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Abstract 
 

To protect data and recover data in case of failures, 

Linux operating system has built-in MD device that 

implements RAID architectures. Such device can recover 

data in case of single hardware failure among multiple 

disks. But it cannot recover data that were damaged by 

human errors, virus attack, and disastrous failures. In 

this paper, we present an implementation of a device 

driver that is capable of recovering data to any point-in-

time in case of various failures. A simple mathematical 

model is used to guide the optimization of our 

implementation in terms of space usage and recovery 

time. Extensive experiments have been carried out to 

show that the implementation is fairly robust and 

numerical results demonstrate that the implementation is 

optimal.   

 
Keywords: Data storage, data protection, CDP, data 

recovery, disk I/O architecture. 

 

1. Introduction 
 

With the rapid advances in networked information 

services, data protection and recover have become top 

priority of many organizations [ 1 , 2 , 3 , 4 ]. In Linux 

operating system, there are variety of data protection and 

recovery programs in the open source community. Such 

programs can generally be classified into three 

categories: block level device drivers that provide data 

protection functionalities, file versioning, and backup 

and replications.  

Typical block level device driver that provides data 

protection and recovery is MD (multiple devices) driver 

for software disk arrays [5]. MD implements most of 

RAID architectures including RAID1 through RAID5 in 

software, often referred to as software RAID. Such 

device can tolerate one disk failure and can rebuild data 

on the failed disk using other functional disks. However, 

such a device is not able to go back to a past point-in-

time to recover data damaged by human errors, virus 

attacks, and disasters.  

File versioning is another type of data protection 

technique that records a history of changes to files. 

Versioning was implemented by some early file systems 

such as Cedar File System [6], 3DFS [7], and CVS [8] to 

list a few. Typically, users need to create versions 

manually in these systems. There are also copy-on-write 

versioning systems exemplified by Tops-20 [ 9 ] and 

VMS [10] that have automatic versions for some file 

operations. Elephant [11] transparently creates a new 

version of a file on the first write to an open file. CVFS 

[12] makes versions for each individual write or small 

meta-data using highly efficient data structures. 

OceanStore [ 13 ] uses versioning not only for data 

recovery but also for simplifying many issues with 

caching and replications. The LBFS [14] file system 

exploits similarities between files and versions of the 

same files to save network bandwidth for a file system 

on low-bandwidth networks. Peterson and Burns have 

recently implemented the ext3cow file system that 

brings snapshot and file versioning to the open-source 

community [15]. Other programs such as rsync, rdiff, 

and diff also provide versioning of files. To improve 

efficiency, flexibility and portability of file versioning, 

Muniswamy-Reddy et al [16] presented a lightweight 

user-oriented versioning file system called Versionfs that 

supports various storage policies configured by users.  

File versioning provides a time-shifting file system 

that allows a system to recover to a previous version of 

files. But they work mainly at file system level not at 

block device level. Block level storages usually provide 
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high performance and efficiency especially for 

applications such as databases that access raw devices. 

At block level, data protection is traditionally done 

using snapshots and backups. Despite the rapid advances 

in computer technology witnessed in the past two 

decades, data backup is a notable exception that is 

fundamentally the same as it was 20 years ago. It was 

well-known that backup remains a costly and highly 

intrusive batch operation that is prone to error and 

consumes an exorbitant amount of time and resources 

[3].  

In this paper, we present a new implementation of 

block level CDP driver in Linux operating system. Our 

implementation is based on the concept of TRAP 

architecture [17 ] that is capable of recovering data to 

any point-in-time in case of various failures. Two 

important design issues have been studied in depth: 

additional storage space usage and recovery time. We 

use a simple mathematical model to guide our design to 

optimize space usage and recovery time. Furthermore, in 

order to minimize possible failures caused by broken 

chains of parities, we provide an optimal way of 

organizing the parity chain with periodical snapshots 

inserted in the chains.  

Based on our implementation, we have carried out 

extensive experiments to test the robustness of our 

program and to evaluate the performance of our 

implementation. Standard benchmarks are used in our 

experiments such as TPC-C, IOMeter, and PostMark. 

Our measurement results show that our implementation 

is space optimal and recovery time optimal.  

