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Abstract 

 This paper presents a theoretical and experimental study 

on the limitations of copy-on-write snapshots and incremental 

backups in terms of data recoverability. We provide 

mathematical proofs of our new findings as well as 

implementation experiments to show how data recovery is 

done in case of various failures. Based on our study, we 

propose a new system architecture that will overcome the 

problems of existing technologies. The new architecture can 

provide two-way data recovery capability with the same 

storage overheads and can be implemented fairly easily on 

existing systems. We show that the new architecture has 

maximum data recoverability and is practically feasible. 
 

1. Introduction 

With explosive growth of networked information services 

and e-commerce, data protection and recovery have become 

the top priority of business organizations and government 

institutions [1,2,3,6]. Since data is the most valuable asset of 

an organization, any loss or unavailability of data can cause 

millions of dollars of damage [3,4,5]. Unfortunately, failures 

do occur such as hardware failures, human errors, software 

defects, virus attacks, power failures, site failures, and so 

forth [1,2,3]. In order to protect data from possible failures 

and to recover data in case of a failure, data protection 

technology is necessary [6]. 

Traditionally, data protection has been done using 

periodical backups. At the end of a business day or the end of 

a week, data are backed up to tapes. Depending on the 

importance of data, the frequency of backups varies. The 

higher the backup frequency, the larger the backup storage is 

required. In order to reduce the backup volume size, 

technologies such as copy-on-write (COW) snapshots and 

incremental backups have been commonly used. Instead of 

making full backups every time, COW snapshots and 

incremental backups that only store the changed data are done 

more frequently in between full backups. For example, one 

can do daily incremental backups and weekly full backups 

that are stored at both the production site and the backup site. 

In this way, great storage savings are possible while keeping 

data protected.  

The way incremental backup works is as follows. Starting 

from the previous backup point, the storage keeps track of all 

changed blocks. At the backup time point, a backup volume is 

formed consisting of all latest changed data blocks. As a 

result, the incremental backup contains the newest data that 

have changed since the last backup. COW snapshots work 

differently from the incremental backup. At the time when a 

snapshot is created, a small volume is allocated as a snapshot 

volume with respect to the source volume. Upon the first 

write to a data block after the snapshot was started, the 

original data of the block is copied from the source volume to 

the snapshot volume. After copying, the write operation is 

performed on the block in the source volume. As a result, the 

data image at the time of the snapshot is preserved. Write I/Os 

after the first change to a block is performed as usual, i.e. 

only the first write to a block copies the original data to the 

snapshot volume.  There have been many variations of COW 

snapshots in terms of implementation details for performance 

and efficiency purposes such as pointer remapping [23] and 

redirect-on-writes [16,17] etc. The main advantage of both 

incremental backups and COW snapshots is storage savings 

because only changed data are backed up. 

Despite the importance of data protection and recovery, 

recent study has shown that 67% of backup data cannot be 

recovered in the real world [6]. Even if data can be recovered, 

it takes hours and even days to do so [6]. While this fact is 

well known, there has been no research study on why this is 

the case. Therefore, it remains unclear and an open question 

why such high percentage of data recovery failed. 

This paper presents a theoretical study on COW snapshot 

and incremental backup technologies from the point of view 

of block level storages. Our investigation uncovers the 

fundamental limitations of the existing data protection 

technologies and provides a theoretical explanation as to why 

so many data recoveries (over 67% recoveries) failed using 

these existing technologies. We show mathematically the data 

recovery capabilities and limitations of the existing 

technologies. Based on our theoretical results, we propose a 

new storage architecture that overcomes the limitations of 

existing technologies. Instead of storing the original or the 

new data of a block upon a write operation, we couple the two 

for data protection purpose using a commutative and 

invertible function. This new architecture provides more 

flexible recovery capability than COW and incremental 

backups with the same storage overheads. We provide 

mathematical proof of the correctness of the new technology. 

A prototype system has been built and standard I/O 

benchmarks and real world I/O workloads are used to test our 

implementation and to measure the performance of the new 

architecture as compared to the existing ones. Our 
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experiments establish recoverability and performance of the 

new data protection technology as well as the existing ones. 

The paper is organized as follows. Next section gives the 

proofs of the capabilities and limitations of the existing 

technologies. We present our new storage architecture in 

Section 3. Section 4 describes our experimental settings and 

implementations. Experimental results and discussions are 

presented in Section 5. We summarize related work in Section 

6 and conclude the paper in Section 7. 

