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Abstract 
 

RAID architectures have been used for more than two 

decades to recover data upon disk failures. Disk failure is just 

one of the many causes of damaged data. Data can be 

damaged by virus attacks, user errors, defective 

software/firmware, hardware faults, and site failures. The risk 

of these types of data damage is far greater than disk failure 

with today’s mature disk technology and networked 

information services.  It has therefore become increasingly 

important for today’s disk array to be able to recover data to 

any point in time when such a failure occurs. This paper 

presents a new disk array architecture that provides Timely 

Recovery to Any Point-in-time, referred to as TRAP-Array. 

TRAP-Array stores not only the data stripe upon a write to the 

array, but also the time-stamped Exclusive-ORs of successive 

writes to each data block. By leveraging the Exclusive-OR 

operations that are performed upon each block write in 

today’s RAID4/5 controllers, TRAP does not incur noticeable 

performance overhead. More importantly, TRAP is able to 

recover data very quickly to any point-in-time upon data 

damage by tracing back the sequence and history of 

Exclusive-ORs resulting from writes. What is interesting is 

that TRAP architecture is amazingly space-efficient. We have 

implemented a prototype TRAP architecture using software at 

block device level and carried out extensive performance 

measurements using TPC-C benchmark running on Oracle 

and Postgress databases, TPC-W running on MySQL 

database, and file system benchmarks running on Linux and 

Windows systems. Our experiments demonstrated that TRAP 

is not only able to recover data to any point-in-time very 

quickly upon a failure but it also uses less storage space than 

traditional daily differential backup/snapshot. Compared to 

the state-of-the-art continuous data protection technologies, 

TRAP saves disk storage space by one to two orders of 

magnitude with a simple and a fast encoding algorithm. From 

an architecture point of view, TRAP-Array opens up another 

dimension for storage arrays. It is orthogonal and 

complementary to RAID in the sense that RAID protects data 

in the dimension along an array of physical disks while TRAP 

protects data in the dimension along the time sequence.   
 

 

 

 
 

 

 

 

 

 

 

1. Introduction 
 

RAID architecture [1] has been the most prominent 

architecture advance in disk I/O systems for the past two 

decades. RAID1 provides 2N data redundancy to protect 

data while RAID3 through RAID5 store data in parity 

stripes across multiple disks to improve space efficiency 

and performance over RAID1. The parity of a stripe is 

the Exclusive-OR (XOR) of all data chunks in the stripe. 

If a disk failed at time t0, and the system found such a 

failure at time t1, the data in the failed disk can be 

recovered by doing the XOR among the good disks, 

which may finish at t2. The recovered data is exactly the 

same image of the data as it was at time t0. There are 

recent research results that are able to recover data from 

more than one disk failures [2,3,4,5], improving the data 

reliability further. 

The question to be asked is “can we recover data at 

time t2   to the data image of t0 after we found out at time 

t1 that data was damaged by human errors, software 

defects, virus attacks, power failures, or site failures?” 

With the rapid advances in networked information 

services coupled with the maturity of disk technology, 

data damage and data loss caused by human errors, 

software defects, virus attacks, power failures, or site 

failures have become more dominant, accounting for 

60% [6 ] to 80% [7 ] of data losses. Current RAID 

architecture cannot protect data from these kinds of 

failures because damaged data are not confined to one or 

two disks. Traditional techniques protecting data from 

the above failures are mainly periodical (daily or weekly) 

backups and snapshots [ 8 , 9 , 10 ]. These techniques 

usually take a long time to recover data [ 11]. In addition, 

data between backups are vulnerable to data loss. Recent 

research [ 12 , 13 ] has shown that data loss or data 

unavailability can cost up to millions of dollars per hour 

in many businesses. Solely depending on the traditional 

time-consuming backups is no longer adequate for 

today’s information age.  

This paper advocates for a disk array architecture 

that opens a new dimension, time, to enable Timely 

Recovery to Any Point-in-time (TRAP) of user data. We 
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propose a new TRAP architecture that has the optimal 

space and performance characteristics. The idea of the 

new TRAP architecture is very simple. Instead of 

providing full redundancy of data in time dimension, i.e. 

keeping a log of all previous versions of changed data 

blocks in time sequence [11,14,15], we compute XORs 

among changed data blocks along the time dimension to 

improve performance and space efficiency. The resulting 

architecture shift is similar to the shift from RAID1 to 

RAID4 that improves space efficiency and performance 

upon RAID1. With a simple and fast encoding scheme, 

the new TRAP architecture presents dramatic space 

savings because of content locality that exists in real 

world applications. Furthermore, it provides faster data 

recovery to any-point-in-time than traditional techniques 

because of  the drastically smaller amount of storage 

space used.  