The paper is organized as follows. Next section 

gives a brief overview of TRAP architecture for the 

purpose of completeness. Section 3 presents the detailed 

design of our implementation associated with the 

mathematical model used to guide our design. In Section 

4, a detailed implementation as a Linux device driver is 

presented followed by our experimental settings in 

Section 5. Section 6 gives numerical results and 

discussions. We conclude our paper in Section 7. 

 

2. Brief Overview of TRAP Architecture 
 

As presented in [17], TRAP keeps a log of parities 

as a result of each write on a block. Figure 1 shows the 

basic design of TRAP. Suppose that at time T(k), the 

host writes into a data block with logic block address Ai 

that belongs to a data stripe (A1, A2 … Ai,  … An). The 

RAID controller performs the following operation to 

update its parity disk: 
 

PT(k) = Ai(k) ⊕   Ai(k-1) ⊕  PT(k-1)           (1) 
 

where PT(k) is the new parity for the corresponding stripe,  

Ai(k)  is the new data for data block Ai,  Ai(k-1) is the 

old data of data block Ai,  and PT(k-1) is the old parity of 

the stripe. Leveraging this computation, TRAP appends 

the first part of the above equation, i.e. P’T(k) = Ai(k) ⊕  

Ai(k-1), to the parity log stored in the TRAP disk after a 

simple encoding box, as shown in Figure 1.  
 

 

 
Fig. 1 Data logging method of TRAP design.  

 

Now consider the parity log corresponding to a data 

block, Ai, after a series of write operations. The log 

contains (P’T(k),  P’T(k-1) ……, P’T(2), P’T(1)) with time 

stamps T(k), T(k-1), ……, T(2), and T(1) associated 

with the parities. Suppose that an outage occurred at 

time t1, and we would like to recover data to the image 

as it was at time t0 (t0 ≤ t1). To do such a recovery, for 

each data block Ai, we first find the largest T(r) in the 

corresponding parity log such that T(r)    ≤≤≤≤ t0. We then 

perform the following computation: 
 

Ai(r)= P’T(r)  ⊕  P’T(r-1) ⊕ … ⊕  P’T(1) ⊕ Ai(0),      (2) 
 

where Ai(r) denotes the data image of Ai  at time T(r)  

and Ai(0) denotes the data image of  Ai at time T(0). 

Note that   
 

P’T(l) ⊕ Ai(l-1) = Ai(l) ⊕ Ai(l-1) ⊕ Ai(l-1) = Ai(l), 
 

for all l=1,2, … r. Therefore, Equation (2) gives Ai(r) 

correctly assuming that the original data image, Ai(0), 

exists. 

 

3.  Design and Analysis of ST-CDP 
 

The TRAP architecture discussed in the previous 

section provides CDP function by means of the parity 

chains resulting from block write operations. Since 

every change is kept in the chain, one can go back to any 

point-in-time. The traditional snapshot/backup, on the 

other hand, provides periodical data images of block 

level storage. When data recovery is necessary, these 

two data protection techniques work quite differently. 

TRAP needs to retrieve the parity chain for each data 
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block and perform the parity computation to recover the 

data block corresponding to the recovery time point. As 

the parity chain gets longer, so does the recovery time 

because of longer parity computations. Snapshot, on the 

other hand, just needs to restore the corresponding data 

blocks corresponding to the recovery time point, though 

the number of possible recovery points is limited by the 

frequency of snapshots performed. These two techniques 

present us with a trade-off between RPO (Recovery 

Point Objective) and RTO (Recovery Time Objective) 

[4]. Our purpose here is to design an optimal approach to 

data recovery by taking advantages of both techniques. 

 In our design and implementation, we take a hybrid 

approach. The idea is to break down the parity chain into 

sub-chains. Between any two subsequent sub-chains, we 

insert snapshot data image. The length of the sub-chain 

is a configurable parameter determined by system 

administrator or storage manager. We call our design 

ST_CDP (Snapshot in TRAP CDP). Adding snapshots 

between parity chains has several practical advantages. 

First of all, it limits the maximum recovery time. 

