
Optimal Implementation of Continuous Data Protection (CDP) in Linux Kernel

Xu Li and Changsheng Xie
Data Storage Division, Wuhan National Laboratory for Optoelectronics

Huazhong University of Science and Technology

Wuhan, Hubei, P. R. China

lixu.hust@gmail.com

Qing Yang
Dept. of Electrical and Computer Engineering

University of Rhode Island

Kingston, RI 02881

Email: qyang@ele.uri.edu

Abstract

To protect data and recover data in case of failures,

Linux operating system has built-in MD device that

implements RAID architectures. Such device can recover

data in case of single hardware failure among multiple

disks. But it cannot recover data that were damaged by

human errors, virus attack, and disastrous failures. In

this paper, we present an implementation of a device

driver that is capable of recovering data to any point-in-

time in case of various failures. A simple mathematical

model is used to guide the optimization of our

implementation in terms of space usage and recovery

time. Extensive experiments have been carried out to

show that the implementation is fairly robust and

numerical results demonstrate that the implementation is

optimal.

Keywords: Data storage, data protection, CDP, data

recovery, disk I/O architecture.

1. Introduction

With the rapid advances in networked information

services, data protection and recover have become top

priority of many organizations [1 , 2 , 3 , 4]. In Linux

operating system, there are variety of data protection and

recovery programs in the open source community. Such

programs can generally be classified into three

categories: block level device drivers that provide data

protection functionalities, file versioning, and backup

and replications.

Typical block level device driver that provides data

protection and recovery is MD (multiple devices) driver

for software disk arrays [5]. MD implements most of

RAID architectures including RAID1 through RAID5 in

software, often referred to as software RAID. Such

device can tolerate one disk failure and can rebuild data

on the failed disk using other functional disks. However,

such a device is not able to go back to a past point-in-

time to recover data damaged by human errors, virus

attacks, and disasters.

File versioning is another type of data protection

technique that records a history of changes to files.

Versioning was implemented by some early file systems

such as Cedar File System [6], 3DFS [7], and CVS [8] to

list a few. Typically, users need to create versions

manually in these systems. There are also copy-on-write

versioning systems exemplified by Tops-20 [9] and

VMS [10] that have automatic versions for some file

operations. Elephant [11] transparently creates a new

version of a file on the first write to an open file. CVFS

[12] makes versions for each individual write or small

meta-data using highly efficient data structures.

OceanStore [13] uses versioning not only for data

recovery but also for simplifying many issues with

caching and replications. The LBFS [14] file system

exploits similarities between files and versions of the

same files to save network bandwidth for a file system

on low-bandwidth networks. Peterson and Burns have

recently implemented the ext3cow file system that

brings snapshot and file versioning to the open-source

community [15]. Other programs such as rsync, rdiff,

and diff also provide versioning of files. To improve

efficiency, flexibility and portability of file versioning,

Muniswamy-Reddy et al [16] presented a lightweight

user-oriented versioning file system called Versionfs that

supports various storage policies configured by users.

File versioning provides a time-shifting file system

that allows a system to recover to a previous version of

files. But they work mainly at file system level not at

block device level. Block level storages usually provide

2

high performance and efficiency especially for

applications such as databases that access raw devices.

At block level, data protection is traditionally done

using snapshots and backups. Despite the rapid advances

in computer technology witnessed in the past two

decades, data backup is a notable exception that is

fundamentally the same as it was 20 years ago. It was

well-known that backup remains a costly and highly

intrusive batch operation that is prone to error and

consumes an exorbitant amount of time and resources

[3].

In this paper, we present a new implementation of

block level CDP driver in Linux operating system. Our

implementation is based on the concept of TRAP

architecture [17] that is capable of recovering data to

any point-in-time in case of various failures. Two

important design issues have been studied in depth:

additional storage space usage and recovery time. We

use a simple mathematical model to guide our design to

optimize space usage and recovery time. Furthermore, in

order to minimize possible failures caused by broken

chains of parities, we provide an optimal way of

organizing the parity chain with periodical snapshots

inserted in the chains.

