
In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

TRAP-Array: A Disk Array Architecture Providing Timely Recovery to Any

Point-in-time

Qing Yang, Weijun Xiao, and Jin Ren
Dept. of Electrical and Computer Engineering

University of Rhode Island

Kingston, RI 02881

Email: {qyang,wjxiao,rjin}@ele.uri.edu

Abstract

RAID architectures have been used for more than two

decades to recover data upon disk failures. Disk failure is just

one of the many causes of damaged data. Data can be

damaged by virus attacks, user errors, defective

software/firmware, hardware faults, and site failures. The risk

of these types of data damage is far greater than disk failure

with today’s mature disk technology and networked

information services. It has therefore become increasingly

important for today’s disk array to be able to recover data to

any point in time when such a failure occurs. This paper

presents a new disk array architecture that provides Timely

Recovery to Any Point-in-time, referred to as TRAP-Array.

TRAP-Array stores not only the data stripe upon a write to the

array, but also the time-stamped Exclusive-ORs of successive

writes to each data block. By leveraging the Exclusive-OR

operations that are performed upon each block write in

today’s RAID4/5 controllers, TRAP does not incur noticeable

performance overhead. More importantly, TRAP is able to

recover data very quickly to any point-in-time upon data

damage by tracing back the sequence and history of

Exclusive-ORs resulting from writes. What is interesting is

that TRAP architecture is amazingly space-efficient. We have

implemented a prototype TRAP architecture using software at

block device level and carried out extensive performance

measurements using TPC-C benchmark running on Oracle

and Postgress databases, TPC-W running on MySQL

database, and file system benchmarks running on Linux and

Windows systems. Our experiments demonstrated that TRAP

is not only able to recover data to any point-in-time very

quickly upon a failure but it also uses less storage space than

traditional daily differential backup/snapshot. Compared to

the state-of-the-art continuous data protection technologies,

TRAP saves disk storage space by one to two orders of

magnitude with a simple and a fast encoding algorithm. From

an architecture point of view, TRAP-Array opens up another

dimension for storage arrays. It is orthogonal and

complementary to RAID in the sense that RAID protects data

in the dimension along an array of physical disks while TRAP

protects data in the dimension along the time sequence.

1. Introduction

RAID architecture [1] has been the most prominent

architecture advance in disk I/O systems for the past two

decades. RAID1 provides 2N data redundancy to protect

data while RAID3 through RAID5 store data in parity

stripes across multiple disks to improve space efficiency

and performance over RAID1. The parity of a stripe is

the Exclusive-OR (XOR) of all data chunks in the stripe.

If a disk failed at time t0, and the system found such a

failure at time t1, the data in the failed disk can be

recovered by doing the XOR among the good disks,

which may finish at t2. The recovered data is exactly the

same image of the data as it was at time t0. There are

recent research results that are able to recover data from

more than one disk failures [2,3,4,5], improving the data

reliability further.

The question to be asked is “can we recover data at

time t2 to the data image of t0 after we found out at time

t1 that data was damaged by human errors, software

defects, virus attacks, power failures, or site failures?”

With the rapid advances in networked information

services coupled with the maturity of disk technology,

data damage and data loss caused by human errors,

software defects, virus attacks, power failures, or site

failures have become more dominant, accounting for

60% [6] to 80% [7] of data losses. Current RAID

architecture cannot protect data from these kinds of

failures because damaged data are not confined to one or

two disks. Traditional techniques protecting data from

the above failures are mainly periodical (daily or weekly)

backups and snapshots [8 , 9 , 10]. These techniques

usually take a long time to recover data [11]. In addition,

data between backups are vulnerable to data loss. Recent

research [12 , 13] has shown that data loss or data

unavailability can cost up to millions of dollars per hour

in many businesses. Solely depending on the traditional

time-consuming backups is no longer adequate for

today’s information age.

This paper advocates for a disk array architecture

that opens a new dimension, time, to enable Timely

Recovery to Any Point-in-time (TRAP) of user data. We

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

propose a new TRAP architecture that has the optimal

space and performance characteristics. The idea of the

new TRAP architecture is very simple. Instead of

providing full redundancy of data in time dimension, i.e.

keeping a log of all previous versions of changed data

blocks in time sequence [11,14,15], we compute XORs

among changed data blocks along the time dimension to

improve performance and space efficiency. The resulting

architecture shift is similar to the shift from RAID1 to

RAID4 that improves space efficiency and performance

upon RAID1. With a simple and fast encoding scheme,

the new TRAP architecture presents dramatic space

savings because of content locality that exists in real

world applications. Furthermore, it provides faster data

recovery to any-point-in-time than traditional techniques

because of the drastically smaller amount of storage

space used.

We have implemented a prototype of the new TRAP

architecture at block device level using standard iSCSI

protocol. The prototype is a software module inside an

iSCSI target mountable by any iSCSI compatible

initiator. We install the TRAP prototype on PC-based

storage servers as a block level device driver and carry

out experimental performance evaluation as compared to

traditional data recovery techniques. Linux and

Windows systems and three types of databases: Oracle,

Postgres, and MySQL, are installed on our TRAP

prototype implementation. Industry standard

benchmarks such as TPC-C, TPC-W, and file system

benchmarks are used as workloads driving the TRAP

implementation under the databases and file systems.

Our measurement results show up to 2 orders of

magnitude improvements of the new TRAP architecture

over existing technologies in terms of storage space

efficiency. Such orders of magnitude improvements are

practically important given the exponential growth of

data [16]. We have also carried out data recovery

experiments by selecting any point-in-time in the past

and recovering data to the time point. Experiments have

shown that all recovery attempts are successful.

Recovery time of the new TRAP architecture is

compared with existing reliable storage architectures to

show that the new TRAP architecture can recover data to

any point-in-time very quickly.

We classify different storage architectures capable

of recovering data to a previous time point into 4

different categories and discuss these techniques in

detail in the next section as background and related

research work. The detailed design and implementation

of the new TRAP is presented in Section 3. Section 4

presents the experimental settings and the workload

characteristics. Numerical results and discussions are

presented in Section 5. We conclude our paper in

Section 6.