2. Capabilities and limitations of current data 

protection technologies 

Consider the two data protection technologies: COW 

snapshot and incremental backup. COW snapshot keeps the 

original data upon a write operation whereas incremental 

backup keeps the freshest data. In order to study the 

capabilities and limitations of these existing technologies, we 

formally define several mathematical terms and their 

relationships with the storage technologies. 

Let us assume that the data storage we try to study consists 

of independent and equally sized data blocks (the specific size 

of a block is not significant in this discussion). Each of these 

data blocks is identified by an LBA (logic block address) and 

contains a specific data value. Let A be the entire set of LBAs 

of the data storage considered and D represent the set of all 

possible data values contained in data blocks. A binary 

relation, R, between A and D defines a mapping of addresses 

to their corresponding data values of the data storage. Since 

there is exactly one ordered pair in R with each LBA, this 

binary relation is a function. We refer to this function as 

storage data and use Ft to represent this function (storage 

data) from A to D at time t. And we use Ft(a) to represent the 

image or data value of an LBA a. That is, Ft contains a set of 

ordered pairs such as {(a1,d1), (a2,d2) …} whereas Ft(a) is an 

image/data value of a such as Ft(a1)= d1. If A’ is a subset of 

A, i.e. A’⊆⊆⊆⊆ A, then we use Ft /A’ to represent the restriction 

of Ft to A’. That is, Ft /A’ = Ft ∩ (A’ × D) [7]. Without loss 

of generality, let us consider three time points as shown in the 

following diagram. 

 

 

 

 

 

 

 

Suppose that time point i-1 represents the original time point 

when data storage operation starts and time point i+1 

represents the current time point. Suppose a failure occurred 

at some time close to point i+1. We are interested in 

recovering data to the data as it was at time point i. We use 

integer numbers to represent time points since all storage 

events occur at discrete time points with a clear sequential 

ordering. 

Definition 1. Let Ai⊆⊆⊆⊆A be a set of LBAs. We define Ai to be 

a write set i if it contains all LBAs whose data value have 

been overwritten between time point i-1 and time point i. 

Looking at the diagram shown in Figure 1, we have Ai 

containing all LBAs whose data values have been changed by 

write operations between time point i-1 and time point i while 

Ai+1 containing all those between time points i and i+1.  

Example 1.  If we have Fi = {(0,2), (1,5), (2,8)} at time point 

i and Fi+1 = {(0,4), (1,5), (2,0)} at time point i+1 because of 

write operations, then we have Ai+1 ={0,2}. That is, data 

values at addresses 0 and 2 have been changed from 2 and 8 

to 4 and 0, respectively, whereas the data value of address 1 

has not been changed, since time point i.  

It is possible that the overwritten value as seen at time i is 

the same as the original value at time i-1 caused by one or 

several write operations between time points i-1 and i. We 

therefore define substantial write set that actually changed 

data values as follows. 

Definition 2. Let A’i ⊆⊆⊆⊆ Ai. We define A’i to be a substantial 

write set i if the data value of every LBA in A’i has been 

changed between time points i-1 and i. 

It should be noted here that the changed data value is 

generally not related to the original value because of the 

nature of write operations at block level storages. That is, 

Fi+1(a) is independent of Fi(a). Furthermore, Fi(a) is 

independent of Fi(b) for all b∈A and b≠a as stated in the 

beginning of this section: data blocks are independent.  We 

believe this assumption is reasonable because block level 

storages regard each data block as an independent block 

without any knowledge of file systems and applications above 

them. 

Definition 3: A COW snapshot as seen at time i+1 that was 

started at time i is defined as Fi/Ai+1, where Ai+1 is write set  

i+1. 

As we know, COW snapshot makes a copy of the original 

data upon the first write to the block. As a result, it keeps a set 

of original data of all changed blocks since the snapshot 

started. Consider the storage data in Example 1. Suppose the 

COW snapshot was started at time point i. At time point i+1, 

we have the snapshot: {(0,2), (2,8)}, which is Fi/Ai+1. That is, 

Ai+1 gives all the LBAs that have been written, {0,2}, and 

their respective images in the snapshot should be the same as 

they were at time point i, {2,8}.  