Based on our implementation, we have carried out

extensive experiments to test the robustness of our

program and to evaluate the performance of our

implementation. Standard benchmarks are used in our

experiments such as TPC-C, IOMeter, and PostMark.

Our measurement results show that our implementation

is space optimal and recovery time optimal.

The paper is organized as follows. Next section

gives a brief overview of TRAP architecture for the

purpose of completeness. Section 3 presents the detailed

design of our implementation associated with the

mathematical model used to guide our design. In Section

4, a detailed implementation as a Linux device driver is

presented followed by our experimental settings in

Section 5. Section 6 gives numerical results and

discussions. We conclude our paper in Section 7.

2. Brief Overview of TRAP Architecture

As presented in [17], TRAP keeps a log of parities

as a result of each write on a block. Figure 1 shows the

basic design of TRAP. Suppose that at time T(k), the

host writes into a data block with logic block address Ai

that belongs to a data stripe (A1, A2 … Ai, … An). The

RAID controller performs the following operation to

update its parity disk:

PT(k) = Ai(k) ⊕ Ai(k-1) ⊕ PT(k-1) (1)

where PT(k) is the new parity for the corresponding stripe,

Ai(k) is the new data for data block Ai, Ai(k-1) is the

old data of data block Ai, and PT(k-1) is the old parity of

the stripe. Leveraging this computation, TRAP appends

the first part of the above equation, i.e. P’T(k) = Ai(k) ⊕

Ai(k-1), to the parity log stored in the TRAP disk after a

simple encoding box, as shown in Figure 1.

Fig. 1 Data logging method of TRAP design.

Now consider the parity log corresponding to a data

block, Ai, after a series of write operations. The log

contains (P’T(k), P’T(k-1) ……, P’T(2), P’T(1)) with time

stamps T(k), T(k-1), ……, T(2), and T(1) associated

with the parities. Suppose that an outage occurred at

time t1, and we would like to recover data to the image

as it was at time t0 (t0 ≤ t1). To do such a recovery, for

each data block Ai, we first find the largest T(r) in the

corresponding parity log such that T(r) ≤≤≤≤ t0. We then

perform the following computation:

Ai(r)= P’T(r) ⊕ P’T(r-1) ⊕ … ⊕ P’T(1) ⊕ Ai(0), (2)

where Ai(r) denotes the data image of Ai at time T(r)

and Ai(0) denotes the data image of Ai at time T(0).

Note that

P’T(l) ⊕ Ai(l-1) = Ai(l) ⊕ Ai(l-1) ⊕ Ai(l-1) = Ai(l),

for all l=1,2, … r. Therefore, Equation (2) gives Ai(r)

correctly assuming that the original data image, Ai(0),

exists.

3. Design and Analysis of ST-CDP

The TRAP architecture discussed in the previous

section provides CDP function by means of the parity

chains resulting from block write operations. Since

every change is kept in the chain, one can go back to any

point-in-time. The traditional snapshot/backup, on the

other hand, provides periodical data images of block

level storage. When data recovery is necessary, these

two data protection techniques work quite differently.

TRAP needs to retrieve the parity chain for each data

3

block and perform the parity computation to recover the

data block corresponding to the recovery time point. As

the parity chain gets longer, so does the recovery time

because of longer parity computations. Snapshot, on the

other hand, just needs to restore the corresponding data

blocks corresponding to the recovery time point, though

the number of possible recovery points is limited by the

frequency of snapshots performed. These two techniques

present us with a trade-off between RPO (Recovery

Point Objective) and RTO (Recovery Time Objective)

[4]. Our purpose here is to design an optimal approach to

data recovery by taking advantages of both techniques.