2. Background and Related Work

Recovery of data in the real world is measured by

two key parameters: recovery point objective (RPO) and

recovery time objective (RTO) [11,12]. RPO measures

the maximum acceptable age of data at the time of

outage. For example, if an outage occurs at time t0, and

the system found the outage at time t1, the ideal case is

to recover data as it was right before t0, or as close to t0

as possible. A daily backup would represent RPO of

approximately 24 hours because the worst-case scenario

would be an outage during the backup, i.e. t0 is the time

point when a backup is just started. RTO is the

maximum acceptable length of time to resume normal

data processing operations after an outage. RTO

represents how long it takes to recover data. For the

above example, if we successfully recover data at time t2

after starting the recovery process at t1, then the RTO is

t2 - t1. Depending on the different values of RPO and

RTO, there exist different storage architectures capable

of recovering data upon an outage. We classify these

architectures into 4 different categories as discussed

below.

TRAP-1: Data protection and recovery have

traditionally been done using periodical backups [8,10]

and snapshots [9]. Typically, backups are done nightly

when data storage is not being used since the process is

time consuming and degrades application performance.

During the backup process, user data are transferred to a

tape, a virtual tape, or a disk for disk-to-disk backup

[8, 17]. To save backup storage, most organizations

perform full backups weekly or monthly with daily

incremental backups in between. Data compression is

often used to reduce backup storage space [10,18]. A

good survey of various backup techniques can be found

in [10]. Snapshot is a functionality that resides in most

modern disk arrays [19 , 20 , 21], file systems

[17,22,23,24,25,26,27,28], volume managers [29,30],

NAS filers (network attached storages) [31,32,33] and

backup software. A snapshot is a point-in-time image of

a collection of data allowing on-line backup. A full-copy

snapshot creates a copy of the entire data as a read only

snapshot storage clone. To save space, copy-on-write

snapshot copies a data block from the primary storage to

the snapshot storage upon the first write to the block

after the snapshot was created [30]. A snapshot can also

redirect all writes to the snapshot storage [9,31] after the

snapshot was created. Typically, snapshots can be

created up to a half dozen a day [29] without

significantly impacting application performance.

Despite the rapid advances in computer technology

witnessed in the past two decades, data backup is a

notable exception that is fundamentally the same as it

was 20 years ago. It was well-known that backup

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

remains a costly and highly intrusive batch operation

that is prone to error and consumes an exorbitant amount

of time and resources [10, 34]. As a result, RTO of

backups is generally very long. Furthermore, data are

vulnerable between two subsequent backups giving rise

to high RPO. We categorize this type of recoverable data

storages as TRAP-1 for Time-consuming Recovery to

Assigned Point-in-time.

TRAP-2: Besides periodical data backups, data can

also be protected at file system level using file

versioning that records a history of changes to files.

Versioning was implemented by some early file systems

such as Cedar File System [24], 3DFS [35], and CVS

[36] to list a few. Typically, users need to create

versions manually in these systems. There are also copy-

on-write versioning systems exemplified by Tops-20 [37]

and VMS [38] that have automatic versions for some file

operations. Elephant [28] transparently creates a new

version of a file on the first write to an open file. CVFS

[39] versions each individual write or small meta-data

using highly efficient data structures. OceanStore [40]

uses versioning not only for data recovery but also for

simplifying many issues with caching and replications.

The LBFS [41] file system exploits similarities between

files and versions of the same files to save network

bandwidth for a file system on low-bandwidth networks.

Peterson and Burns have recently implemented the

ext3cow file system that brings snapshot and file

versioning to the open-source community [23]. Other

programs such as rsync, rdiff, and diff also provide

versioning of files. To improve efficiency, flexibility and

portability of file versioning, Muniswamy-Reddy et al

[42] presented a lightweight user-oriented versioning file

system called Versionfs that supports various storage

policies configured by users.

File versioning provides a time-shifting file system

that allows a system to recover to a previous version of

files. These versioning file systems have controllable

RTO and RPO. But, they are generally file system

dependent and may not be directly applicable to

enterprise data centers that use different file systems and

databases. File versioning is categorized as TRAP-2.

TRAP-2 differs from TRAP-1 in the sense that TRAP-2

works mainly at file system level not at block device

level. Block level storages usually provide high

performance and efficiency especially for applications

such as databases that access raw devices.

TRAP-3: To provide timely recovery to any point-

in-time at block device level, one can keep a log of

changed data for each data block in a time sequence

[11,14,34]. In the storage industry, this type of storage is

usually referred to as CDP (Continuous Data Protection)

storage. In this type of systems, a write operation will

replace the old data in the same logic block address

(LBA) to another disk storage instead of overwriting it.

As a result, successive writes to the same LBA will

generate a sequence of different versions of the block

with associated timestamps indicating the time of the

corresponding write operations. These replaced data

blocks are stored in a log structure, maintaining a history

of the data blocks that have been modified. Since every

change on a block is kept, it is possible to view a storage

volume as it existed at any point in time, dramatically

reducing RPO. The RTO depends on the size of the

storage for the logs, indexing structure, and consistency

checks. The data image at the time of an outage is

considered to be “crash consistent” at block level

because the orders of all write operations are strictly

preserved. Modern file systems and databases have tools

to perform consistency checks and recover data that are

file system/application consistent [14,43,44].

The main drawback of the CDP storage is the huge

amount of storage space required, which has thus far

prevented it from being widely adopted. Typically, about

20% of active storage volumes change per day, with an

average of 5 to 10 overwrites to a block. If we have one

terabyte data storage, a CDP storage will require one to

two terabytes of space to store the logs reflecting data

changes in one day. A week of such operations will

require 5 to 10 terabytes of storage space.

There have been research efforts attempting to

reduce storage space requirement for TRAP-3. Morrey

III and Grunwald [14] observed that for some workloads,

a large fraction of disk sectors to be written contain

identical content to previously written sectors within or

across volumes. By maintaining information (128 bit

content summary hash) about the contents of individual

sectors, duplicate writes are avoided. Zhu, Li, and

Patterson [18] proposed an efficient storage architecture

that identifies previously stored data segments to

conserve storage space. These data reduction techniques

generally require a search in the storage for an identical

data block before a write is performed. Such a search

operation is generally time consuming, although smart

search algorithm and intelligent cache designs can help

in speeding up the process [14,18]. These data reduction

techniques are more appropriate for periodic backups or

replications where timing is not as much a critical

concern as the timing of online storage operations.