We have implemented a prototype of the new TRAP 

architecture at block device level using standard iSCSI 

protocol. The prototype is a software module inside an 

iSCSI target mountable by any iSCSI compatible 

initiator. We install the TRAP prototype on PC-based 

storage servers as a block level device driver and carry 

out experimental performance evaluation as compared to 

traditional data recovery techniques. Linux and 

Windows systems and three types of databases: Oracle, 

Postgres, and MySQL, are installed on our TRAP 

prototype implementation. Industry standard 

benchmarks such as TPC-C, TPC-W, and file system 

benchmarks are used as workloads driving the TRAP 

implementation under the databases and file systems. 

Our measurement results show up to 2 orders of 

magnitude improvements of the new TRAP architecture 

over existing technologies in terms of storage space 

efficiency. Such orders of magnitude improvements are 

practically important given the exponential growth of 

data [ 16 ]. We have also carried out data recovery 

experiments by selecting any point-in-time in the past 

and recovering data to the time point. Experiments have 

shown that all recovery attempts are successful. 

Recovery time of the new TRAP architecture is 

compared with existing reliable storage architectures to 

show that the new TRAP architecture can recover data to 

any point-in-time very quickly. 

We classify different storage architectures capable 

of recovering data to a previous time point into 4 

different categories and discuss these techniques in 

detail in the next section as background and related 

research work.  The detailed design and implementation 

of the new TRAP is presented in Section 3. Section 4 

presents the experimental settings and the workload 

characteristics. Numerical results and discussions are 

presented in Section 5.  We conclude our paper in 

Section 6. 

 

2. Background and Related Work 
 

Recovery of data in the real world is measured by 

two key parameters: recovery point objective (RPO) and 

recovery time objective (RTO) [11,12]. RPO measures 

the maximum acceptable age of data at the time of 

outage. For example, if an outage occurs at time t0, and 

the system found the outage at time t1, the ideal case is 

to recover data as it was right before t0, or as close to t0 

as possible. A daily backup would represent RPO of 

approximately 24 hours because the worst-case scenario 

would be an outage during the backup, i.e. t0 is the time 

point when a backup is just started. RTO is the 

maximum acceptable length of time to resume normal 

data processing operations after an outage. RTO 

represents how long it takes to recover data. For the 

above example, if we successfully recover data at time t2   

after starting the recovery process at t1, then the RTO is 

t2 - t1. Depending on the different values of RPO and 

RTO, there exist different storage architectures capable 

of recovering data upon an outage. We classify these 

architectures into 4 different categories as discussed 

below. 

TRAP-1: Data protection and recovery have 

traditionally been done using periodical backups [8,10] 

and snapshots [9]. Typically, backups are done nightly 

when data storage is not being used since the process is 

time consuming and degrades application performance. 

During the backup process, user data are transferred to a 

tape, a virtual tape, or a disk for disk-to-disk backup 

[8, 17 ]. To save backup storage, most organizations 

perform full backups weekly or monthly with daily 

incremental backups in between. Data compression is 

often used to reduce backup storage space [10,18]. A 

good survey of various backup techniques can be found 

in [10]. Snapshot is a functionality that resides in most 

modern disk arrays [ 19 , 20 , 21 ], file systems 

[17,22,23,24,25,26,27,28], volume managers [29,30], 

NAS filers (network attached storages) [31,32,33] and 

backup software. A snapshot is a point-in-time image of 

a collection of data allowing on-line backup. A full-copy 

snapshot creates a copy of the entire data as a read only 

snapshot storage clone. To save space, copy-on-write 

snapshot copies a data block from the primary storage to 

the snapshot storage upon the first write to the block 

after the snapshot was created [30].  A snapshot can also 

redirect all writes to the snapshot storage [9,31] after the 

snapshot was created. Typically, snapshots can be 

created up to a half dozen a day [29] without 

significantly impacting application performance. 

Despite the rapid advances in computer technology 

witnessed in the past two decades, data backup is a 

notable exception that is fundamentally the same as it 

was 20 years ago. It was well-known that backup 
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remains a costly and highly intrusive batch operation 

that is prone to error and consumes an exorbitant amount 

of time and resources [10, 34 ]. As a result, RTO of 

backups is generally very long. Furthermore, data are 

vulnerable between two subsequent backups giving rise 

to high RPO. We categorize this type of recoverable data 

storages as TRAP-1 for Time-consuming Recovery to 

Assigned Point-in-time.  

TRAP-2: Besides periodical data backups, data can 

also be protected at file system level using file 

versioning that records a history of changes to files. 

Versioning was implemented by some early file systems 

such as Cedar File System [24], 3DFS [35], and CVS 

[ 36 ] to list a few. Typically, users need to create 

versions manually in these systems. There are also copy-

on-write versioning systems exemplified by Tops-20 [37] 

and VMS [38] that have automatic versions for some file 

operations. Elephant [28] transparently creates a new 

version of a file on the first write to an open file. CVFS 

[39] versions each individual write or small meta-data 

using highly efficient data structures. OceanStore [40] 

uses versioning not only for data recovery but also for 

simplifying many issues with caching and replications. 