Lemma 1. If we have storage data at time i+1 and a COW 

snapshot started at time i, then we can recover data as they 

were at time i as follows: 

Fi = (Fi+1 - Fi+1/Ai+1 ) ∪∪∪∪ Fi/Ai+1 ,                      (1) 

where “-” and “∪∪∪∪”  are difference and union operators of sets, 

respectively.      

Lemma 1 gives the data recovery capability of COW 

snapshot technology. It is able to recover data to a previous 

time point provided that the most recent data is available. 

This data recovery capability is very useful in practice in case 

of data corruption, virus attack, user errors, software bugs, 

Figure 1. A three-point timing diagram:i-1 starting 

point,  i+1 current point, and i recovery point. 

Ai+1 Ai 

i+1 i-1 i 
Timeline 
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and so forth. If we know that data was good at a previous time 

point when snapshot was started, we can go back to that point 

to recover from failures caused by this type of events.  

Although COW snapshot can recover data to a previous 

time point as stated in Lemma 1, it has limitations. In 

particular, if the current data (production data) is damaged or 

lost because of hardware failures, OS failures, outages, or 

disasters, we cannot recover data to a previous time point 

even if we have COW snapshots and previous backup data 

that may be safely stored in a remote backup site. This 

limitation is formally stated in the following theorem. 

Theorem 1. Suppose the storage data at time point i+1, Fi+1, 

is not available and the substantial write set A’i is not empty 

(A’i ≠ ϕ). COW snapshots cannot recover storage data Fi as 

they were at time point i if A’i ⊆ Ai+1. 

Proof:  
 We prove this theorem by contradiction. Let us 

assume that COW snapshots can recover storage data Fi as 

they were at time point i without Fi+1.  That is, for all α∈A, we 

can reconstruct Fi(α) from what we have available: 

a) Data backup made previously: Fi-1 

b) COW snapshot as seen at time i that was started at 

time i-1: Fi-1/Ai , and 

c) COW snapshot as seen at time i+1 that was started 

at time i: Fi/Ai+1  .  

Since different data blocks are independent in our storage 

system, for every LBA α∈∈∈∈A, the only way to reconstruct its 

data value, Fi(α), is to reconstruct it from Fi-1(α), Fi-1/Ai(α), 

and/or Fi/Ai+1(α). 

Because A’i ⊆⊆⊆⊆ Ai+1 and A’i ≠ ϕ , there is an LBA that is in A’i 

but not in Ai+1. Let β be such an LBA such that β ∈ A’i but β ∉ 

Ai+1. Now consider the three cases: 

a) Since β ∈ A’i, we have Fi(β) ≠ Fi-1(β) by Definition 

2.  

b) Because Fi-1/Ai ⊆ Fi-1 and A’i ⊆Ai, we have 
Fi-1/Ai(β) = Fi-1(β) ≠ Fi (β) 

c) The fact that β ∉ Ai+1 implies that Fi/Ai+1 (β) is 

undefined because β is not in the domain of Fi/Ai+1.   
Furthermore, Fi(β) is not related in any way to Fi-1(β) 

because of the nature of write operations at block level 

storages. As a result, it is impossible to rebuild Fi(β) from 

Fi-1(β), Fi-1/Ai(β), and/or Fi/Ai+1(β), a contradiction to our 

assumption. Therefore, COW snapshots cannot recover 

storage data Fi . □ 
 

Example 2. Consider one example with 6 blocks in a storage 

volume. At time point i-1, we have {(0, a0), (1, b0), (2, c0), (3, 

d0), (4, e0), (5, f0)}. From time point i-1 to time point i, three 

blocks have been changed to: {(0, a1), (1, b1),  (3, d1)}, with 

the substantial write set being {0, 1, 3}. From time point i to 

time point i+1, two blocks have been changed to: {(3, d2), (4, 

e2)} with the substantial write set being {3, 4}. By Definition 

3, we have snapshot Fi-1/Ai as {(0, a0), (1, b0), (3, d0)} and 

snapshot Fi/Ai+1 as {(3, d1), (4, e0)}. When original data Fi-1 is 

unavailable, storage data Fi can be reconstructed from COW 

snapshot Fi/Ai+1 and Fi+1 by replacing the changed blocks (3, 

d2) and (4, e2) in Fi+1 with original data blocks (3, d1) and (4, 

e0) in Fi/Ai+1, respectively. If fresh data Fi+1 is damaged, 

however, Fi cannot be recovered from Fi-1 and snapshots 

because substantial write set A’i is not a subset of write set 

Ai+1 as stated in Theorem 1. In this particular case, data 

blocks (0, a1) and (1, b1) cannot be rebuilt from original data 

Fi-1 and snapshots in any way.  