3. TRAP-4 Architecture

The idea of TRAP-4 architecture is very simple.

Instead of keeping all versions of a data block as it is

being changed by write operations, we keep a log of

parities [45] as a result of each write on the block.

Figure 1 shows the basic design of TRAP-4. Suppose

that at time T(k), the host writes into a data block with

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

logic block address Ai that belongs to a data stripe (A1,

A2 … Ai, … An). The RAID controller performs the

following operation to update its parity disk:

PT(k) = Ai(k) ⊕ Ai(k-1) ⊕ PT(k-1) (1)

where PT(k) is the new parity for the corresponding stripe,

Ai(k) is the new data for data block Ai, Ai(k-1) is the

old data of data block Ai, and PT(k-1) is the old parity of

the stripe. Leveraging this computation, TRAP-4

appends the first part of the above equation, i.e. P’T(k) =

Ai(k) ⊕ Ai(k-1), to the parity log stored in the TRAP

disk after a simple encoding box, as shown in Figure 1.

Our extensive experiments have demonstrated a very

strong content locality that exists in real world

applications. For the workloads that we have studied,

only 5% to 20% of bits inside a data block actually

change on a write operation. The parity, P’T(k), reflects

the exact changes at bit level of the new write operation

on the existing block. As a result, this parity block

contains mostly zeros with a very small portion of bit

stream that is nonzero. Therefore, it can be easily

encoded to a small size parity block to be appended to

the parity log reducing the amount of storage space

required to keep track of the history of writes.

Now consider the parity log corresponding to a data

block, Ai, after a series of write operations. The log

contains (P’T(k), P’T(k-1) ……, P’T(2), P’T(1)) with time

stamps T(k), T(k-1), ……, T(2), and T(1) associated

with the parities. Suppose that an outage occurred at

time t1, and we would like to recover data to the image

as it was at time t0 (t0 ≤ t1). To do such a recovery, for

each data block Ai, we first find the largest T(r) in the

corresponding parity log such that T(r) ≤≤≤≤ t0. We then

perform the following computation:

Ai(r)= P’T(r) ⊕ P’T(r-1) ⊕ … ⊕ P’T(1) ⊕ Ai(0), (2)

where Ai(r) denotes the data image of Ai at time T(r)

and Ai(0) denotes the data image of Ai at time T(0).

Note that

P’T(l) ⊕ Ai(l-1) = Ai(l) ⊕ Ai(l-1) ⊕ Ai(l-1) = Ai(l),

for all l=1,2, … r. Therefore, Equation (2) gives Ai(r)

correctly assuming that the original data image, Ai(0),

exists.

The above process represents a typical recovery

process upon an outage that results in data loss or data

damage while earlier data is available in a full backup or

a mirror storage. An undo process is also possible with

the parity log if the newest data is available by doing the

following computation instead of Equation (2):

Ai(r)= Ai(k) ⊕ P’T(k) ⊕ P’T(k-1) ⊕ … ⊕ P’T(r+1), (3)

where Ai(k) represents the latest data of block Ai.

FS/DBMS

iSCSI Initiator

TCP/IP Stack

Application Server

TCP/IP Network

TRAP-4

iSCSI Target

TCP/IP Stack

Storage Server

Benchmarks

TCP/IP Stack

Client

Benchmarks

TCP/IP Stack

Client

Primary Storage

TRAP Storage

Figure 2. System architecture of TRAP-4 implementation

We have designed and implemented a software

prototype of TRAP-4. The software prototype is a block

level device driver below a file system or database

systems. As a result, our implementation is file system

and application independent. Any file system or

database applications can readily run on top of our

TRAP-4. The prototype driver takes write requests from

a file system or database system at block level. Upon

receiving a write request, TRAP-4 performs normal write

into the local primary storage and at the same time

performs parity computation as described above to

obtain P’. The results of the parity computation are then

appended to the parity log corresponding to the same

LBA to be stored in the TRAP storage.

Our implementation is done using the standard

iSCSI protocol, as shown in Figure 2. In the iSCSI

protocol, there are two communication parties, referred

to as iSCSI initiator and iSCSI target [46]. An iSCSI

initiator runs under the file system or database

applications as a device driver. As I/O operations come

from applications, the initiator generates I/O requests

using SCSI commands wrapped inside TCP/IP packets

that are sent to the iSCSI target. Our TRAP-4 module is

implemented inside the iSCSI target as an independent

module. The main functions inside the TRAP module

include parity computation, parity encoding, and logging.

The parity computation part calculates P’T(k) as discussed

above. Our implementation works on a configurable and

fixed block size, referred to as parity block size. Parity

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

block size is the basic unit based on which parity

computation is done. All disk writes are aligned to the

fixed parity block size. As a result, a disk write request

may be contained in one parity block or may go across

several blocks depending on the size and starting LBA

of the write. The parity encoding part uses the open-

source [47] library to encode the parity before appending

it to the corresponding parity log. The logging part

organizes the parity log, allocates disk space, and stores

the parity log in the TRAP disk. The TRAP module runs

as a separate thread parallel to the normal iSCSI target

thread. It communicates with the iSCSI target thread

using a shared queue data structure.

As shown in Figure 2, our implementation is on top

of the standard TCP/IP protocol. As a result, our TRAP-4

can be set up at a remote site from the primary storage

through an Internet connection. Together with a mirror

storage at the remote site, TRAP-4 can protect important

data from site failures or disaster events.

We have also implemented a recovery program for

our TRAP-4. For a given recovery time point (RPO), tr,

the recovery program retrieves the parity log to find the

timestamp, T(r), such that T(r)≤≤≤≤ tr, for every data block

that have been changed. We then decode the parity

blocks and compute XOR using either Equation (2) or

Equation (3) to obtain the data block as it was at time tr

for each block. Next, the computed data are stored in a

temporary storage. Consistency check is then performed

using the combination of the temporary storage and the

mirror storage. The consistency check may do several

times until the storage is consistent. After consistency is

checked, the data blocks in the temporary storage are

stored in-place in the primary storage and the recovery

process is complete.