The LBFS [41] file system exploits similarities between 

files and versions of the same files to save network 

bandwidth for a file system on low-bandwidth networks. 

Peterson and Burns have recently implemented the 

ext3cow file system that brings snapshot and file 

versioning to the open-source community [23]. Other 

programs such as rsync, rdiff, and diff also provide 

versioning of files. To improve efficiency, flexibility and 

portability of file versioning, Muniswamy-Reddy et al 

[42] presented a lightweight user-oriented versioning file 

system called Versionfs that supports various storage 

policies configured by users.  

File versioning provides a time-shifting file system 

that allows a system to recover to a previous version of 

files. These versioning file systems have controllable 

RTO and RPO. But, they are generally file system 

dependent and may not be directly applicable to 

enterprise data centers that use different file systems and 

databases. File versioning is categorized as TRAP-2. 

TRAP-2 differs from TRAP-1 in the sense that TRAP-2 

works mainly at file system level not at block device 

level. Block level storages usually provide high 

performance and efficiency especially for applications 

such as databases that access raw devices. 

TRAP-3: To provide timely recovery to any point-

in-time at block device level, one can keep a log of 

changed data for each data block in a time sequence 

[11,14,34]. In the storage industry, this type of storage is 

usually referred to as CDP (Continuous Data Protection) 

storage.  In this type of systems, a write operation will 

replace the old data in the same logic block address 

(LBA) to another disk storage instead of overwriting it. 

As a result, successive writes to the same LBA will 

generate a sequence of different versions of the block 

with associated timestamps indicating the time of the 

corresponding write operations. These replaced data 

blocks are stored in a log structure, maintaining a history 

of the data blocks that have been modified. Since every 

change on a block is kept, it is possible to view a storage 

volume as it existed at any point in time, dramatically 

reducing RPO. The RTO depends on the size of the 

storage for the logs, indexing structure, and consistency 

checks. The data image at the time of an outage is 

considered to be “crash consistent” at block level 

because the orders of all write operations are strictly 

preserved. Modern file systems and databases have tools 

to perform consistency checks and recover data that are 

file system/application consistent [14,43,44]. 

The main drawback of the CDP storage is the huge 

amount of storage space required, which has thus far 

prevented it from being widely adopted. Typically, about 

20% of active storage volumes change per day, with an 

average of 5 to 10 overwrites to a block. If we have one 

terabyte data storage, a CDP storage will require one to 

two terabytes of space to store the logs reflecting data 

changes in one day. A week of such operations will 

require 5 to 10 terabytes of storage space. 

There have been research efforts attempting to 

reduce storage space requirement for TRAP-3. Morrey 

III and Grunwald [14] observed that for some workloads, 

a large fraction of disk sectors to be written contain 

identical content to previously written sectors within or 

across volumes. By maintaining information (128 bit 

content summary hash) about the contents of individual 

sectors, duplicate writes are avoided. Zhu, Li, and 

Patterson [18] proposed an efficient storage architecture 

that identifies previously stored data segments to 

conserve storage space.  These data reduction techniques 

generally require a search in the storage for an identical 

data block before a write is performed. Such a search 

operation is generally time consuming, although smart 

search algorithm and intelligent cache designs can help 

in speeding up the process [14,18]. These data reduction 

techniques are more appropriate for periodic backups or 

replications where timing is not as much a critical 

concern as the timing of online storage operations. 
 

3. TRAP-4 Architecture 
 

The idea of TRAP-4 architecture is very simple. 

Instead of keeping all versions of a data block as it is 

being changed by write operations, we keep a log of 

parities [45] as a result of each write on the block. 

Figure 1 shows the basic design of TRAP-4. Suppose 

that at time T(k), the host writes into a data block with 
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logic block address Ai that belongs to a data stripe (A1, 

A2 … Ai,  … An). The RAID controller performs the 

following operation to update its parity disk: 
 

PT(k) = Ai(k) ⊕   Ai(k-1) ⊕  PT(k-1)           (1) 
 

where PT(k) is the new parity for the corresponding stripe,  

Ai(k)  is the new data for data block Ai,  Ai(k-1) is the 

old data of data block Ai,  and PT(k-1) is the old parity of 

the stripe. Leveraging this computation, TRAP-4 

appends the first part of the above equation, i.e. P’T(k) = 

Ai(k) ⊕  Ai(k-1), to the parity log stored in the TRAP 

disk after a simple encoding box, as shown in Figure 1. 

Our extensive experiments have demonstrated a very 

strong content locality that exists in real world 

applications. For the workloads that we have studied, 

only 5% to 20% of bits inside a data block actually 

change on a write operation. The parity, P’T(k), reflects 

the exact changes at bit level of the new write operation 

on the existing block. As a result, this parity block 

contains mostly zeros with a very small portion of bit 

stream that is nonzero. Therefore, it can be easily 

encoded to a small size parity block to be appended to 

the parity log reducing the amount of storage space 

required to keep track of the history of writes. 
 