Secondly, the configurable sub-chain sizes allow a 

system administrator to organize the parity chains in 

different data structures and to optimize space usage and 

retrieval times. Thirdly and more importantly, this 

organization increases significantly the reliability and 

recoverability of the TRAP architecture. This is because 

a parity chain may become completely useless if there is 

any single bit error in the chain. The longer the parity 

chain is, the higher the probability of chain failure. 

Breaking up the parity chains into sub-chains and adding 

snapshot in between reduces the probability of such 

failures and increases data recoverability. 

Figure 2 shows the new parity logging structure. As 

shown in the figure, we insert snapshots in the parity 

chain. As a result, sub-chains are formed that are 

separated by periodical snapshots. At recovery time, 

only one sub-chain that contains the recovery time point 

is needed. The recovery time for each data block is 

limited by the half of the sub-chain length because parity 

computation can be done both ways, redo and undo, as 

shown in [17]. To minimize chain retrieval time, one can 

also organize all sub-chains in an efficient data structure, 

which is out of scope of this paper. 

From the above discussion, it is clear that the length 

of each sub-chain is an important parameter to determine. 

Let d be the length of each sub-chain in terms of the 

number of parity blocks in the sub-chain. We would like 

to determine what d value one should choose for optimal 

implantation of TRAP on Linux operating system. In 

order to provide a quantitative guidance on how to 

choose d, let us define the following symbols: 

 

 
Symbols Definition 

d Sub-chain (parity chain) Length: number of 

parity blocks in each sub-chain 

IOrate IO throughput of the disk storage 

Sblk Data block size 

Slog Size of compressed parity block 

C Compression Ratio: C= Sblk / Slog 

Tdec Decoding time 

Txor EX-OR operation time 

Tspn RPO: time span between current time and 

recovery time point 

Wavg Average number of write operations per time 

unit 

 

Table 1. Definition of symbols used in analysis. 

 

P’T(n) . . . P’T(0) Header. . . P’T(k-1) . . .P’T(k+d-1)

Ai(k+d) Ai(k)

Insert Insert

Ai(k-d)

Insert

Interval d Interval d

 Fig. 2 Data logging method of ST-CDP design. 

 

If we do not break up parity chains, the recovery 

time of each data block is given by 

 
(Tdec+Txor+ Slog /IOrate )* Wavg* Tspan.     (3) 

 

Now consider our ST-CDP design with sub-chains 

of d parity blocks. As mentioned previously, the 

recovery time for each data block is limited by the half 

of the sub-chain length, d, because parity computation 

can be done both ways, redo and undo. If we assume that 

the recovery time point is uniformly distributed among d 

points within a sub-chain if the RPO falls into that chain, 

the expected parity blocks needed to do EX_OR 

computations for the data recovery is given by 
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The recovery time of each data block in case of ST-CDP  

is given by 

 
T(d) = (Tdec+Txor+ Slog /IOrate)* E(d)+ Sblk /IOrate    (5)  
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The first half of the above equation gives the parity 

computation time and the second half gives the data 

copy time. It is interesting to note that this recovery time 

is independent of RPO but dependent on d value. The 

recovery time increases as d increases. 

Let us now consider the cost of the ST-CDP 

program. The major cost is the additional storage space 

needed to store the parity logs and snapshot data while 

running ST-CDP. We would like to examine the average 

storage increase per time unit while running the ST-CDP, 

which is given by 

 
S(d) = Slog*Wavg+ Sblk*Wavg /d, 

 

where the first term gives the space for parity log and the 

second term gives the snapshot space. Since the number 

of snapshots inserted is inversely proportional to d, the 

space usage of snapshots is also inversely proportional 

to d.  