 In our design and implementation, we take a hybrid

approach. The idea is to break down the parity chain into

sub-chains. Between any two subsequent sub-chains, we

insert snapshot data image. The length of the sub-chain

is a configurable parameter determined by system

administrator or storage manager. We call our design

ST_CDP (Snapshot in TRAP CDP). Adding snapshots

between parity chains has several practical advantages.

First of all, it limits the maximum recovery time.

Secondly, the configurable sub-chain sizes allow a

system administrator to organize the parity chains in

different data structures and to optimize space usage and

retrieval times. Thirdly and more importantly, this

organization increases significantly the reliability and

recoverability of the TRAP architecture. This is because

a parity chain may become completely useless if there is

any single bit error in the chain. The longer the parity

chain is, the higher the probability of chain failure.

Breaking up the parity chains into sub-chains and adding

snapshot in between reduces the probability of such

failures and increases data recoverability.

Figure 2 shows the new parity logging structure. As

shown in the figure, we insert snapshots in the parity

chain. As a result, sub-chains are formed that are

separated by periodical snapshots. At recovery time,

only one sub-chain that contains the recovery time point

is needed. The recovery time for each data block is

limited by the half of the sub-chain length because parity

computation can be done both ways, redo and undo, as

shown in [17]. To minimize chain retrieval time, one can

also organize all sub-chains in an efficient data structure,

which is out of scope of this paper.

From the above discussion, it is clear that the length

of each sub-chain is an important parameter to determine.

Let d be the length of each sub-chain in terms of the

number of parity blocks in the sub-chain. We would like

to determine what d value one should choose for optimal

implantation of TRAP on Linux operating system. In

order to provide a quantitative guidance on how to

choose d, let us define the following symbols:

Symbols Definition

d Sub-chain (parity chain) Length: number of

parity blocks in each sub-chain

IOrate IO throughput of the disk storage

Sblk Data block size

Slog Size of compressed parity block

C Compression Ratio: C= Sblk / Slog

Tdec Decoding time

Txor EX-OR operation time

Tspn RPO: time span between current time and

recovery time point

Wavg Average number of write operations per time

unit

Table 1. Definition of symbols used in analysis.

P’T(n) . . . P’T(0) Header. . . P’T(k-1) . . .P’T(k+d-1)

Ai(k+d) Ai(k)

Insert Insert

Ai(k-d)

Insert

Interval d Interval d

 Fig. 2 Data logging method of ST-CDP design.

If we do not break up parity chains, the recovery

time of each data block is given by

(Tdec+Txor+ Slog /IOrate)* Wavg* Tspan. (3)

Now consider our ST-CDP design with sub-chains

of d parity blocks. As mentioned previously, the

recovery time for each data block is limited by the half

of the sub-chain length, d, because parity computation

can be done both ways, redo and undo. If we assume that

the recovery time point is uniformly distributed among d

points within a sub-chain if the RPO falls into that chain,

the expected parity blocks needed to do EX_OR

computations for the data recovery is given by

���� = �
� 	
 ∗ ��
 =
� + ��

��
��

��
	 �� −
� ∗ ��
 =
�

�

�����
��

≈ 	 �

� ≈

��
��

��
��
��. ���

The recovery time of each data block in case of ST-CDP

is given by

T(d) = (Tdec+Txor+ Slog /IOrate)* E(d)+ Sblk /IOrate (5)

4

The first half of the above equation gives the parity

computation time and the second half gives the data

copy time. It is interesting to note that this recovery time

is independent of RPO but dependent on d value. The

recovery time increases as d increases.

Let us now consider the cost of the ST-CDP

program. The major cost is the additional storage space

needed to store the parity logs and snapshot data while

running ST-CDP. We would like to examine the average

storage increase per time unit while running the ST-CDP,

which is given by

S(d) = Slog*Wavg+ Sblk*Wavg /d,

where the first term gives the space for parity log and the

second term gives the snapshot space. Since the number

of snapshots inserted is inversely proportional to d, the

space usage of snapshots is also inversely proportional

to d.