 

 
 

Now consider the parity log corresponding to a data 

block, Ai, after a series of write operations. The log 

contains (P’T(k),  P’T(k-1) ……, P’T(2), P’T(1)) with time 

stamps T(k), T(k-1), ……, T(2), and T(1) associated 

with the parities. Suppose that an outage occurred at 

time t1, and we would like to recover data to the image 

as it was at time t0 (t0 ≤ t1). To do such a recovery, for 

each data block Ai, we first find the largest T(r) in the 

corresponding parity log such that T(r)    ≤≤≤≤ t0. We then 

perform the following computation: 
 

Ai(r)= P’T(r)  ⊕  P’T(r-1) ⊕ … ⊕  P’T(1) ⊕ Ai(0),      (2) 
 

where Ai(r) denotes the data image of Ai  at time T(r)  

and Ai(0) denotes the data image of  Ai at time T(0). 

Note that   
 

P’T(l) ⊕ Ai(l-1) = Ai(l) ⊕ Ai(l-1) ⊕ Ai(l-1) = Ai(l), 
 

for all l=1,2, … r. Therefore, Equation (2) gives Ai(r) 

correctly assuming that the original data image, Ai(0), 

exists. 

The above process represents a typical recovery 

process upon an outage that results in data loss or data 

damage while earlier data is available in a full backup or 

a mirror storage. An undo process is also possible with 

the parity log if the newest data is available by doing the 

following computation instead of Equation (2): 
 

Ai(r)= Ai(k) ⊕ P’T(k)  ⊕  P’T(k-1) ⊕ … ⊕ P’T(r+1),     (3) 
 

where Ai(k)  represents the latest data of block Ai. 
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Figure 2. System architecture of TRAP-4 implementation 

 

We have designed and implemented a software 

prototype of TRAP-4. The software prototype is a block 

level device driver below a file system or database 

systems. As a result, our implementation is file system 

and application independent. Any file system or 

database applications can readily run on top of our 

TRAP-4. The prototype driver takes write requests from 

a file system or database system at block level. Upon 

receiving a write request, TRAP-4 performs normal write 

into the local primary storage and at the same time 

performs parity computation as described above to 

obtain P’. The results of the parity computation are then 

appended to the parity log corresponding to the same 

LBA to be stored in the TRAP storage.  

Our implementation is done using the standard 

iSCSI protocol, as shown in Figure 2. In the iSCSI 

protocol, there are two communication parties, referred 

to as iSCSI initiator and iSCSI target [46]. An iSCSI 

initiator runs under the file system or database 

applications as a device driver. As I/O operations come 

from applications, the initiator generates I/O requests 

using SCSI commands wrapped inside TCP/IP packets 

that are sent to the iSCSI target. Our TRAP-4 module is 

implemented inside the iSCSI target as an independent 

module. The main functions inside the TRAP module 

include parity computation, parity encoding, and logging. 

The parity computation part calculates P’T(k) as discussed 

above. Our implementation works on a configurable and 

fixed block size, referred to as parity block size. Parity 
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block size is the basic unit based on which parity 

computation is done. All disk writes are aligned to the 

fixed parity block size. As a result, a disk write request 

may be contained in one parity block or may go across 

several blocks depending on the size and starting LBA 

of the write. The parity encoding part uses the open-

source [47] library to encode the parity before appending 

it to the corresponding parity log. The logging part 

organizes the parity log, allocates disk space, and stores 

the parity log in the TRAP disk. The TRAP module runs 

as a separate thread parallel to the normal iSCSI target 

thread. It communicates with the iSCSI target thread 

using a shared queue data structure.  

As shown in Figure 2, our implementation is on top 

of the standard TCP/IP protocol. As a result, our TRAP-4 

can be set up at a remote site from the primary storage 

through an Internet connection. Together with a mirror 

storage at the remote site, TRAP-4 can protect important 

data from site failures or disaster events.  

We have also implemented a recovery program for 

our TRAP-4. For a given recovery time point (RPO), tr, 

the recovery program retrieves the parity log to find the 

timestamp, T(r), such that T(r)≤≤≤≤ tr, for every data block 

that have been changed. We then decode the parity 

blocks and compute XOR using either Equation (2) or 

Equation (3) to obtain the data block as it was at time tr 

for each block. Next, the computed data are stored in a 

temporary storage. Consistency check is then performed 

using the combination of the temporary storage and the 

mirror storage. The consistency check may do several 

times until the storage is consistent. After consistency is 

checked, the data blocks in the temporary storage are 

stored in-place in the primary storage and the recovery 

process is complete. 

It should be noted that the recovered data is in a 

“crash consistency” state. We are currently working on 

possible techniques to assist applications to quickly 

recover to the most recent consistent point at the 

application level. It should also be noted that a bit error 

in the parity log could potentially break the entire log 

chain, which would not be the case for TRAP-3 that 

keeps all data blocks. There are two possible solutions to 

this: adding an error correcting code to each parity block 

or mirror the entire parity log. Fortunately, TRAP-4 uses 

orders of magnitude less storage, as will be evidenced in 

Section 5. Doubling parity log is still more efficient than 

TRAP-3. More research is needed to study the trade-offs 

regarding tolerating bits errors in parity logs. 
 