Definition 4: The incremental backup as seen at time i that 

was started at time i-1 is defined as Fi/Ai , where Ai is write 

set i. 

Incremental backups keep the latest changes in a data 

storage. Consider Example 1 again, the incremental backup as 

seen at time point i that was started at time point i-1 is {(0, 4), 

(2, 0)}. In Example 2, the incremental backup as seen at time 

point i that was started at time point i-1 is 

{(0,a1),(1,b1),(3,d1)}. 

Lemma 2. If we have storage data at time point i-1 and an 

incremental backup as seen at time i that was started at time 

point i-1, then we can recover data as they were at time i as 

follows: 

Fi = (Fi-1 - Fi-1/Ai ) ∪∪∪∪ Fi/Ai ,                          (2) 

where “-” and “∪∪∪∪” are difference and union operators of sets, 

respectively. 

Lemma 2 gives the redo recovery capability of incremental 

backup technology. It is able to recover data to a recent time 

point when the original storage data is available.  This redo 

recovery can be used in practice in case of disk failures, 

volume crash, OS failures, outages, disasters, and so on. If we 

created a full data backup prior to the incremental backup was 

started, we can reconstruct the storage data to the latest time 

point in case of this type of failures. 

While incremental backup can recover data as stated in 

Lemma 2, it also has limitations. Particularly, if the current 

data gets corrupted because of virus or user errors and it 

happens that we do not have a prior full backup, we cannot 

recover data to a good time point using incremental backups 

and current data that are available. This limitation is formally 

stated in Theorem 2.  

Theorem 2. Suppose the storage data at time point i-1, Fi-1, is 

not available and substantial write set A’i+1 is not empty (A’i+1 

≠ ϕ). Incremental backups cannot recover storage data Fi as 

they were at time point i if A’i+1 ⊆ ⊆ ⊆ ⊆ Ai. 

The proof of this theorem is similar to the proof of Theorem 1 

and omitted here because of page limitation. 

Example 3. Using the same storage scenario as Example 2, 

we give an example of incremental backups.  From Example 

2, we have incremental backup Fi/Ai as {(0, a1), (1, b1), (3, 

d1)} and incremental backup Fi+1/Ai+1 as {(3, d2), (4, e2)}. 

When fresh data Fi+1 is damaged, storage data Fi can be 

recovered from Fi-1 and incremental backup Fi/Ai by 

overwriting all data blocks in Fi/Ai at the positions of storage 

data Fi-1.  However, if original data Fi-1 is unavailable, storage 
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data Fi cannot be rebuilt from Fi+1 and incremental backups 

because A’i+1 is not a subset of Ai as stated in Theorem 2. 

Particularly, data block (4, e0) in Fi cannot be generated by 

fresh data Fi+1 and incremental backups in any way. 

3. A new architecture for data protection 

As we described in Section 2, snapshots cannot redo 

storage data to a recent time point while incremental backups 

cannot undo storage data to a previous good point. The reason 

is that snapshots do not keep the fresh data and incremental 

backups do not store the original data. To overcome the 

limitations, we propose a new architecture for data protection. 

The idea is simple. Instead of storing the original or the new 

data of a block upon a write operation, we couple the two 

using a commutative and invertible function. The result of the 

coupling is stored for data protection purpose. The function 

should be computationally efficient and should result in the 

same size data block for the function value. With wide 

availability of high speed and low cost embedded processors, 

this can be done easily and efficiently [8]. For example, 

addition and Exclusive-OR are such functions.  

In general, Let us define Gi to be a function at time point i 

on Ai, the same domain as snapshot Fi-1/Ai and incremental 

backup Fi/Ai. Similarly, we can have Gi+1 defined on Ai+1 at 

time point i+1. If snapshot Fi/Ai+1 can be obtained from Gi+1 

and Fi+1, or incremental backup Fi/Ai can be obtained from Gi 

and Fi-1, we can still apply Equation (1) in Lemma 1 for undo 

recovery, or Equation (2) in Lemma 2 for redo recovery. In 

other words, Gi can provide two-way data recovery. On the 

other hand, Gi has the same number of ordered pairs as 

snapshot Fi-1/Ai or incremental backup Fi/Ai because they 

have the same function domain Ai.  That is, Gi needs the same 

size storage space as Fi-1/Ai or Fi/Ai if we assume data values 

of each LBA in Fi-1/Ai , Fi/Ai, and  Gi occupy same storage 

space. Therefore, Gi is our objective function that needs to be 

designed.  

