above algorithm, one can see that the first 

fragmented request and the last fragmented request may 
deal with partial data of a block. In our current 
implementation, we simplify this process by aligning the 
LBA address to A-Remain and fill up the rest of data 
from the source volume for the first and the last block 
fragments. The fact that a snap_block is filled with 
partial data is known as internal fragmentation. Such 
internal fragmentations cause performance loss because 
an internal fragmentation not only takes additional space 
in the snapshot volume but also involves additional I/O 
operations. Several optimizations are possible to avoid 
this additional cost such as using variable block sizes. 
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But these optimizations generally require additional data 
structure in the hash table. This will make the hash table 
complicated and the effectiveness remains to be seen. 
Our current implementation uses the fixed snap_block 
size that is user configurable. 
 
3. Experimental Methodology 
 

This section presents experimental methodology and 
the test-bed that we use to study quantitatively the 
performance of the two different snapshot technologies. 

 
3.1 Experiment Setup  
 

Using our implementation described in the last 
section, we installed our prototype software on a PC 
serving as a storage server, as shown in Figure 1. Two 
PCs are interconnected using the Intel’s NetStructure 
10/100/1000Mbps 470T switch. One of the PCs acts as 
an application server running benchmarks with iSCSI 
initiator installed and the other acts as the storage server 
with our iSCSI target installed. The hardware 
characteristics of the PCs are shown in Table 1. 

In order to test our iSCSI target and snapshot 
module under different applications and different 
software environments, we set up both Linux and 
Windows operating systems in our experiments. The 
software environments on these PCs are listed in Table 1. 
We install Fedora 2 (Linux Kernel 2.4.20) and Microsoft 
Windows XP Professional on the PCs. On the Linux 
machine, the UNH iSCSI initiator [6] is installed. On the 
Windows machines the Microsoft iSCSI initiator [10] is 
installed. 

On top of the iSCSI target and the snapshot module, 
we set up two different types of databases and two types 
of file systems. Postgres Database 7.1.3 is installed on 
Fedora 2. MySQL 5.0 database is set up on Windows. 
To be able to run real world web applications, we install 
Tomcat 4.1 application server for processing web 
application requests issued by benchmarks. For File 
system benchmarks, IoMeter runs on Windows and 
PostMark runs on Fedora 2. 

 
3.2 Workload Characteristics 
 

The first benchmark, TPC-C, is a well-known 
benchmark used to model the operational end of 
businesses where real-time transactions are processed 
[11]. TPC-C simulates the execution of a set of 
distributed and on-line transactions (OLTP) for a period 
of two to eight hours. It is set in the context of a 

wholesale supplier operating on a number of warehouses 
and their associated sales districts. TPC-C incorporates 
five types of transactions with different complexity for 
online and deferred execution on a database system. 
These transactions perform the basic operations on 
databases such as inserts, deletes, updates and so on. 
From data storage point of view, these transactions will 
generate reads and writes that will change data blocks 
on disks. For Postgres Database, we use the 
implementation from TPCC-UVA [12]. 5 warehouses 
with 50 users are built on Postgres database taking 2GB 
storage space. Details regarding TPC-C workloads 
specification can be found in [11]. 

 
PC 1 P4 2.8GHz/256M RAM/80G+10G Hard Disks 
PC 2 P4 2.4GHz/2GB RAM/200G+10G Hard Disks 

Windows XP Professional SP2 OS 
 Fedora 2 (Linux Kernel 2.4.20) 

Postgres 7.1.3 for Linux Database 
 
 MySQL 5.0 for Microsoft Windows 

UNH iSCSI Initiator 1.6 iSCSI 
 Microsoft iSCSI Initiator 2.0 

TPC-C for Postgres(TPCC-UVA) 
TPC-W Java Implementation 

IoMeter 

Benchmark 
 
 

PostMark 
Intel NetStructure 470T Switch Network 

 Intel PRO/1000 XT Server Adapter (NIC) 
 

   Table 1.  Hardware and Software 
Environments 
 

Our second benchmark, TPC-W, is a transactional 
web benchmark developed by Transaction Processing 
Performance Council that models an on-line bookstore. 
The benchmark comprises a set of operations on a web 
server and a backend database system. It simulates a 
typical on-line/E-commerce application environment. 
Typical operations include web browsing, shopping, and 
order processing. We use the Java TPC-W 
implementation of University of Wisconsin-Madison 
[13] and build an experimental environment. This 
implementation uses Tomcat 4.1 as an application server 
and MySQL 5.0 as a backend database. The configured 
workload includes 30 emulated browsers and 10,000 
items in the ITEM TABLE. 