It should be noted that the recovered data is in a

“crash consistency” state. We are currently working on

possible techniques to assist applications to quickly

recover to the most recent consistent point at the

application level. It should also be noted that a bit error

in the parity log could potentially break the entire log

chain, which would not be the case for TRAP-3 that

keeps all data blocks. There are two possible solutions to

this: adding an error correcting code to each parity block

or mirror the entire parity log. Fortunately, TRAP-4 uses

orders of magnitude less storage, as will be evidenced in

Section 5. Doubling parity log is still more efficient than

TRAP-3. More research is needed to study the trade-offs

regarding tolerating bits errors in parity logs.

4. Evaluation Methodology

This section presents the evaluation methodology

that we use to quantitatively study the performance of

TRAP-4 as compared to other TRAP levels. Our

objective here is to evaluate three main parameters:

storage space efficiency, RTO and RPO, and

performance impacts on applications.

4.1 Experimental Setup

Using our implementation described in the last

section, we install our TRAP-4 on a PC serving as a

storage server, shown in Figure 2. There are four PCs

that are interconnected using the Intel’s NetStructure

10/100/1000Mbps 470T switch. Two of the PCs act as

clients running benchmarks. One PC acts as an

application server. The hardware characteristics of the

four PCs are shown in Table 1.

PC 1, 2, &3 P4 2.8GHz/256M RAM/80G+10G Hard Disks

PC 4 P4 2.4GHz/2GB RAM/200G+10G Hard Disks

Windows XP Professional SP2 OS

 Fedora 2 (Linux Kernel 2.4.20)

Oracle 10g for Microsoft Windows (32-bit)

Postgres 7.1.3 for Linux

Databases

 MySQL 5.0 for Microsoft Windows

UNH iSCSI Initiator/Target 1.6 iSCSI

 Microsoft iSCSI Initiator 2.0

TPC-C for Oracle (Hammerora)

TPC-C for Postgres(TPCC-UVA)

TPC-W Java Implementation

Benchmarks

File system micro-benchmarks

Intel NetStructure 470T Switch Network

 Intel PRO/1000 XT Server Adapter (NIC)

 Table 1. Hardware and software environments

In order to test our TRAP-4 under different

applications and different software environments, we set

up both Linux and Windows operating systems in our

experiments. The software environments on these PCs

are listed in Table 1. We install Fedora 2 (Linux Kernel

2.4.20) on one of the PCs and Microsoft Windows XP

Professional on other PCs. On the Linux machine, the

UNH iSCSI implementation [48] is installed. On the

Windows machines the Microsoft iSCSI initiator [49] is

installed. Since there is no iSCSI target on Windows

available to us, we have developed our own iSCSI target

for Windows. After installing all the OS and iSCSI

software, we install our TRAP-4 module on the storage

server PC inside the iSCSI targets.

On top of the TRAP-4 module and the operating

systems, we set up three different types of databases and

two types of file systems. Oracle Database 10g is

installed on Windows XP Professional. Postgres

Database 7.1.3 is installed on Fedora 2. MySQL 5.0

database is set up on Windows. Ext2 and NFTS are the

file systems used in our experiments. To be able to run

real world web applications, we install Tomcat 4.1

application server for processing web application

requests issued by benchmarks.

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

4.2 Workload Characteristics

Right workloads are important for performance

studies [50]. In order to have an accurate evaluation of

different TRAP levels, we use standard benchmarks. The

first benchmark, TPC-C, is a well-known benchmark

used to model the operational end of businesses where

real-time transactions are processed [51]. TPC-C

simulates the execution of a set of distributed and on-

line transactions (OLTP) for a period of between two

and eight hours. It is set in the context of a wholesale

supplier operating on a number of warehouses and their

associated sales districts. TPC-C incorporates five types

of transactions with different complexity for online and

deferred execution on a database system. These

transactions perform the basic operations on databases

such as inserts, deletes, updates and so on. At the block

storage level, these transactions will generate reads and

writes that will change data blocks on disks. For Oracle

Database, we use one of the TPC-C implementations

written by Hammerora Project [52]. We build data tables

for 5 warehouses with 25 users issuing transactional

workloads to the Oracle database following the TPC-C

specification. The installation of the database including

all tables takes totally 3GB storage. For Postgres

Database, we use the implementation from TPCC-UVA

[53]. 10 warehouses with 50 users are built on Postgres

database taking 2GB storage space. Details regarding

TPC-C workloads specification can be found in [51].

Our second benchmark, TPC-W, is a transactional

web benchmark developed by Transaction Processing

Performance Council that models an on-line bookstore

[54]. The benchmark comprises a set of operations on a

web server and a backend database system. It simulates

a typical on-line/E-commerce application environment.

Typical operations include web browsing, shopping, and

order processing. We use the Java TPC-W

implementation of University of Wisconsin-Madison [55]

and build an experimental environment. This

implementation uses Tomcat 4.1 as an application server

and MySQL 5.0 as a backend database. The configured

workload includes 30 emulated browsers and 10,000

items in the ITEM TABLE.

Besides benchmarks operating on databases, we

have also formulated file system micro-benchmarks as

listed in Table 2. The first micro-benchmark, tar,

chooses five directories randomly on ext2 file system

and creates an archive file using tar command. We run

the tar command five times. Each time before the tar

command is run, files in the directories are randomly

selected and randomly changed. Similarly, we run zip,

latex, and basic file operations cp/rm/mv on five

directories randomly chosen for 5 times with random file

changes and operations on the directories. The actions in

these commands and the file changes generate block

level write requests. Two compiler applications, gcc and

VC++6.0, compile Postgress source code and our TRAP

implementation codes, respectively. Linux Install, XP

Install, and App Install are actual software installations

on VMWare Workstation that allows multiple OSs to

run simultaneously on a single PC. The installations

include Redhat 8.0, Windows XP, Office 2000, and

Visual C++ for Windows.