The other important cost is the time it takes to

recover data. Ideally, we would like to use as little

storage space as possible and recover data as quickly as

possible. We will use these two factors to determine how

good a data protection technology is. We therefore use

the product of these two cost factors as the compound

cost of ST-CDP. Let

F(d) = T(d)*S(d)

=[(Tdec+Txor+Slog/IOrate)*E(d)+Sblk/IOrate]*

(Slog*Wavg+Sblk*Wavg /d)

= (c1*E(d)+c2)*(c3+c4/d)

= (c1*d/4+c1/4+c2)(c3+c4/d) (6)

where c1=(Tdec+Txor+Slog/IOrate), c2=Sblk/IOrate, c3=

Slog*Wavg , and c4= Sblk*Wavg. These are constants

independent of d.
Now, let us consider the derivative of F(d) and set it

to 0. We have

F’(d)=0 � d0 = 1 2 4

1 3

(4)c c c

c c

+
 (7)

Since the second derivative,

F ′′ (d) = (c1+4c2)C4*d
-3

/2, F ′′ (d = d0) = c1c3/2d0>0,

the minimum value of F(d) exists when d=d0. We will

choose d to be the integer closest to d0 as our optimal

sub-chain size.

4. Driver Implementation
Based on the design and analysis presented in the

previous sections, we have implemented our ST-CDP in

Linux Kernel. Our implementation is developed as an

added kernel module on top of MD RAID5. The ST-

CDP was developed as a standalone block device driver

independent of higher level file systems. As a result, it

can support variety of applications including different

file systems and database applications.

The ST-CDP has two major functional modules,

CDP logging module and recovery module. The CDP

logging module works at run time to keep journaling of

parities and snapshots. It bypasses all I/O read

operations and intercepts all I/O write operations. There

are two parallel threads, one handling normal write

operations and the other performing CDP functions.

There are two major parts in the CDP functional module.

The first part does the parity computation and logging. It

also keeps track of metadata for the parity logs. The

second part carries out snapshot operations when

triggered. The snapshot operations starts whenever the

number of parities collected for a block reaches value d

defined in the previous section. The underlying storage

is partitioned into two volumes: source volume and CDP

volume. The source volume stores the production data

while the CDP volume stores the parity logs and

snapshot data.

The recovery module of the ST-CDP is a program

that runs offline. When data recovery needs to be done,

the recovery module starts by retrieving parity logs and

snapshot data. Based on the designated RPO, it searches

the parity chains for each data block to find the sub-

chain that contains the desired RPO. Once such sub-

chain is found, the recovery program searches for a

parity block that has the timestamp matches the closest

to the RPO. OX-OR operations are then performed to

recover the right data block. After all changed data

blocks are recovered, the data will be written to the

source volume and recovery process is done. It is also

possible that the RPO matches one of the snapshots in

the CDP volume. In this case, no parity computation is

necessary. The recovery program just copies the

snapshot data to the source volume.

5. Experimental Settings

For the purpose of testing of our ST-CDP

implementation and performance evaluation, we have

carried out measurement experiments. Figure 3 shows

the high level block diagram of our experimental

settings. To allow multiple clients and multiple storage

servers in a networked environment, we implemented

the lower level storage device using iSCSI protocol as

shown in Figure 3. Our ST-CDP module runs on the

storage server at block device level of Linux operating

system. The client machine has file system, database,

and application benchmarks installed. The details of the

5

hardware and software environment in our experiments

are shown in Table 2 below.

Fig. 3 System architecture of ST-CDP implementation.

Right workloads are important for performance

studies [18]. In order to have an accurate evaluation, we

use real world I/O workloads and standard benchmarks.