Theorem 3.  Let “+” be a commutative binary operator on D 

and Gi(α)= Fi-1/Ai(α) + Fi/Ai(α) for all α∈Ai.  If there exists 

an invertible operator “-” on D, such that for any d1,d2∈D∈D∈D∈D, , , , 

dddd1111+dddd2222-dddd2222=dddd1111, then the storage data at time i, Fi, can be 

recovered from Fi+1 and Gi+1 by an undo process when Fi-1 is 

unavailable, or from Fi-1 and Gi by a redo process when fresh 

data Fi+1 is damaged or lost. 

Proof: We prove this theorem in two steps corresponding to 

two cases. 

a) Original data Fi-1 is unavailable. 

First, let us consider function Gi+1 at time point i+1: 

Gi+1(β) = Fi/Ai+1(β) + Fi+1/Ai+1(β) for all β∈∈∈∈Ai+1. From this 

equation, we know Fi/Ai+1(β) = Gi+1(β) - Fi+1/Ai+1(β) by 

applying invertible operator “-” to Fi+1/Ai+1(β) on both sides 

of the equation. Furthermore, Fi+1/Ai+1⊆⊆⊆⊆Fi+1 implies 

Fi+1/Ai+1(β)=)=)=)=Fi+1(β). Replacing Fi+1/Ai+1(β) with Fi+1(β) in 

above equation, we have Fi/Ai+1(β)=Gi+1(β) - Fi+1 (β). In other 

words, snapshot Fi/Ai+1 started at time point i can be obtained 

from fresh data Fi+1 and Gi+1. By applying Equation (1) in 

Lemma 1, storage data Fi can be recovered from Fi+1 and 

Gi+1.  

b) Fresh data is damaged or lost.  
Consider function Gi at time point i: Gi(α)= Fi-1/Ai(α) + 

Fi/Ai(α) for all α∈∈∈∈Ai. Since operator “+” is commutative, we 

have Gi(α)= Fi/Ai(α) + Fi-1/Ai(α). Applying the inverse 

operation to above equation, we obtain Fi/Ai(α)=Gi(α) - 

Fi-1/Ai(α). Because Fi-1/Ai⊆Fi-1, we have Fi-1/Ai(α)=Fi-1(α). 

Replacing Fi-1/Ai(α) with Fi-1(α) in above equation, we have 

Fi/Ai(α)=Gi(α) - Fi-1(α). This equation indicates that 

incremental backup Fi/Ai can be obtained from original data 

Fi-1 and Gi.  By applying Equation (2) in Lemma 2, storage 

data Fi can be reconstructed from Fi-1 and Gi. □ 
 

Theorem 3 indicates that Gi can provide two-way data 

recovery with the same amount of storage space overhead as 

COW snapshot and incremental backups. As shown in 

Theorem 3, any commutative binary operator with an 

invertible operator can be used to define function Gi.  For 

example, simple addition, Exclusive-OR, or inverse 

Exclusive-OR can be chosen for Gi. Gi trades off high-speed 

computation for storage space over the approach of keeping 

both versions of data. We can leverage powerful computation 

capability of modern computer systems to save storage space. 

Large storage space not only is costly but also takes more 

time to recover data, which is undesirable. 

  

Example 4. We give an example of function Gi by using 

Exclusive-OR operation.  Suppose Gi = Fi-1/Ai ⊕  Fi/Ai, 

where ⊕  is logical Exclusive-OR operator. By computing 

parities between the original data and the fresh data, we store 

parities at time i and i+1 for recovery. We therefore call this 

method CUP: Coupling Updates by Parties. Obviously, CUP 

can recover storage data in two ways from parities. Figure 2 

shows the overall structure of CUP design. Instead of storing 

either the newly updated data block or the old data block 

upon an update from the host computer, we couple both using 

an Exclusive-OR function.   