Benchmark Brief description

tar Run 5 times randomly on ext2

gcc Compile Postgres 7.1.2 source code on ext2

zip Compress an image directory on ext2

Latex Make DVI and PDF files with latex source

files on ext2

cp/rm/mv Execute basic file operations (cp, rm and mv)

on ext2

Linux

Install

Install Redhat 8.0 on VMWare 5.0 virtual

machine

XP Install Install Windows XP system on VMWare 5.0

virtual machine

App Install MS Office2000 and VC++ on Windows

VC++ 6.0 Compile our TRAP implementation codes

Table 2. File system micro benchmarks.

5. Numerical Results and Discussions

Our first experiment is to measure the amount of

storage space required to store TRAP data while running

benchmarks on three types of databases: Oracle,

Postgres, and MySQL. We concentrate on block level

storages and consider three types of TRAP architectures

in our experiments. TRAP-1 stores only changed data

blocks at the end of each run. This represents a typical

copy-on-write snapshot or an incremental backup that

only backs up changed data blocks. TRAP-3 stores all

versions of a data block as disk writes occur while

running the benchmarks. TRAP-4 keeps parity logs as

described in Section 3. To make a fair space usage

comparison, we have also performed data compression

in the TRAP-3 architecture. The compression algorithm

is based on the open source library [47]. Each

benchmark is run for about 1 hour on a database for a

given block size. We carry out our experiments for 6

different parity block sizes: 512B, 4KB, 8KB, 16KB,

32KB, and 64KB. Recall that this block size is the basic

unit for parity computations. Actual data sizes of disk

write requests are independent of the parity block size

but are aligned with parity blocks. If a write request

changes a data block that is contained in a parity block,

then only one parity computation is done. If a write

request changes a data block that covers more than one

parity block, more parity computations have to be done.

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

Whether or not a write data is within one parity block

depends on the starting LBA and the size of the write.

Figure 3 shows the measured results in terms of

Mbytes of data stored in the TRAP storage. There are

six sets of bars corresponding to the six different block

sizes. Each set contains four bars corresponding to the

amount of data stored using TRAP-1, TRAP-3, TRAP-3

with compression, and TRAP-4, respectively. It is shown

in this figure that TRAP-4 presents dramatic reductions

in required storage space compared to other TRAP

architectures. For the block size of 8KB, TRAP-4

reduces the amount of data to be stored in the TRAP

storage by an order of magnitude compared to TRAP-3.

For the block size of 64KB, the reduction is close to 2

orders of magnitude. Even with data compression being

used for TRAP-3, TRAP-4 reduces data size by a factor

of 5 for the block size of 8KB and a factor of 23 for the

block size of 64KB, as shown in the figure.

It is interesting to observe in Figure 3 that our TRAP-

4 uses even smaller storage space than TRAP-1 that

represents periodical backups. In this experiment, 25

users continuously generate transactions to 5 warehouses

following the TPC-C specification with no thinking

period. The amount of I/O requests generated with this

workload in an hour is probably similar to one day’s

I/Os of medium size organizations. In this case, the

amount of data in TRAP-1 would be the amount of data

for a daily backup. If this is the case, our TRAP-4 uses

smaller storage space than daily backup while being able

to recover data to any point-in-time. That is, with less

storage space than today’s daily backup TRAP-4

achieves near 0 RPO as opposed to 24 hours RPO.

We observed in our experiments that space

efficiency and performance are limited by using the

block size of 512B, the sector size of disks. The reason

is that many write operations write large data blocks of

8KB or more. Using 512B block size for parity

computation, a write into an 8KB block fragments the

data into at least 16 different parity groups, giving rise to

more overheads and larger indexing/meta data. In the

following experiments, we consider only the other 5

larger parity block sizes.

Results of the TPC-C benchmark on Postgres

database are shown in Figure 4. Again, we run the TPC-

C on Postgres database for approximately 1 hour for

each block size. Because Postgres was installed on a

faster PC with Linux OS, the TPC-C benchmark

generated more transactions on Postgres database than

on Oracle database for the same one-hour period. As a

result, much larger data set was written as shown in

Figure 4 and Figure 3. For the block size of 8KB,

TRAP-3 needs about 3.7GB storage space to store

different versions of changed data blocks in the one-hour

period. Our TRAP-4, on the other hand, needs only

0.198GB, an order of magnitude savings in storage

space. If data compression is used in TRAP-3, 1.6GB of

data is stored in the TRAP storage, 8 times more than

TRAP-4. The savings are even greater for larger data

block sizes. For example, for the block size of 64KB,

TRAP-4 storage needs 0.23GB storage while TRAP-3

requires 17.5GB storage, close to 2 orders of magnitude

improvement. Even with data compression, TRAP-4 is

26 times more efficient than TRAP-3. Notice that larger

block sizes reduces index and meta data sizes for the

same amount of data, implying another important

advantage of TRAP-4 since space required by TRAP-4 is

not very sensitive to block sizes as shown in the figure.

 Figure 5 shows the measured results for TPC-W

benchmark running on MySQL database using Tomcat

as the application server. We observed similar data

reduction by TRAP-4 as compared to TRAP-3. For

example, for block size of 8KB, TRAP-4 stores about

6.5MB of data in the TRAP storage during the

benchmark run whereas traditional CDP (TRAP-3) keeps

54MB of data in the TRAP storage for the same time

period. If block size is increased to 64KB, the amounts

of data are about 6MB and 179MB for TRAP-4 and

traditional CDP (TRAP-3), respectively.

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

Results for file system benchmarks are shown in

Figures 6-9. Nine micro benchmarks are run for two

different block sizes, 8KB and 16KB. Space savings of

TRAP-4 over other TRAP levels vary from one

application to another. We observed largest gain for

cp/rm/mv commands and smallest for Visual C++6. The

largest gain goes up to 2 orders of magnitude while the

smallest gain is about 60%. In general, Unix file system

operations demonstrate better content locality. Our

analysis of Microsoft file changes indicates that some

file changes result in bit-wise shift at block level.