The other important cost is the time it takes to 

recover data. Ideally, we would like to use as little 

storage space as possible and recover data as quickly as 

possible. We will use these two factors to determine how 

good a data protection technology is. We therefore use 

the product of these two cost factors as the compound 

cost of ST-CDP. Let 

 
F(d) = T(d)*S(d) 

=[(Tdec+Txor+Slog/IOrate)*E(d)+Sblk/IOrate]* 

(Slog*Wavg+Sblk*Wavg /d) 

= (c1*E(d)+c2)*(c3+c4/d) 

= (c1*d/4+c1/4+c2)(c3+c4/d)           (6) 

 

where c1=(Tdec+Txor+Slog/IOrate), c2=Sblk/IOrate, c3= 

Slog*Wavg , and c4= Sblk*Wavg.  These are constants 

independent of d.  
Now, let us consider the derivative of F(d) and set it 

to 0. We have 

F’(d)=0 � d0 = 1 2 4

1 3

( 4 )c c c

c c

+
                        (7) 

Since the second derivative,  

F ′′ (d) = (c1+4c2)C4*d
-3

/2, F ′′ (d = d0 ) = c1c3/2d0>0, 

the minimum value of F(d) exists when d=d0.  We will 

choose d to be the integer closest to d0 as our optimal 

sub-chain size. 
 

4. Driver Implementation 
Based on the design and analysis presented in the 

previous sections, we have implemented our ST-CDP in 

Linux Kernel. Our implementation is developed as an 

added kernel module on top of MD RAID5. The ST-

CDP was developed as a standalone block device driver 

independent of higher level file systems.  As a result, it 

can support variety of applications including different 

file systems and database applications.  

The ST-CDP has two major functional modules, 

CDP logging module and recovery module. The CDP 

logging module works at run time to keep journaling of 

parities and snapshots. It bypasses all I/O read 

operations and intercepts all I/O write operations. There 

are two parallel threads, one handling normal write 

operations and the other performing CDP functions. 

There are two major parts in the CDP functional module. 

The first part does the parity computation and logging. It 

also keeps track of metadata for the parity logs. The 

second part carries out snapshot operations when 

triggered. The snapshot operations starts whenever the 

number of parities collected for a block reaches value d 

defined in the previous section. The underlying storage 

is partitioned into two volumes: source volume and CDP 

volume. The source volume stores the production data 

while the CDP volume stores the parity logs and 

snapshot data. 

The recovery module of the ST-CDP is a program 

that runs offline. When data recovery needs to be done, 

the recovery module starts by retrieving parity logs and 

snapshot data. Based on the designated RPO, it searches 

the parity chains for each data block to find the sub-

chain that contains the desired RPO. Once such sub-

chain is found, the recovery program searches for a 

parity block that has the timestamp matches the closest 

to the RPO. OX-OR operations are then performed to 

recover the right data block. After all changed data 

blocks are recovered, the data will be written to the 

source volume and recovery process is done. It is also 

possible that the RPO matches one of the snapshots in 

the CDP volume. In this case, no parity computation is 

necessary. The recovery program just copies the 

snapshot data to the source volume.  
 

5. Experimental Settings 
 

For the purpose of testing of our ST-CDP 

implementation and performance evaluation, we have 

carried out measurement experiments. Figure 3 shows 

the high level block diagram of our experimental 

settings. To allow multiple clients and multiple storage 

servers in a networked environment, we implemented 

the lower level storage device using iSCSI protocol as 

shown in Figure 3. Our ST-CDP module runs on the 

storage server at block device level of Linux operating 

system. The client machine has file system, database, 

and application benchmarks installed. The details of the 
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hardware and software environment in our experiments 

are shown in Table 2 below. 

 

 
Fig. 3 System architecture of ST-CDP implementation. 

 

Right workloads are important for performance 

studies [18]. In order to have an accurate evaluation, we 

use real world I/O workloads and standard benchmarks. 

The first benchmark, TPC-C, is a well-known 

benchmark used to model the operational end of 

businesses where real-time transactions are processed 

[ 19 ]. TPC-C simulates the execution of a set of 

distributed and on-line transactions (OLTP) for a period 

of two to eight hours. It is set in the context of a 

wholesale supplier operating on a number of warehouses 

and their associated sales districts. TPC-C incorporates 

five types of transactions with different complexity for 

online and deferred execution on a database system. 

These transactions perform the basic operations on 

databases such as inserts, deletes, updates and so on. 

From data storage point of view, these transactions will 

generate reads and writes that will change data blocks on 

disks. For Postgres Database, we use the implementation 

from TPCC-UVA [20]. 8 warehouses with 25 users are 

built on Postgres database. Details regarding TPC-C 

workloads specification can be found in [19]. 