4. Experimental settings and implementations 

To verify the data recoverability and enable quantitative 

performance evaluation for the three data protection 
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Figure 2. Overview of CUP design 
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technologies: COW snapshot, incremental backup, and CUP, 

we have designed and implemented these three data 

protection technologies embedded in an iSCSI target. Using 

our experimental system, we install our prototype software on 

a PC serving as a storage server, as shown in Figure 3. Two 

PCs are interconnected using Intel’s NetStructure 10/100 

/1000Mbps 470T switch. One of the PCs acts as a client 

running benchmarks with iSCSI initiator installed and the 

other acts as the storage server with our iSCSI target installed. 

On top of the iSCSI target and the data protection module, we 

set up Postgres Database 8.1.4. We chose a database 

benchmark TPC-C [9,9] and two File system benchmarks, 

PostMark [10] on Linux Ext3 and IoMeter [11] on Windows 

NTFS. For TPC-C benchmark, we used the implementation 

from TPCC-UVA [12]. Five warehouses with 50 users were 

built on a Postgres database taking 2GB storage space.  For 

PostMark, we chose a workload that performs 200,000 

transactions on 200,000 files. Read and Write buffer sizes 

were set to 4KB. We ran the IoMeter on NTFS with 4KB 

block size for the workload of 67% random writes and 33% 

random reads. 

 

5. Experimental results and discussions 

5.1. Recoverability 

Based on our design and implementation of the three data 

protection technologies, we carried out a recovery experiment 

to verify the capability and limitation of COW snapshots. 

This experiment simulated an editing process of our paper 

using Microsoft Word 2007. We picked up three time points 

as i-1, i, and i+1 with 2 minutes interval between two adjacent 

time points and enabled COW snapshot for data protection. 

At the beginning of time point i-1, we had a word document 

file that had only a title and an abstract for the paper.  The 

size of the file was 12KB.  From time points i-1 to i, we 

added new text to the paper. The size of the file became 

16KB. Later on we accidentally deleted some text and only 

left the title. The size of the file shrank to 11KB. The accident 

time was between time points i and i+1.  At the storage server 

side, we collected all LBA traces for verification analysis. In 

this experiment, two COW snapshots were made one started 

at time point i-1 and the other started at time point i. Our first 

recovery attempt was to do an undo recovery by writing the 

snapshot started at time point i to the fresh data at time point 

i+1. As a result of this attempt, we were able to undo storage 

data to time point i and opened the word file. This confirms 

the recoverability of COW snapshots using the undo process. 

Our second recovery attempt was to do a redo recovery 

assuming that the fresh data is lost. After we destroyed the 

fresh data at time point i+1, we tried to recover data to time 

point i in three possible cases using only the original data at 

time point i-1 and two snapshots started at time points i-1 and 

i, respectively. First, we overwrote the snapshot started at 

time point i-1 to storage data at time point i-1. The word file 

was opened but with the contents same as the one at time 

point i-1 because snapshot started at time point i-1 had the 

same data values as original storage data for changed blocks 

between time points i-1 and i. The newly typed text from time 

i -1 to i was lost and the size of the file was still 12KB. 

Secondly, we overwrote the snapshot started at time point i to 

storage data at time point i-1. The file size became 16KB, but 

the word file could not be opened because data was corrupted. 

We observed the same results for the third case where we 

overwrote two snapshots to storage data at time point i-1. 

Therefore, we failed to recover data to time point i for all 

three cases. By analyzing LBA traces, we found that both 

substantial write set A’i and write set Ai+1 contained 35 LBAs 

with 5 LBAs being different. That is, A’i ⊆ Ai+1.  As stated in 

theorem 1, data cannot be recovered to time point i by COW 

snapshots. This conclusion is consistent with our recovery 

experiment. 

Having tested the capability and limitation of COW 

snapshots, we carried out a similar recovery experiment to 

verify two-way recovery capability of CUP. By using the 

same storage operations as our first recovery experiment 

discussed above, we stored parities at time points i and i+1 

instead of COW snapshots. When original data Fi-1 was 

deleted, we took parities at time point i+1 and fresh data Fi+1 

to compute snapshot Fi/Ai+1 back. We then used the snapshot 

together with the fresh data to recover storage data Fi using 

the undo process. This recovery process was done 

successfully and the word file contains the data at time point 

i. On the other hand, when we destroyed the fresh data with 

only the original data at time point i-1 and parities being 

available, we used parities at time point i and original data 

Fi-1 to generate incremental backup Fi/Ai. We then tried to 

recover storage data Fi using the redo process. We were able 

to recover data and the word file was recovered correctly as at 

time point i. Therefore, CUP can recover data in two 

directions. This fact is consistent with our theoretical proof of 

Theorem 3. 