4.  Evaluation Methodology 
 

This section presents the evaluation methodology 

that we use to quantitatively study the performance of 

TRAP-4 as compared to other TRAP levels. Our 

objective here is to evaluate three main parameters: 

storage space efficiency, RTO and RPO, and 

performance impacts on applications. 
 

4.1 Experimental Setup 
 

Using our implementation described in the last 

section, we install our TRAP-4 on a PC serving as a 

storage server, shown in Figure 2. There are four PCs 

that are interconnected using the Intel’s NetStructure 

10/100/1000Mbps 470T switch. Two of the PCs act as 

clients running benchmarks. One PC acts as an 

application server. The hardware characteristics of the 

four PCs are shown in Table 1.  
 

PC 1, 2, &3 P4 2.8GHz/256M RAM/80G+10G Hard Disks 

PC 4 P4 2.4GHz/2GB RAM/200G+10G Hard Disks 

Windows XP Professional SP2 OS 

 Fedora 2 (Linux Kernel 2.4.20) 

Oracle 10g for Microsoft Windows (32-bit) 

Postgres 7.1.3 for Linux 

Databases 

 

 MySQL 5.0 for Microsoft Windows 

UNH iSCSI Initiator/Target 1.6 iSCSI 

 Microsoft iSCSI Initiator 2.0 

TPC-C for Oracle (Hammerora) 

TPC-C for Postgres(TPCC-UVA) 

TPC-W Java Implementation 

Benchmarks 

 

 
File system micro-benchmarks 

Intel NetStructure 470T Switch Network 

 Intel PRO/1000 XT Server Adapter (NIC) 
 

   Table 1.  Hardware and software environments 
 

In order to test our TRAP-4 under different 

applications and different software environments, we set 

up both Linux and Windows operating systems in our 

experiments. The software environments on these PCs 

are listed in Table 1. We install Fedora 2 (Linux Kernel 

2.4.20) on one of the PCs and Microsoft Windows XP 

Professional on other PCs. On the Linux machine, the 

UNH iSCSI implementation [48] is installed. On the 

Windows machines the Microsoft iSCSI initiator [49] is 

installed. Since there is no iSCSI target on Windows 

available to us, we have developed our own iSCSI target 

for Windows. After installing all the OS and iSCSI 

software, we install our TRAP-4 module on the storage 

server PC inside the iSCSI targets.  

On top of the TRAP-4 module and the operating 

systems, we set up three different types of databases and 

two types of file systems. Oracle Database 10g is 

installed on Windows XP Professional. Postgres 

Database 7.1.3 is installed on Fedora 2. MySQL 5.0 

database is set up on Windows. Ext2 and NFTS are the 

file systems used in our experiments. To be able to run 

real world web applications, we install Tomcat 4.1 

application server for processing web application 

requests issued by benchmarks. 
 



In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA 

 

4.2 Workload Characteristics 
 

Right workloads are important for performance 

studies [50]. In order to have an accurate evaluation of 

different TRAP levels, we use standard benchmarks. The 

first benchmark, TPC-C, is a well-known benchmark 

used to model the operational end of businesses where 

real-time transactions are processed [ 51 ]. TPC-C 

simulates the execution of a set of distributed and on-

line transactions (OLTP) for a period of between two 

and eight hours. It is set in the context of a wholesale 

supplier operating on a number of warehouses and their 

associated sales districts. TPC-C incorporates five types 

of transactions with different complexity for online and 

deferred execution on a database system. These 

transactions perform the basic operations on databases 

such as inserts, deletes, updates and so on. At the block 

storage level, these transactions will generate reads and 

writes that will change data blocks on disks. For Oracle 

Database, we use one of the TPC-C implementations 

written by Hammerora Project [52]. We build data tables 

for 5 warehouses with 25 users issuing transactional 

workloads to the Oracle database following the TPC-C 

specification. The installation of the database including 

all tables takes totally 3GB storage. For Postgres 

Database, we use the implementation from TPCC-UVA 

[53].  10 warehouses with 50 users are built on Postgres 

database taking 2GB storage space. Details regarding 

TPC-C workloads specification can be found in [51]. 

Our second benchmark, TPC-W, is a transactional 

web benchmark developed by Transaction Processing 

Performance Council that models an on-line bookstore 

[54]. The benchmark comprises a set of operations on a 

web server and a backend database system. It simulates 

a typical on-line/E-commerce application environment. 

Typical operations include web browsing, shopping, and 

order processing. We use the Java TPC-W 

implementation of University of Wisconsin-Madison [55] 

and build an experimental environment. This 

implementation uses Tomcat 4.1 as an application server 

and MySQL 5.0 as a backend database. The configured 

workload includes 30 emulated browsers and 10,000 

items in the ITEM TABLE. 