Besides benchmarks running on databases, we have 

also run two file system benchmarks IoMeter and 

PostMark. IoMeter is a flexible and configurable 

benchmark tool that is also widely used in industries and 

the research community [21]. It can be used to measure 

the performance of a mounted file system or a block 

device. We run the IoMeter on NTFS with 4K-block size 

for two types of workloads: 100% random writes, and 30% 

writes and 70% reads. PostMark is another widely used 

file system benchmark tool written by Network 

Appliance, Inc [22]. It measures performance in terms of 

transaction rates in an ephemeral small-file environment 

by creating a large pool of continually changing files. 

Once the pool has been created, a specified number of 

transactions occur. Each transaction consists of a pair of 

smaller transactions, i.e. Create file/Delete file and Read 

file/Append file. Each transaction’s type and files it 

affected are chosen randomly. The read and write block 

size can be tuned. In our experiments, we set PostMark 

workload to include 10,000 files and to perform 20,000 

transactions. Read and Write buffer sizes are set to 4KB.  

 

 2 Client Nodes Storage Server 

CPU Intel Xeon 2.8GHZ Intel Core 2 E2140, 

1.6GHz 

RAM DDR2 533 , 2GB DDR2 333, 1GB 

Disk SATA 300GB SATA 300GB 

OS Red Hat Linux 9.0 

(Kernel2.6.9) 

Gentoo Linux  

(Kernel 2.6.20) 

Switch Cisco 3750-E  Gb 

NIC 2*PCI 1GB/s 

Benchmarks  TPC-C on Postgres database 

IoMeter 

PostMark 

Table 2.  List of testing environments. 
 

6. Numerical Results and Discussions 
 

In this section, we present our measurement results 

in terms of space usage, recovery time, and run time 

performance impact of ST-CDP. We compare the 

performance results of three data protection techniques: 

namely native TRAP with no sub-chains, ST-CDP, and 

pure periodical snapshots. The snapshot we evaluate 

here is redirect-on-write snapshot, ROW for short, as 

opposed to copy-on-write snapshots [ 23 ]. In our 

experiments, we set the values of d to 71、79、85、91、
and 94 corresponding to block sizes of 4KB，8KB，
16KB，32KB，and 64KB, respectively. These values 

are selected based on our analysis presented in the 

previous section. 

Our first experiment is to measure the additional 

space usage of the three data protection technologies. 

Figure 4 shows the measured results. We plotted the 

space usage of the three data protection technologies for 

different block sizes ranging from 4KB through 64KB. It 

can be seen from this figure that snapshot takes most 

space because it keeps the original data blocks of all 

changed data. Native TRAP takes the least amount of 

space because of locality property of write operations as 

evidenced in [17]. The space usage of ST-CDP is 

somewhere in between the other two because it stores 

both parity logs and small amount of snapshots between 

sub-chains. Because we choose the optimal value of d 

for each block size, the space overhead of ST-CDP is 

closer to that of TRAP than that of ROW snapshot. Our 



 

6 

 

observation is that ST-CDP provides continuous data 

protection with substantial less storage overhead than 

continuous real-time snapshots. 
 

 
Fig. 4 Storage space comparison for TPC-C on Postgres 

database. 

 
Fig. 5 Average I/O response time comparison for 70% 

reads and 30% writes of IoMeter benchmark. 

 

Since ST-CDP carries out parity computation and 

snapshot operations at run time, an immediate question 

is how it impact application performance. Our next 

experiment is to evaluate the performance impact of ST-

CDP on applications. For this purpose, we run IOMeter 

to measure the IO performance while enabling the ST-

CDP module. Figure 5 shows our measured results in 

terms of average I/O response time as functions of block 

sizes. We plotted 4 performance curves corresponding to 

snapshots, TRAP, ST-CDP, and RAID5 alone with no 

data protection program running. Performance of RAID5 

is used as a reference for us to observe the negative 

impacts of the three data protection technologies. We 

noticed that snapshot has the most performance impact 

and TRAP has the least. ST-CDP is in between but close 

to that of TRAP. For block size of 4KB, ST-CDP’s 

performance is about 8.3% lower than that of RAID5. 