Besides benchmarks running on databases, we have 
also run two file system benchmarks PostMark and 
IoMeter. PostMark is a widely used file system 
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benchmark tool written by Network Appliance, Inc [14]. 
It measures performance in terms of transaction rates in 
an ephemeral small-file environment by creating a large 
pool of continually changing files. Once the pool has 
been created, a specified number of transactions occur. 
Each transaction consists of a pair of smaller 
transactions, i.e. Create file/Delete file and Read 
file/Append file. Each transaction’s type and files it 
affected are chosen randomly. The read and write block 
size can be tuned. In our experiments, we set PostMark 
workload to include 50,000 files and to perform 100,000 
transactions. Read and Write buffer sizes are set to 4KB. 
IoMeter is another flexible and configurable benchmark 
tool that is also widely used in industries and the 
research community [15]. It can be used to measure the 
performance of a mounted file system or a block device. 
We run the IoMeter on NTFS with 4K-block size for 
two types of workloads: 100% random writes, and 50% 
writes and 50% reads. 

 
4. Numerical Results and Discussions  

 
Using our implementations and the experimental 

settings described in the previous sections, we carried 
out extensive experiments to measure snapshot 
performances. In order to isolate the effects of various 
file systems, we use two raw partitions for the source 
volume and the snapshot volume in our experiments. All 
results reported here are measured using the two raw 
partitions. We consider 5 different snap_block sizes for 
TPC-C and TPC-W: 512B, 4KB, 8KB, 16KB, and 64KB. 
For IoMeter and PostMark, we run our experiments for 
snap_block sizes of 512B, 4KB, 8KB, and 64KB. 

Our first experiment is to measure the throughputs 
of TPC-C benchmark running on Postgres database 
using our iSCSI target as the block level storage with 
each of the two different snapshots enabled. Figure 2 
shows the measured results in terms of tpmC that is the 
number of transactions finished per minute. For the 
snap_block size of 512B, we observed noticeable 
difference between copy-on-write and redirect-on-write. 
As the snap_block size increases, the performance 
difference reduces. It is interesting to note that the 
performance of both snapshot methods increases as we 
increase the snap_block size from 512B to 8KB. As 
discussed before, large snap_block sizes increase the 
chance of internal fragmentations and LBA alignments, 
giving rise to performance penalties. However, our 
experiments show that this penalty is compensated by 
large and integrated I/O operations on the snapshot 
volume. But if we increase the snap_block size further 

beyond 8KB, performance drops because of excessive 
internal fragmentations. 

 

 
 

 
 

Throughput results for TPC-W are shown in Figure 
3. We run the TPC-W benchmark on MySQL database 
to measure the throughputs in terms of WIPS that is the 
web interactions finished per second. The TPC-W results 
are quite different from the TPC-C results. For the 
snap_block size of 512B, copy-on-write method 
performs much better than redirect-on-write for TPC-W 
benchmark as shown in Figure 3. This is in a quite 
contrast to TPC-C. There are two major reasons for this 
phenomenon. First, the ratio between read I/Os and write 
I/Os in TPC-C is about 1:9 whereas the ratio in TPC-W 
is 3:2. With large proportion of read I/Os in the TPC-W 
benchmark, copy-on-write snapshot shows better 
performance because read I/Os are not affected by the 
snapshot, while redirect-on-write suffers from 
performance penalty because of read merging. Secondly 
and more importantly, we noticed in TPC-W that the 
average write size is about 11KB whereas the average 
read size is about 16KB. For the small snap_block size 
of 512B, consecutive data blocks may be scattered in the 
snapshot volume. As a result, merging small blocks 
scattered on a disk volume takes a lot of slow I/O 
operations, giving rise to large I/O response time. Our 
analysis is further proved by the fact the 
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redirect-on-write performs very well and better than 
copy-on-write for the snap_block size of 16KB as shown 
in the figure. In this case, both reads and writes are 
performed sequentially with the size matching the 
average I/O size. 
 

 
 

 
 

Figure 4 shows the measured results in terms of 
average I/O response time for IOMeter benchmark with 
100% random write I/Os. For such write-intensive 
benchmarks, we observed the similar performance 
characteristics to that of TPC-C benchmark. 
Redirect-on-write performs better than copy-on-write for 
all snap_block sizes except for 64KB when internal 
fragmentations and LAB alignments become excessive. 
For the snap_block size of 512B, the redirect-on-write 
snapshot implementation performs 4 times better than 
the copy-on-write implementation. For snap_block size 
of 4KB, the performance difference is about 40%. The 
performance difference can mainly be attributed to the 
reduced I/O operations of the redirect-on-write 
compared to the copy-on-write. Recall that 3 I/Os are 
needed for the first write to each data block after the 
snapshot. Note that the redirect-on-write snapshot does 
not eliminate the copy operations but defer them to a 
later time. If the copy operations can be done off line 

and not during production time, one can benefit from 
such deferring of data copies.  