The first benchmark, TPC-C, is a well-known

benchmark used to model the operational end of

businesses where real-time transactions are processed

[19]. TPC-C simulates the execution of a set of

distributed and on-line transactions (OLTP) for a period

of two to eight hours. It is set in the context of a

wholesale supplier operating on a number of warehouses

and their associated sales districts. TPC-C incorporates

five types of transactions with different complexity for

online and deferred execution on a database system.

These transactions perform the basic operations on

databases such as inserts, deletes, updates and so on.

From data storage point of view, these transactions will

generate reads and writes that will change data blocks on

disks. For Postgres Database, we use the implementation

from TPCC-UVA [20]. 8 warehouses with 25 users are

built on Postgres database. Details regarding TPC-C

workloads specification can be found in [19].

Besides benchmarks running on databases, we have

also run two file system benchmarks IoMeter and

PostMark. IoMeter is a flexible and configurable

benchmark tool that is also widely used in industries and

the research community [21]. It can be used to measure

the performance of a mounted file system or a block

device. We run the IoMeter on NTFS with 4K-block size

for two types of workloads: 100% random writes, and 30%

writes and 70% reads. PostMark is another widely used

file system benchmark tool written by Network

Appliance, Inc [22]. It measures performance in terms of

transaction rates in an ephemeral small-file environment

by creating a large pool of continually changing files.

Once the pool has been created, a specified number of

transactions occur. Each transaction consists of a pair of

smaller transactions, i.e. Create file/Delete file and Read

file/Append file. Each transaction’s type and files it

affected are chosen randomly. The read and write block

size can be tuned. In our experiments, we set PostMark

workload to include 10,000 files and to perform 20,000

transactions. Read and Write buffer sizes are set to 4KB.

 2 Client Nodes Storage Server

CPU Intel Xeon 2.8GHZ Intel Core 2 E2140,

1.6GHz

RAM DDR2 533 , 2GB DDR2 333, 1GB

Disk SATA 300GB SATA 300GB

OS Red Hat Linux 9.0

(Kernel2.6.9)

Gentoo Linux

(Kernel 2.6.20)

Switch Cisco 3750-E Gb

NIC 2*PCI 1GB/s

Benchmarks TPC-C on Postgres database

IoMeter

PostMark

Table 2. List of testing environments.

6. Numerical Results and Discussions

In this section, we present our measurement results

in terms of space usage, recovery time, and run time

performance impact of ST-CDP. We compare the

performance results of three data protection techniques:

namely native TRAP with no sub-chains, ST-CDP, and

pure periodical snapshots. The snapshot we evaluate

here is redirect-on-write snapshot, ROW for short, as

opposed to copy-on-write snapshots [23]. In our

experiments, we set the values of d to 71、79、85、91、
and 94 corresponding to block sizes of 4KB，8KB，
16KB，32KB，and 64KB, respectively. These values

are selected based on our analysis presented in the

previous section.

Our first experiment is to measure the additional

space usage of the three data protection technologies.

Figure 4 shows the measured results. We plotted the

space usage of the three data protection technologies for

different block sizes ranging from 4KB through 64KB. It

can be seen from this figure that snapshot takes most

space because it keeps the original data blocks of all

changed data. Native TRAP takes the least amount of

space because of locality property of write operations as

evidenced in [17]. The space usage of ST-CDP is

somewhere in between the other two because it stores

both parity logs and small amount of snapshots between

sub-chains. Because we choose the optimal value of d

for each block size, the space overhead of ST-CDP is

closer to that of TRAP than that of ROW snapshot. Our

6

observation is that ST-CDP provides continuous data

protection with substantial less storage overhead than

continuous real-time snapshots.

Fig. 4 Storage space comparison for TPC-C on Postgres

database.

Fig. 5 Average I/O response time comparison for 70%

reads and 30% writes of IoMeter benchmark.