Besides benchmarks operating on databases, we 

have also formulated file system micro-benchmarks as 

listed in Table 2. The first micro-benchmark, tar, 

chooses five directories randomly on ext2 file system 

and creates an archive file using tar command. We run 

the tar command five times. Each time before the tar 

command is run, files in the directories are randomly 

selected and randomly changed. Similarly, we run zip, 

latex, and basic file operations cp/rm/mv on five 

directories randomly chosen for 5 times with random file 

changes and operations on the directories. The actions in 

these commands and the file changes generate block 

level write requests. Two compiler applications, gcc and 

VC++6.0, compile Postgress source code and our TRAP 

implementation codes, respectively. Linux Install, XP 

Install, and App Install are actual software installations 

on VMWare Workstation that allows multiple OSs to 

run simultaneously on a single PC. The installations 

include Redhat 8.0, Windows XP, Office 2000, and 

Visual C++ for Windows. 
 

Benchmark Brief description 

tar Run 5 times randomly on ext2 

gcc Compile Postgres 7.1.2 source code on ext2 

zip Compress an image directory on ext2 

Latex Make DVI and PDF files with latex source 

files on ext2 

cp/rm/mv Execute basic file operations (cp, rm and mv) 

on ext2 

Linux 

Install 

Install Redhat 8.0 on VMWare 5.0 virtual 

machine  

XP Install Install Windows XP system on VMWare 5.0 

virtual machine 

App Install MS Office2000 and VC++ on Windows 

VC++ 6.0 Compile our TRAP implementation codes 
 

Table 2. File system micro benchmarks. 
 

 

5. Numerical Results and Discussions 
 

Our first experiment is to measure the amount of 

storage space required to store TRAP data while running 

benchmarks on three types of databases: Oracle, 

Postgres, and MySQL. We concentrate on block level 

storages and consider three types of TRAP architectures 

in our experiments. TRAP-1 stores only changed data 

blocks at the end of each run. This represents a typical 

copy-on-write snapshot or an incremental backup that 

only backs up changed data blocks. TRAP-3 stores all 

versions of a data block as disk writes occur while 

running the benchmarks. TRAP-4 keeps parity logs as 

described in Section 3. To make a fair space usage 

comparison, we have also performed data compression 

in the TRAP-3 architecture. The compression algorithm 

is based on the open source library [47].  Each 

benchmark is run for about 1 hour on a database for a 

given block size. We carry out our experiments for 6 

different parity block sizes: 512B, 4KB, 8KB, 16KB, 

32KB, and 64KB. Recall that this block size is the basic 

unit for parity computations. Actual data sizes of disk 

write requests are independent of the parity block size 

but are aligned with parity blocks. If a write request 

changes a data block that is contained in a parity block, 

then only one parity computation is done. If a write 

request changes a data block that covers more than one 

parity block, more parity computations have to be done. 
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Whether or not a write data is within one parity block 

depends on the starting LBA and the size of the write. 
 

 

Figure 3 shows the measured results in terms of 

Mbytes of data stored in the TRAP storage.  There are 

six sets of bars corresponding to the six different block 

sizes. Each set contains four bars corresponding to the 

amount of data stored using TRAP-1, TRAP-3, TRAP-3 

with compression, and TRAP-4, respectively. It is shown 

in this figure that TRAP-4 presents dramatic reductions 

in required storage space compared to other TRAP 

architectures. For the block size of 8KB, TRAP-4 

reduces the amount of data to be stored in the TRAP 

storage by an order of magnitude compared to TRAP-3. 

For the block size of 64KB, the reduction is close to 2 

orders of magnitude. Even with data compression being 

used for TRAP-3, TRAP-4 reduces data size by a factor 

of 5 for the block size of 8KB and a factor of 23 for the 

block size of 64KB, as shown in the figure. 

It is interesting to observe in Figure 3 that our TRAP-

4 uses even smaller storage space than TRAP-1 that 

represents periodical backups. In this experiment, 25 

users continuously generate transactions to 5 warehouses 

following the TPC-C specification with no thinking 

period. The amount of I/O requests generated with this 

workload in an hour is probably similar to one day’s 

I/Os of medium size organizations. In this case, the 

amount of data in TRAP-1 would be the amount of data 

for a daily backup. If this is the case, our TRAP-4 uses 

smaller storage space than daily backup while being able 

to recover data to any point-in-time. That is, with less 

storage space than today’s daily backup TRAP-4 

achieves near 0 RPO as opposed to 24 hours RPO. 

We observed in our experiments that space 

efficiency and performance are limited by using the 

block size of 512B, the sector size of disks. The reason 

is that many write operations write large data blocks of 

8KB or more. Using 512B block size for parity 

computation, a write into an 8KB block fragments the 

data into at least 16 different parity groups, giving rise to 

more overheads and larger indexing/meta data. In the 

following experiments, we consider only the other 5 

larger parity block sizes.  
 