Therefore, XOR operations at block level are not able to

catch the content locality. The data reduction ratios of all

micro benchmarks are shown in Figure 10 in logarithmic

scale. As shown in the figure, the ratio varies between

1.6 and 256 times. The average gain for 8KB block size

is 28 times and the average gain for 16KB block size is

44 times.

Using our recovery program, we carry out

experiments to recover data to different time points in

the past. For a given block size, we first run the TPC-C

benchmark on Oracle database installed on TRAP-4 for

sufficiently long time. As a result of the benchmark run,

TRAP-4 storage was filled with parity logs. We then

perform recoveries for each chosen time point in the past.

Because of the time limit, all our parity logs and data are

on disks with no tape storage involved. We have made

30 recovery attempts and all of them have been able to

recover correctly within first consistency check. Figure

11 shows the RTO as functions of RPO for the 5

different block sizes. Note that our recovery process is

actually an undo process using Equation (3) as opposed

to Equation (2) that represents a redo process. An undo

process starts with the newest data and traces back the

parity logs while redo process starts with a previous data

and traces forward the parity logs. With the undo

process, the RTO increases as RPO increases because

the farther we trace back in the parity logs, the longer

time it takes to recover data. The results would be just

the opposite if we were to recover data using Equation

(2). Depending on the types of outages and failure

conditions, one can choose to use either process to

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

recover data. For example, if the primary storage is

damaged without newest data available, we have to

recover data using a previous backup together with

parity logs using Equation (2). On the other hand, if a

user accidentally performed a wrong transaction, an

undo process could be used to recover data using

Equation (3).

Whether we do an undo recovery using Equation (3)

or a redo recovery using Equation (2), the RTO depends

on the amount of parity data traversed during the

recovery process. To illustrate this further, we plot RTO

as functions of parity log sizes traversed while doing

recovery as shown in Figure 12. The recovery time

varies between a few seconds to about 1 hour for the

data sizes considered. It should be noted that the amount

of storage for TRAP-3 architecture is over 10GB

corresponding to the parity size of 300 MB. Figure 12

can be used as a guide to users for choosing a shorter

RTO recovery process depending on the RPO, the parity

log size, and the availability of newest data or a previous

backup.

During our recovery experiments we observed that

block sizes of 8KB and 16KB give the shortest recovery

time, as shown in Figures 11 and 12. This result can be

mainly attributed to the fact that most disk writes in our

experiments fall into these block sizes. As a result, write

sizes match well with parity block sizes. If the block size

for parity computation were too large or too small, we

would have to perform more parity computations and

disk I/Os than necessary, resulting in longer recovery

time and higher overhead as will be discussed shortly.

Block Size(KB) XOR(ms) Decode(ms)

4 0.026414 0.073972

8 0.053807 0.132586

16 0.105502 0.213022

32 0.214943 0.335425

64 0.421863 0.603595

Table 3. Measured computation time for XOR and

decoding process in TRAP-4 implementation on PC1.

In order to compare the recovery time, RTO, of our

TRAP-4 with that of TRAP-3, we measure the time it

takes to do the XOR and decoding operations of TRAP-4

as shown in Table 3. Since we have only implemented

the recovery program for TRAP-4 but not for TRAP-3,

we will carry out the following simplified analysis just

to approximately compare the two. Suppose that TRAP-3

reads the index node first to find out the exact location

of the data block with a given time stamp for each

changed data block. Next the data block is read out from

the TRAP storage to a temporary storage. If we have a

total of NB changed data blocks, the data retrieval time

for TRAP-3 to recover data is approximately given by

(inode_size/IO_Rate+Block_size/IO_Rate+2S+2R)NB,

where S and R are average seek time and rotation

latency of the hard drive, respectively. To recover data,

TRAP-4 needs not only to retrieve parity log for each

data block but also to decode parity and to compute

XORs. Let TDEC and TXOR denote the decoding time and

XOR time. The data retrieval time for TRAP-4 to

recover data is approximately given by

 (TDEC+TXOR+Avg_log_size/IO_Rate+S+R)NB,

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

where Avg_log_size is the average parity log size for

each data block. Our experiments show that the average

log size is 38KB. Therefore, an entire parity log with the

data block at the end is read from TRAP disk every time

when we try to recover one block of data. It is important

to note that the data log sizes of TRAP-3 are generally

too large to be read in one disk operation. That is why it

needs two disk operations, one for reading the I-node

(header) of the corresponding log and the other for the

data block pointed by the I-node. Using the above two

formulae, we plot the data retrieval time of the two

TRAP architectures as shown in Figure 13 assuming the

average seek time to be 9ms, the average rotation

latency to be 4.15ms, and the IO_Rate to be 45MB/s.

Note that the time it takes to do consistency check and

write in-place should be the same for both systems. As

shown in the figure, TRAP-4 generally takes shorter time

to retrieve data from the TRAP storage even though

additional computations are necessary for decoding and

XOR. However, the actual recovery time depends on the

real implementation of each recovery algorithm and

many other factors such as caching effect and indexing

structure.

Computing and logging parities in TRAP-4

architecture may introduce additional overhead in online

storages. Such overhead may negatively impact

application performance. In order to quantify such

impacts, we have measured the additional computation

time as shown in Table 3. In addition, we have also

measured the TPC-C throughputs while running TPC-C

on Oracle and Postgres databases with two storage

systems. One storage system has TRAP-4 installed and

the other has no TRAP-4 installed. We then compare the

two measured throughputs and calculate the overhead

rate. The overhead rate is the ratio of the two measured

throughputs minus 1. This overhead rate is a measure of

slow down of the TRAP-4. Figure 14 plots the overhead

rates for different block sizes. Most of the overhead rates

are less than 8% with one exception of 64KB on

Postgres database. The lowest overhead is less than 2%

for the block size of 16KB. It should be noted that our

implementation does not assume a RAID controller. All

the parity computations are considered extra overheads.

As mentioned previously, TRAP-4 can leverage the

parity computation of RAID controllers. Therefore, if

TRAP-4 were implemented inside a RAID array, the

overheads would be much lower.