For block size of 32KB, such performance difference is 

about 5.4%. The maximum performance drop of TRAP 

and snapshot compared to RAID5 are 7.1%（4KB） 

and 23.2% （ 32KB ） , respectively, whereas the 

maximum performance drop of ST-CDP is about 8.3%.  

 
Fig. 6 Average I/O response time comparison for 100% 

random writes of IoMeter benchmark. 

 

Figure 6 shows the results of IOMeter with 100% 

random writes. Results similar to that of Figure 5 are 

observed. The maximum performance drops of the three 

data protection techniques compared to that of RAID5 

are 9.2%(8KB)， 6.3%（4KB），and 29.6%（64KB）
for ST-CDP, TRAP, and snapshots respectively.  

 

 
Fig. 7 I/O throughput comparison for PostMark 

benchmark. 

 

PostMark results are shown in Figure 7. In this 

figure, we compared the performance of ST-CDP with 

the performance RAID5 to see how much performance 

degradation caused by the ST-CDP overhead. We 

noticed that the performance of both RAID5 and ST-

CDP increases as the block size increases. The 

performance differences between RAID5 and ST-CDP 

05001000150020002500300035004000
Block Size(KB)Log Data Szie(MB)ROW 1274 1797 2022 3286 3849TRAP 180 177 185 195 192ST-CDP 211 239 254 296 3074 8 16 32 64

567
8910

4 8 16 32 64Block Size(KB)Average I/O Respon
se Time(ms)

ROW TRAP ST-CDP RAID-5

789
101112

4 8 16 32 64Block Size(KB)Average I/O Respo
nse Time(ms)

ROW TRAP ST-CDP RAID-5

05101520
253035

4 8 16 32 64Block Size(KB)I/O Throughput(MB
/s)

ST-CDP(Read) RAID-5(Read) ST-CDP(Write) RAID-5(Write)
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are very small and these performance differences do not 

change with block size. This observed result can be 

attributed to the fact that the parity computation of ST-

CDP is a part of RAID5 parity computation. Therefore, 

the overhead of ST-CDP is manageable. 

Our next experiment is to measure the recovery time 

that is very important performance parameter for data 

protection technologies. We considered the 5GB of data 

of normal I/O operations and try to recover data to 

different RPOs. We measured the recovery times of 

native TRAP and ST-CDP and compared their 

respective recovery times. Figure 8 shows the measured 

recovery time as function of RPO. As can be seen from 

this figure, TRAP’s recovery time increases as RPO 

increases because of EX-OR computation of long parity 

chains. On the other hand, the recovery time of ST-CDP 

keeps flat while RPO changes. For example, for 4KB 

block, recovering data to half hour ago takes about 1,246 

seconds with native TRAP. To recover data to 8 hours 

ago, TRAP takes about 4,910 seconds, 3.9 times longer. 

For block size of 64KB, recovery time of TRAP 

becomes smaller. It takes about 723s and 2,061s to 

recover data to half an hour ago and 8 hours ago, 

respectively. On the other hand, ST-CDP module can 

recover data much faster irrespective of RPO. As shown 

in Figure 8, the recovery time varies from 212 seconds 

to 253 seconds, very little change! 
 

 
Fig. 8 Recover time comparison between ST-CDP and 

TRAP. 
 

7. Conclusions 
 

In this paper, we have presented a design, analysis, 

and a Linux implementation of a continuous data 

protection technique referred to as ST-CDP. It is based 

on TRAP [17] technology that keeps logs of parities of 

changed data blocks and interspersed with snapshot data. 

The implementation is done at block device level as an 

independent device driver that can be added to MD 

software RAID device. Extensive experiments have been 

carried out to show the implementation is fairly robust. 

Standard benchmarks are used to evaluate the 

performance and cost of the implementation. Numerical 

results have shown that the overhead is manageable. The 

major advantage of ST-CDP is low RTO that is RPO 

independent. Our future work includes investigating 

reliability and recoverability of TRAP by adding error 

correcting code in parity chains and implementing it in 

hardware RAID controllers. 
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