 

Results of the TPC-C benchmark on Postgres 

database are shown in Figure 4. Again, we run the TPC-

C on Postgres database for approximately 1 hour for 

each block size. Because Postgres was installed on a 

faster PC with Linux OS, the TPC-C benchmark 

generated more transactions on Postgres database than 

on Oracle database for the same one-hour period. As a 

result, much larger data set was written as shown in 

Figure 4 and Figure 3.  For the block size of 8KB, 

TRAP-3 needs about 3.7GB storage space to store 

different versions of changed data blocks in the one-hour 

period. Our TRAP-4, on the other hand, needs only 

0.198GB, an order of magnitude savings in storage 

space. If data compression is used in TRAP-3, 1.6GB of 

data is stored in the TRAP storage, 8 times more than 

TRAP-4. The savings are even greater for larger data 

block sizes. For example, for the block size of 64KB, 

TRAP-4 storage needs 0.23GB storage while TRAP-3 

requires 17.5GB storage, close to 2 orders of magnitude 

improvement. Even with data compression, TRAP-4 is 

26 times more efficient than TRAP-3. Notice that larger 

block sizes reduces index and meta data sizes for the 

same amount of data, implying another important 

advantage of TRAP-4 since space required by TRAP-4 is 

not very sensitive to block sizes as shown in the figure. 

      Figure 5 shows the measured results for TPC-W 

benchmark running on MySQL database using Tomcat 

as the application server. We observed similar data 

reduction by TRAP-4 as compared to TRAP-3. For 

example, for block size of 8KB, TRAP-4 stores about 

6.5MB of data in the TRAP storage during the 

benchmark run whereas traditional CDP (TRAP-3) keeps 

54MB of data in the TRAP storage for the same time 

period. If block size is increased to 64KB, the amounts 

of data are about 6MB and 179MB for TRAP-4 and 

traditional CDP (TRAP-3), respectively. 
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Results for file system benchmarks are shown in 

Figures 6-9. Nine micro benchmarks are run for two 

different block sizes, 8KB and 16KB. Space savings of 

TRAP-4 over other TRAP levels vary from one 

application to another. We observed largest gain for 

cp/rm/mv commands and smallest for Visual C++6. The 

largest gain goes up to 2 orders of magnitude while the 

smallest gain is about 60%. In general, Unix file system 

operations demonstrate better content locality. Our 

analysis of Microsoft file changes indicates that some 

file changes result in bit-wise shift at block level. 

Therefore, XOR operations at block level are not able to 

catch the content locality. The data reduction ratios of all 

micro benchmarks are shown in Figure 10 in logarithmic 

scale. As shown in the figure, the ratio varies between 

1.6 and 256 times. The average gain for 8KB block size 

is 28 times and the average gain for 16KB block size is 

44 times.  
 

 

 
 

Using our recovery program, we carry out 

experiments to recover data to different time points in 

the past. For a given block size, we first run the TPC-C 

benchmark on Oracle database installed on TRAP-4 for 

sufficiently long time. As a result of the benchmark run, 

TRAP-4 storage was filled with parity logs. We then 

perform recoveries for each chosen time point in the past. 

Because of the time limit, all our parity logs and data are 

on disks with no tape storage involved. We have made 

30 recovery attempts and all of them have been able to 

recover correctly within first consistency check. Figure 

11 shows the RTO as functions of RPO for the 5 

different block sizes. Note that our recovery process is 

actually an undo process using Equation (3) as opposed 

to Equation (2) that represents a redo process. An undo 

process starts with the newest data and traces back the 

parity logs while redo process starts with a previous data 

and traces forward the parity logs. With the undo 

process, the RTO increases as RPO increases because 

the farther we trace back in the parity logs, the longer 

time it takes to recover data. The results would be just 

the opposite if we were to recover data using Equation 

(2). Depending on the types of outages and failure 

conditions, one can choose to use either process to 
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recover data. For example, if the primary storage is 

damaged without newest data available, we have to 

recover data using a previous backup together with 

parity logs using Equation (2). On the other hand, if a 

user accidentally performed a wrong transaction, an 

undo process could be used to recover data using 

Equation (3).  

 

 
 

Whether we do an undo recovery using Equation (3) 

or a redo recovery using Equation (2), the RTO depends 

on the amount of parity data traversed during the 

recovery process. To illustrate this further, we plot RTO 

as functions of parity log sizes traversed while doing 

recovery as shown in Figure 12. The recovery time 

varies between a few seconds to about 1 hour for the 

data sizes considered. It should be noted that the amount 

of storage for TRAP-3 architecture is over 10GB 

corresponding to the parity size of 300 MB. Figure 12 

can be used as a guide to users for choosing a shorter 

RTO recovery process depending on the RPO, the parity 

log size, and the availability of newest data or a previous 

backup. 