6. Conclusions

We have presented a new disk array architecture

capable of providing timely recovery to any point-in-

time for user data stored in the array, referred to as

TRAP array. A prototype of the new TRAP architecture

has been implemented as a block level device driver.

File systems such as ext2 and NTFS, and databases such

as Oracle, Postgres, and MySQL, have been installed on

the prototype implementation. Standard benchmarks

including TPC-C, TPC-W, and file system benchmarks

are used to test the performance of the new storage

architecture. Extensive experiments have demonstrated

up to 2 orders of magnitude improvements in terms of

storage efficiency. Recovery experiments have also been

carried out several dozen times to show the quick

recovery time of the new architecture. Measurements

have also shown that the new architecture has little

negative performance impact on application

performance while providing continuous data protection

capability.

The executable code of our TRAP implementation is

available online at www.ele.uri.edu/hpcl.

Acknowledgments

This research is sponsored in part by National Science

Foundation under grants CCR-0073377, CCR-0312613, and

SGER Grant 0610538. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the National Science Foundation. The authors would like to

thank John DiPippo for his supports and technical discussions,

and Kerry Yang for her help in editing and proof reading of

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

the paper. The authors are grateful to the anonymous

reviewers for their valuable comments that helped in

improving the paper. We also thank Slater Interactive Office

of Rhode Island Economic Development Council for the

generous financial support on part of this research work.

7. References

[1] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for

redundant arrays of inexpensive disks (RAID)”, In Proc.

of the ACM SIGMOD International Conference on

Management of Data, pp. 109-116, 1988.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon,

“EVENODD: An optimal scheme for tolerating double

disk failures in RAID architectures,” In Proc. of the

21st Annual International Symposium on Computer

Architecture, Chicago, IL, 1994.

[3] G.A. Alvarez, W. A. Burkhard, and F. Christian,

“Tolerating multiple failures in RAID architectures

with optimal storage and uniform declustering,” In Proc.

of the 24th Annual International Symposium on

Computer Architecture, Denver, CO, 1997.

[4] C. I. Park, “Efficient placement of parity and data to

tolerate two disk failures in disk arrays systems,” IEEE

Transactions on Parallel and Distributed Systems,

Vol.6, pp. 1177-1184, Nov. 1995.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,

J. Leong, and S. Sankar, “Row-Diagonal parity for

double disk failure correction,” In Proc. of the 3rd

USENIX Conference on FAST, San Francisco, CA,

March 2004.

[6] D. M. Smith, “The cost of lost data,” Journal of

Contemporary Business Practice, Vol. 6, No. 3, 2003.

[7] D. Patterson, A. Brown and et al. “Recovery oriented

computing (ROC): Motivation, Definition, Techniques,

and Case Studies,” Computer Science Technical Report

UCB/CSD-0201175, U.C. Berkeley, March 15, 2002.

[8] M. Rock and P. Poresky, “Shorten your backup

window,” Storage, Special Issue on Managing the

information that drives the enterprise, pp. 28-34, Sept.

2005.

[9] G. Duzy, “Match snaps to apps,” Storage, Special Issue

on Managing the information that drives the enterprise,

pp. 46-52, Sept. 2005.

[10] A.L. Chervenak, V. Vellanki, and Z. Kurmas,

“Protecting file systems: A survery of backup

techniques,” In Proc. of Joint NASA and IEEE Mass

Storage Conference, College Park, MD, March 1998.

[11] J. Damoulakis, “Continuous protection,”Storage, Vol.

3, No. 4, pp. 33-39, June 2004.

[12] K. Keeton, C. Santos, D. Beyer, J. Chase, J. Wilkes,

“Designing for disasters,” In Proc. of 3rd Conference

on File and Storage Technologies, San Francisco, CA,

2004.

[13] D. Patterson, "A New Focus for a New Century:

Availability and Maintainability >> Performance," In

FAST Keynote, January 2002, www.cs.berkeley.edu/

~patterson/talks/keynote.html.

[14] C. B. Morrey III and D. Grunwald, “Peabody: The

time traveling disk,” In Proc. of IEEE Mass Storage

Conference, San Diego, CA, April 2003.

[15] B. O’Neill, “Any-point-in-time backups,” Storage,

Special Issue on Managing the Information that Drives

the Enterprise, Sept. 2005.

[16] J . G r a y , “ Tur i n g Le c t u r e s , ” http://research.

Microsoft.com/~gray.

[17] L. P. Cox, C. D. Murray, B. D. Noble, “Pastiche:

making backup cheap and easy,” In Proc. of the 5th

USENIX Symposium on Operating System Design and

Implementation, Boston, MA, Dec. 2002.

[18] M. B. Zhu, Kai Li, R. H. Patterson, “Efficient data

storage system,” US Patent No. 6,928,526.

[19] E. K. Lee and C. A. Thekkath, “Petal: Distributed
virtual disks,” In Proc. of the 7th International

Conference on Architecture Support for Programming

Languages an Operating Systems (ASPLOS-7),

Cambridge, MA, 1996.

[20] EMC Corporation, “EMC TimeFinder Product

Description Guide,” 1998,http://www.emc.com/

products/product_pdfs/timefinder_pdg.pdf.

[21] Hitachi Ltd., “Hitachi ShadowImage implementation

service,” June 2001,http://www.hds.com /pdf_143_

implem_shadowimage.pdf

[22] J. J. Kistler and M. Satyanarayanan, “Disconnected

operation in the Coda file system,” In Proc. of 13th

ACM Symposium on Operating System Principles,

Pacific Grove, CA, Oct. 1991.

[23] Z. Peterson and R. C. Burns, “Ext3cow: A Time-
Shifting File System for Regulatory Compliance”, ACM

Transactions on Storage, Vol.1, No.2, pp. 190-212,

2005.

[24] D.K. Gifford, R.M. Needham and M.D. Schroeder,

“Cedar file system,” Communication of the ACM,

Vol.31, No.3, pp. 288-298, March 1988.

[25] J.H.Howard, M.L. Kazar, S.G. Menees, D.A. Nichols,

M. Satyanarayanan, R.N.Sidebotham, and M.J.West,

“Scale and performance in a distributed file system,”

ACM Transactions on Computer Systems, Vol.6, No.1,

pp.51-81, Feb. 1988.