5.2. Performance evaluation 

CUP architecture provides additional recovery capability 

over COW snapshots and incremental backups. Specifically, 

it is capable of recovering data in two directions, redo and 

undo. One immediate question is whether such additional 

capability comes at high cost. In order to quantitatively 

evaluate how CUP performs in comparison with COW 

snapshots and incremental backups, we carried out two 
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experiments to measure and compare the performances of the 

three data protection technologies. 

Using the performance of incremental backup technology 

as a baseline reference, we define performance penalty of 

CUP as: 

      (3), 

and performance penalty of COW snapshots as: 

     (4). 

 Our first experiment is to compare the performances of 

the three data protection technologies assuming the data 

protection interval to be 5 minutes. That is, the storage system 

will take incremental backup, COW snapshot, or CUP at 

every 5 minutes so that in case of failures one can recover 

data to 5 minutes ago.  We ran the three benchmarks 

described in the previous section on our experimental system. 

TPC-C benchmark was run on Postgres database with each of 

the three different data protection technologies enabled. We 

measured tpmC, the number of transactions finished per 

minute, as performance results. For the two file system 

benchmarks, we measured IOps (I/O operations per second) 

for IoMeter and transaction rate (files per second) for 

PostMark as performance results, respectively. After 

measuring all performance results directly from the 

experiment, we calculated the performance penalties as 

defined in Equations (3) and (4) above. 

 

 
 

Figure 4. Performance penalty comparison (data 
protection interval=5 minutes) 

 

Figure 4 shows the results in terms of performance penalty 

of CUP and COW snapshots for the three benchmarks when 

data protection interval is five minutes. As shown in Figure 4, 

both CUP and COW snapshots have lower performance than 

incremental backups. The penalty ranges from a fraction of 

percentage up to 4.32%. The reason is that incremental 

backups do not need to read the original data from the 

production storage upon the first write to a block while COW 

snapshots copy it to the snapshot volume and CUP needs it 

for parity computation. Furthermore, it is also shown in 

Figure 4 that CUP has slightly lower performance than COW 

snapshots. The difference of the two goes up to 1.16% 

because CUP needs additional Exclusive-OR computations. 

 

 
 

Figure 5. Performance penalty comparison (data 

protection interval=2 minute) 

 

In the second experiment, we changed data protection 

interval from five minutes to two minutes. Again, we ran the 

three benchmarks with the same parameter settings as the first 

experiment to measure the performance results of the three 

data protection technologies. Figure 5 shows the results for 

the three benchmarks when data protection interval is two 

minutes.  As shown in Figure 5, both CUP and COW 

snapshots have lower performance than incremental backups 

with maximal penalty of 5.26%.  CUP has slightly lower 

performance than COW snapshots. The performance penalty 

of CUP goes as high as 2.51% compared to COW snapshots. 

One exception is that COW snapshots have the same 

performance as incremental backups for TPC-C benchmark.  

One possible reason for the exception is that the frequency of 

write requests when running TPC-C benchmark is so low that 

the additional read overhead of COW snapshots is 

unnoticeable. 

Our experiments clearly demonstrated that CUP has 

comparable production performance as COW snapshots and 

incremental backups. The maximum performance penalty is 

less than 6% in all cases considered. This performance 

penalty comes from the additional computation overhead and 

data copying when Exclusive-OR function is performed to 

obtain parities. It is important to note that our evaluation here 

is very conservative with very high backup frequencies: 2 and 

5 minutes data protection intervals as opposed to hourly or 

daily backups commonly done in practice. There are many 

possible ways to minimize the performance penalty with 

design optimizations. For example, effective caching 

techniques can be used to hide the latency of data copying. 

Furthermore, embedded systems or FPGA hardware can be 

used to carry out the Exclusive-OR computations that are 

done in parallel to production storage operations [13]. These 

design optimizations are possible topics of our future 

research. 
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6. Related work 

Backup and snapshot technologies have been widely used 

in storage industry for data protection and recovery. A good 

summary of various backup techniques can be found in [14] 

and a survey for snapshot can be found in [15]. Basically, 

there are two types of snapshot technologies: copy-on-write 

and redirect-on-write [16,17]. In the literature, there are many 

systems that use copy-on-write to create snapshot for data 

backup. Plan 9 makes daily online backups by creating 

snapshots of the file system [18]. Petal creates a virtual disk 

backup using tar command through snapshots [19].  