In order to observe how the two snapshots impact 
application performances with mixed read and write I/Os 
for the IOMeter benchmark, we measured again the 
IOMeter performance with 50% random reads and 50% 
random writes. The average I/O response times are 
shown in Figure 5. Similar performance results to that of 
Figure 4 are observed except for smaller differences 
between the two snapshot methods. The performance 
difference is small because read operations of the 
copy-on-write perform better than redirect-on-write. 
This observation suggests that there is a room for 
performance optimization of the redirect-on-write 
implementation. We are currently working on various 
optimization techniques as discussed in Section 2. 
Notice that in both Figures 4 and 5 the average read and 
write I/O sizes are about 4KB. 
 

 
 
snap_block size WriteTime(ms) ReadTime(ms) 

64K 8.328 1.906 
16K 8.359 2.344 
8K 8.484 2.593 
4K 12.516 3.594 

0.5K 39.562 10.219 
 

Table 2  I/O Time Measurements with different 
snap_block sizes 

 
PostMark results are shown in Figure 6 in terms of 

total running time for 100,000 transactions on 50,000 
files. For this benchmark, it seems that the two snapshot 
methods show similar performance across all block sizes 
considered with the difference less than a few percents. 
One observation that is consistent with all other 
benchmarks is that the performance of 512B snap_block 
size is not as good as other block sizes. This observation 
suggests that using sector size to do snapshot is not an 
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optimal solution even though it does not incur any 
internal fragmentation. To further clarify this observation, 
we carried out a small experiment of reading and writing 
a 64KB data in a buffer to a disk using different block 
sizes at block device level. We measured the read and 
write I/O times in the experiment. The results are listed 
in Table 2. As shown in Table 2, larger block sizes take 
shorter time to write than smaller block sizes. However, 
the time differences for the block sizes of 8KB, 16KB, 
and 64KB are not significant. Noticeable longer time is 
observed when the block size changes from 8KB to 4KB. 
There is a dramatic increase in time for the block size of 
512B. This result explains again why 512B snap_block 
performs poorly in all the benchmarks studied. 
 

 
 

 
 

Small block sizes not only slow down I/O operations 
but also require large index data structure for hashing. 
Figures 7 and 8 show the space used for the snapshot 
volume and the sizes of the index data structure for 
different block sizes. For 512B block size, the index 

structure takes about 10% of the snapshot volume size 
whereas for 8KB block size the index structure takes 
about half of a percent of the snapshot volume. For 
64KB block size, the index structure is less than 0.08% 
of the snapshot volume. These two figures clearly show 
that the larger the snap_block size is, the smaller the 
index structure will be. Therefore, to limit the overhead 
in the index data structure, one would like to use large 
block sizes. 

On the other hand, large block sizes incur internal 
fragmentations as discussed previously. The internal 
fragmentation not only wastes storage space but also add 
more unnecessary I/O operations in the snapshot volume. 
To quantitatively observe internal fragmentations, we 
measured the space efficiency defined as the average 
ratio between the size of the write I/O coming from the 
host and the actual data size written in the snapshot 
volume because of the write I/O. The space efficiency is 
an indicator of the degree of internal fragmentations. The 
efficiency of 100% means that the data size written in 
the snapshot volume is exactly the same as the write I/O 
data size from the host with no storage waste. A smaller 
efficiency implies a large internal fragmentation. To see 
how the internal fragmentation occurs, consider the 
following example. Suppose two consecutive 16KB 
snap_blocks with the LBAs of A and A + 32, 
respectively. If the host issues a write I/O of size 2KB 
with starting LBA of A + 30, the write I/O will result in 
changes in both of the two snap_blocks. 1KB is written 
at the end of the first snap_block with the LBA of A and 
the other 1KB at the beginning the second snap_block 
with the LBA of A+32. The total internal fragmentation 
is 30KB.  
 

 
 

Figure 9 shows the space efficiency of the two 
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snapshot methods for different benchmark runs. Note 
that the two snapshot methods use the same amount of 
storage space in our implementation. As can be seen in 
the figure, the efficiency for the block size of 512B is 
100% with no storage waste. The space efficiency drops 
rapidly as block size increases implying large internal 
fragmentations. For 64KB block size, the efficiency 
drops below 20%. Therefore, to minimize internal 
fragmentations, one would like to use small block sizes. 

It is very interesting to observe the two contradicting 
objectives: increasing block size for better performance 
(Figures 1 through 8) and decreasing block size for 
better space efficiency (Figure 9). Therefore, there is a 
tradeoff between performance and space efficiency in 
selecting the snap_block size in designing a snapshot 
implementation. Clearly, our experiments suggest 
against sector size and favor 8KB or 16KB block sizes 
depending on applications.  