[26] N.C. Hutchinson, S. Manley, M. Federwisch, G. Harris,

D. Hitz, S. Kleiman, and S. O’Malley, “Logical vs.
Physical file system backup,” In Proc. of 3rd

Symposium. on Operating system Design and

Implementation, New Orleans, LA, Feb 1999, pp. 239-

250.

[27] S. Quinlan and S. Dorward, “Venti: a new approach to

archival storage,” In Proc of the 2002 Conference on

In Proceedings of ISCA’06: The 33
rd

 Annual International Symposium on Computer Architecture, Boston, USA

File and Storage Technologies, Monterey, CA, Jan.

2002, pp. 89-101.

[28] D. S. Santry, M.J. Feeley, N.C. Hutchinson, A.C.

Veitch, R.W. Carton, and J. Ofir, “Deciding when to

forget in the Elephant file system,” In Proc. of 17th

ACM Symposium on Operating System Principles,
Charleston, SC, Dec. 1999, pp. 110-123.

[29] A. Sankaran, K. Guinn, and D. Nguyen, “Volume

Shadow Copy Service,” March 2004,

http://www.microsoft.com.

[30] A.J.Lewis, J. Thormer, and P. Caulfield, “LVM How-

To,” http://www.tldp.org/HOWTO/LVM-HOWTO.html.

[31] D. Hitz, J. Lau, and M. Malcolm, “File system design

for an NFS file server appliance,” In Proc. of the

USENIX Winter Technical Conference, San Francisco,

CA, 1994, pp. 235-245.

[32] W. Xiao, Y. Liu, Q. Yang, J. Ren, and C. Xie,

“Implementation and Performance Evaluation of Two

Snapshot Methods on iSCSI Target Storages,” In Proc.

of NASA/IEEE Conference on Mass Storage Systems

and Technologies, May, 2006,

[33] G.A. Gibson and R.V. Meter, “Network Attached

Storage Architecture,” Communications of the ACM,

Vol. 43, No 11, pp.37-45, November 2000.

[34] J. Damoulakis, “Time to say goodbye to backup?”

Storage, Vol. 4, No. 9, pp.64-66, Nov. 2006.

[35] D. G. Korn and E. Krell, “The 3-D file system,” In

Proc. of the USENIX Summer Conference, Baltimore,

DC, Summer 1989, pp.147-156.

[36] B. Berliner and J. Polk, “Concurrent Versions System

(CVS),” 2001, http://www.cvshome.org.

[37] L. Moses, “An introductory guide to TOPS-20,” Tech.

Report TM-82-22, USC/Information Sciences Institutes,

1982.
[38] K. McCoy, “VMS File System Internals,” Digital Press,

1990.

[39] C.A.N. Soules, G. R. Goodson, J. D. Strunk, and G.R.

Ganger, “Metadata efficieny in versioning file

systems,” In Proc. of the 2nd USENIX Conference on

File and Storage Technologies, San Francisco, CA,

March 2003, pp. 43-58.

[40] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B.

Zhao, and J. Kubiatowicz, “Pond: The OceanStore

prototype,” In Proc. of the 2nd USENIX Conference on

File and Storage Technologies (FAST), San Francisco,

CA, March 2003.

[41] A. Muthitacharoen, B. Chen, and D. Mazières, "A

low-bandwidth network file system," In Proc. of the

Eighteenth ACM symposium on Operating systems

principles, Alberta, Canada, October 2001.
[42] K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and

E. Zadok, “A versatile and user-oriented versioning file

system,” In Proc. of the 3rd USENIX Conference on

File and Storage Technologies, San Francisco, CA,

2004.

[43] M. Ji, A. Veitch, and J. Wilkes, “Seneca: remote

mirroring done write,” In Proceedings of the 2003

USENIX Annual Technical Conference, San Antonio,

TX, 2003, pp. 253-268.
[44] Muthian Sivathanu, Andrea C. Arpaci-Dusseau, Remzi

H. Arpaci-Dusseau, and Somesh Jha, “A Logic of File

Systems,” in Proc. Of 4th USENIX Conference on

Filesystems and Storage Technologies, 2005.

[45] Q. Yang “Data replication method over a limited

bandwidth network by mirroring parities,” Patent

pending, US Patent and Trademark office, 62278-PCT,

August, 2004.

[46] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka,

and E. Zeidner, “iSCSI draft standard,”

http://www.ietf.org/internet-drafts/draftietf-ips-iscsi-

20.txt, Jan. 2003.

[47] G. Roelofs and J.L. Gailly, “zlib library,” 2005,

http://www.zlib.net.

[48] UNH, “iSCSI reference implementation,” 2005,

http://unh-iscsi.sourceforge.net.

[49] Microsoft Corp., “Microsoft iSCSI Software

Initiator Version 2.0,” 2005, http://www.microsoft.

com/windowsserversystem/storage/default.mspx.

[50] Yiming Hu and Qing Yang, “DCD---Disk Caching

Disk: A New Approach for Boosting I/O Performance,”

In 23rd Annual International Symposium on Computer

Architecture (ISCA), Philadelphia, PA, May 1996.

[51] Transaction Processing Performance Council, “TPC

BenchmarkTM C Standard Specification,” 2005,

http://tpc.org/tpcc.

[52] S. Shaw, “Hammerora: Load Testing Oracle

Databases with Open Source Tools,” 2004,

http://hammerora.sourceforge.net.

[53] J. Piernas, T. Cortes and J. M. García, “tpcc-uva: A

free, open-source implementation of the TPC-C

Benchmark,” 2005, http://www.infor.uva.es/~diego/

tpcc-uva.html.

[54] H.W. Cain, R. Rajwar, M. Marden and M.H. Lipasti,

“An Architectural Evaluation of Java TPC-W,” HPCA

2001, Nuevo Leone, Mexico, Jan. 2001.

[55] Mikko H. Lipasti, “Java TPC-W Implementation

Distribution,” 2003, http://www.ece.wisc.edu/

~pharm/tpcw.shtml.