Frangipani [20] is a distributed file system built on top of 

Petal virtual disks that use the Petal snapshot facility to 

perform file system backups. VSS provides a mechanism to 

create consistent point-in-time copies for Windows Systems 

[21]. Spiralog provides online backup of a log-structured file 

system (LFS) [22]. All these systems can effectively recover 

files or volumes to an earlier version with the fresh data and 

snapshots.  

NetApp’s WAFL (Write Anywhere File Layout) generates 

snapshots by using redirect-on-write and pointer mapping 

techniques [16,23]. Both the original data and the latest data 

are kept in the system and all data including the original data 

and the latest data that are managed at the same storage space. 

Recent work in Thresher [24] provides a new storage 

management system based on copy-on-write technique to 

discriminate among snapshots effectively, thereby making 

valuable snapshots accessible online and less valuable 

snapshots discarded or moved offline. 

Besides data backups, data can also be protected using file 

versioning that keeps a history of updates to files. For 

example, Peterson and Burns [25] designed a versioning file 

system named Ext3cow that uses snapshot functionality. 

There are many versioning file systems such as Tops-20 [26], 

VMS [27], Elephant [28], and CVFS [29] that also make use 

of copy-on-write snapshot.  

Recently, continuous data protection has emerged to 

continually capture all changes, thus storage data can be 

potentially recovered to any point in time for minimizing data 

loss in case of errors or outages [30,31,32].  Laden et al 

proposed four alternative architectures for CDP in a storage 

controller, and compared them analytically with respect to 

both write performance and space usage overhead [31].  Zhu 

and Chiueh proposed a user-level CDP architecture that is 

both efficient and portable [32]. They implemented four 

variants of this CDP architecture for NFS servers and 

compared their performance characteristics. Lu et al presented 

an iSCSI storage system named Mariner to provide 

comprehensive and continuous data protection on commodity 

ATA disk and Gigabit Ethernet technologies [33]. Flouris and 

Bilas presented Clotho, a versioning system at the block level 

that supports creating an unlimited amount of snapshots [34]. 

Different from these works for CDP architectures, our study 

concentrates on data recoverability of block level storages and 

what kind of data needs to be stored for recovery purpose.  

Although extensive research has been reported in the 

literature and various data protection products have been 

released in the industry, few provides formal model of storage 

technologies and recovery capability except for the work in 

[35]. Sivanthanu et al presented a logical framework for 

modeling the interaction of a file system with the storage 

system [35]. This logical framework can substantially 

simplify and systematize the process of verifying file system 

correctness such as journaling, consistent undelete, and so on. 

Our study focuses on providing a theoretic foundation for 

data protection technologies at the block level. We formally 

modeled existing data protection technologies and proposed a 

new data protection method to overcome current limitations. 

Based on our theoretical and experimental work, one can re-

evaluate current data protection technologies and develop 

new data protection technologies.  

It should be mentioned that we assume data blocks are 

independent and the changed data value is not related to the 

original value in our study. There are research works in the 

literature trying to discover block correlations or block value 

similarities for storage system optimization [36,37,38]. 

However, these block correlations and value dependencies are 

probabilistic. Our interest here is guaranteed data 

recoverability in case of various failures. 

 

7. Conclusions 

In this paper, we have presented a theoretical study on 

COW snapshots and incremental backups. Our theoretical 

work has uncovered the fundamental limitations of existing 

data protection technologies and explained why in some 

situations storage data cannot be recovered by using these 

existing technologies. We have provided mathematical proofs 

for the data recovery capabilities and limitations of the 

existing technologies. Based on our theoretical results, we 

have proposed a new architecture for data protection to 

overcome the limitations and given a practical example 

named CUP for the new technology.  Instead of storing either 

the old data or the newly updated data, CUP couples the two 

for recovery purpose with  the same amount of storage space 

as COW snapshots and incremental backups. In order to show 

the data recoverability and evaluate the performance of the 

new technology, we have implemented the three data 

protection technologies: COW snapshots, incremental 

backups, and CUP.  Experimental results show that CUP can 

recover data either from an old backup or from fresh 

production data and has comparable production performance 

as COW snapshots and incremental backups.    
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