5. Related Work 
 
Snapshot has been widely used in the storage 

industry for data protection and data recovery. A good 
summary of various snapshot methods can be found in 
[16]. In general, a snapshot can be used in a file system 
for versioning or it can be used in a block level device 
for backup and recovery of a data volume. 

For file versioning, a snapshot can be implemented 
efficiently with the availability of file system 
intelligence and access of indexes. For example, 
Peterson and Burns  [ 17 ] recently designed a 
versioning file system named Ext3cow that uses 
snapshot functionality. Although the snapshot is called 
copy-on-write, the actual implementation allocates a new 
block for a new write and preserves a copy of the old 
block in the old version. The pointer in the I-node will 
be updated to reflect different versions of the file. 
Similarly, NetApp’s WAFL (Write Anywhere File 
Layout) writes a new data block to another place on the 
disk, and changes the I-node to point to the new block. 
The point-in-time snapshot image still references to the 
original block that is unmodified on the disk [18]. From 
performance point of view, these file system based 
snapshots should be similar to the redirect-on-write 
described in this paper. There are many versioning file 
systems such as Tops-20 [19], VMS [20], Elephant [21], 
and CVFS [22] that make use of copy-on-write snapshot.  

For data backup and recovery, Plan 9 [23], Petal [24], 
Microsoft Volume Shadow Copy Service (VSS) [25], 
and Spiralog [26] backup systems use copy-on-write to 
create snapshots. Plan 9 backups data daily by creating 

snapshots of the file system. When creating a snapshot, 
it freezes the state of the file system and makes 
subsequent modifications to a copy of the frozen data 
[1,23]. Petal creates a virtual disk backup using tar 
command through snapshots [24]. VSS provides a 
backup infrastructure for Microsoft Windows XP and 
Microsoft Windows Server 2003 operating systems, as 
well as a mechanism for creating consistent 
point-in-time copies [25]. Spiralog provides on-line 
backup of a log-structured file system (LFS) [27]. 

At block device level, there are many storage 
products using snapshot technologies. Typical products 
include EMC’s TimeFinder/Snap [ 28 ], HDS’s 
copy-on-write Snapshot [29], Microsoft’s VSS, and 
NetApp’s Snapshot [30]. Most of these products use 
copy-on-write method [16] with the exception of 
NetApp that uses a method similar to the 
redirect-on-write described in this paper. 

Although snapshots have been implemented in many 
file systems and storage products, there has been no 
quantitative performance evaluation of different 
snapshot methods at block device level. To the best of 
our knowledge, we are the first one to implement two 
different snapshot methods on the same storage target 
and to accurately compare the performances of the two 
snapshot methods.  

Extensive research has been reported in the literature 
on iSCSI protocol including storage implementations [6, 
31 , 32 , 33 ], and performance evaluations using 
simulations [7,34] and measurements [35,36,37]. It has 
been shown in these studies that iSCSI performs very 
well as a block level data storage. Radkov et al [35] have 
shown that iSCSI outperforms NFS by a factor of 2 or 
more for meta-data intensive workloads. Most of the 
iSCSI target implementations reported in the literature 
are on Linux system. Few Windows based target 
implementations are reported in the open literature 
except for one or two commercial products. Furthermore, 
our primary purpose here is the quantitative evaluation 
of the two snapshot techniques that we have 
implemented in the iSCSI target. 
 
6. Conclusions 

 
In this paper, we have presented an implementation 

and performance evaluation of two differential snapshot 
methods: copy-on-write and redirect-on-write. Our 
implementation is based on the standard iSCSI protocol. 
A robust iSCSI target program for Windows has been 
developed and tested that works smoothly with two 
publicly available initiators: Windows’ initiator and 
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Linux initiator. The two snapshot methods are 
implemented as an independent program module 
embedded in the iSCSI target. Extensive experiments 
have been carried out to measure the performance 
impacts of the two snapshot methods. We use real world 
benchmarks such as TPC-C, TPC-W, IOMeter, and 
Postmark to measure the performances. Our numerical 
results uncover many important performance 
characteristics that were unknown before. Our analysis 
can provide a useful guide to storage designers in 
making their design decisions and to storage users in 
planning their data protection and recovery. We plan to 
make our implementation program available to the 
research community online. 

As a future research work, we plan to optimize our 
iSCSI target program as well as the snapshot 
implementations. Possible optimizations include proper 
caching at the iSCSI target, different hashing functions, 
efficient merging of read I/Os on redirect-on-write 
snapshot, variable snap_block sizes, and so forth. 
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