 

During our recovery experiments we observed that 

block sizes of 8KB and 16KB give the shortest recovery 

time, as shown in Figures 11 and 12. This result can be 

mainly attributed to the fact that most disk writes in our 

experiments fall into these block sizes. As a result, write 

sizes match well with parity block sizes. If the block size 

for parity computation were too large or too small, we 

would have to perform more parity computations and 

disk I/Os than necessary, resulting in longer recovery 

time and higher overhead as will be discussed shortly. 

 
 

Block Size(KB) XOR(ms) Decode(ms) 

4 0.026414 0.073972 

8 0.053807 0.132586 

16 0.105502 0.213022 

32 0.214943 0.335425 

64 0.421863 0.603595 

Table 3. Measured computation time for XOR and 

decoding process in TRAP-4 implementation on PC1. 
 

In order to compare the recovery time, RTO, of our 

TRAP-4 with that of TRAP-3, we measure the time it 

takes to do the XOR and decoding operations of TRAP-4 

as shown in Table 3. Since we have only implemented 

the recovery program for TRAP-4 but not for TRAP-3, 

we will carry out the following simplified analysis just 

to approximately compare the two. Suppose that TRAP-3 

reads the index node first to find out the exact location 

of the data block with a given time stamp for each 

changed data block. Next the data block is read out from 

the TRAP storage to a temporary storage. If we have a 

total of NB changed data blocks, the data retrieval time 

for TRAP-3 to recover data is approximately given by 
 

(inode_size/IO_Rate+Block_size/IO_Rate+2S+2R )NB, 
 

where S and R are average seek time and rotation 

latency of the hard drive, respectively. To recover data, 

TRAP-4 needs not only to retrieve parity log for each 

data block but also to decode parity and to compute 

XORs. Let TDEC and TXOR denote the decoding time and 

XOR time. The data retrieval time for TRAP-4 to 

recover data is approximately given by 
 

 (TDEC+TXOR+Avg_log_size/IO_Rate+S+R)NB,  
 



In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA 

 

where Avg_log_size is the average parity log size for 

each data block. Our experiments show that the average 

log size is 38KB. Therefore, an entire parity log with the 

data block at the end is read from TRAP disk every time 

when we try to recover one block of data. It is important 

to note that the data log sizes of TRAP-3 are generally 

too large to be read in one disk operation. That is why it 

needs two disk operations, one for reading the I-node 

(header) of the corresponding log and the other for the 

data block pointed by the I-node. Using the above two 

formulae, we plot the data retrieval time of the two 

TRAP architectures as shown in Figure 13 assuming the 

average seek time to be 9ms, the average rotation 

latency to be 4.15ms, and the IO_Rate to be 45MB/s. 

Note that the time it takes to do consistency check and 

write in-place should be the same for both systems.  As 

shown in the figure, TRAP-4 generally takes shorter time 

to retrieve data from the TRAP storage even though 

additional computations are necessary for decoding and 

XOR. However, the actual recovery time depends on the 

real implementation of each recovery algorithm and 

many other factors such as caching effect and indexing 

structure. 

 

 

Computing and logging parities in TRAP-4 

architecture may introduce additional overhead in online 

storages. Such overhead may negatively impact 

application performance. In order to quantify such 

impacts, we have measured the additional computation 

time as shown in Table 3. In addition, we have also 

measured the TPC-C throughputs while running TPC-C 

on Oracle and Postgres databases with two storage 

systems. One storage system has TRAP-4 installed and 

the other has no TRAP-4 installed. We then compare the 

two measured throughputs and calculate the overhead 

rate. The overhead rate is the ratio of the two measured 

throughputs minus 1. This overhead rate is a measure of 

slow down of the TRAP-4. Figure 14 plots the overhead 

rates for different block sizes. Most of the overhead rates 

are less than 8% with one exception of 64KB on 

Postgres database. The lowest overhead is less than 2% 

for the block size of 16KB. It should be noted that our 

implementation does not assume a RAID controller. All 

the parity computations are considered extra overheads. 

As mentioned previously, TRAP-4 can leverage the 

parity computation of RAID controllers. Therefore, if 

TRAP-4 were implemented inside a RAID array, the 

overheads would be much lower. 
 

6. Conclusions 
 

We have presented a new disk array architecture 

capable of providing timely recovery to any point-in-

time for user data stored in the array, referred to as 

TRAP array. A prototype of the new TRAP architecture 

has been implemented as a block level device driver. 

File systems such as ext2 and NTFS, and databases such 

as Oracle, Postgres, and MySQL, have been installed on 

the prototype implementation. Standard benchmarks 

including TPC-C, TPC-W, and file system benchmarks 

are used to test the performance of the new storage 

architecture. Extensive experiments have demonstrated 

up to 2 orders of magnitude improvements in terms of 

storage efficiency. Recovery experiments have also been 

carried out several dozen times to show the quick 

recovery time of the new architecture. Measurements 

have also shown that the new architecture has little 

negative performance impact on application 

performance while providing continuous data protection 

capability. 

The executable code of our TRAP implementation is 

available online at www.ele.uri.edu/hpcl. 
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