Since ST-CDP carries out parity computation and

snapshot operations at run time, an immediate question

is how it impact application performance. Our next

experiment is to evaluate the performance impact of ST-

CDP on applications. For this purpose, we run IOMeter

to measure the IO performance while enabling the ST-

CDP module. Figure 5 shows our measured results in

terms of average I/O response time as functions of block

sizes. We plotted 4 performance curves corresponding to

snapshots, TRAP, ST-CDP, and RAID5 alone with no

data protection program running. Performance of RAID5

is used as a reference for us to observe the negative

impacts of the three data protection technologies. We

noticed that snapshot has the most performance impact

and TRAP has the least. ST-CDP is in between but close

to that of TRAP. For block size of 4KB, ST-CDP’s

performance is about 8.3% lower than that of RAID5.

For block size of 32KB, such performance difference is

about 5.4%. The maximum performance drop of TRAP

and snapshot compared to RAID5 are 7.1%（4KB）

and 23.2% （ 32KB ） , respectively, whereas the

maximum performance drop of ST-CDP is about 8.3%.

Fig. 6 Average I/O response time comparison for 100%

random writes of IoMeter benchmark.

Figure 6 shows the results of IOMeter with 100%

random writes. Results similar to that of Figure 5 are

observed. The maximum performance drops of the three

data protection techniques compared to that of RAID5

are 9.2%(8KB)， 6.3%（4KB），and 29.6%（64KB）
for ST-CDP, TRAP, and snapshots respectively.

Fig. 7 I/O throughput comparison for PostMark

benchmark.

PostMark results are shown in Figure 7. In this

figure, we compared the performance of ST-CDP with

the performance RAID5 to see how much performance

degradation caused by the ST-CDP overhead. We

noticed that the performance of both RAID5 and ST-

CDP increases as the block size increases. The

performance differences between RAID5 and ST-CDP

05001000150020002500300035004000
Block Size(KB)Log Data Szie(MB)ROW 1274 1797 2022 3286 3849TRAP 180 177 185 195 192ST-CDP 211 239 254 296 3074 8 16 32 64

567
8910

4 8 16 32 64Block Size(KB)Average I/O Respon
se Time(ms)

ROW TRAP ST-CDP RAID-5

789
101112

4 8 16 32 64Block Size(KB)Average I/O Respo
nse Time(ms)

ROW TRAP ST-CDP RAID-5

05101520
253035

4 8 16 32 64Block Size(KB)I/O Throughput(MB
/s)

ST-CDP(Read) RAID-5(Read) ST-CDP(Write) RAID-5(Write)

7

are very small and these performance differences do not

change with block size. This observed result can be

attributed to the fact that the parity computation of ST-

CDP is a part of RAID5 parity computation. Therefore,

the overhead of ST-CDP is manageable.

Our next experiment is to measure the recovery time

that is very important performance parameter for data

protection technologies. We considered the 5GB of data

of normal I/O operations and try to recover data to

different RPOs. We measured the recovery times of

native TRAP and ST-CDP and compared their

respective recovery times. Figure 8 shows the measured

recovery time as function of RPO. As can be seen from

this figure, TRAP’s recovery time increases as RPO

increases because of EX-OR computation of long parity

chains. On the other hand, the recovery time of ST-CDP

keeps flat while RPO changes. For example, for 4KB

block, recovering data to half hour ago takes about 1,246

seconds with native TRAP. To recover data to 8 hours

ago, TRAP takes about 4,910 seconds, 3.9 times longer.

For block size of 64KB, recovery time of TRAP

becomes smaller. It takes about 723s and 2,061s to

recover data to half an hour ago and 8 hours ago,

respectively. On the other hand, ST-CDP module can

recover data much faster irrespective of RPO. As shown

in Figure 8, the recovery time varies from 212 seconds

to 253 seconds, very little change!

Fig. 8 Recover time comparison between ST-CDP and

TRAP.

7. Conclusions

In this paper, we have presented a design, analysis,

and a Linux implementation of a continuous data

protection technique referred to as ST-CDP. It is based

on TRAP [17] technology that keeps logs of parities of

changed data blocks and interspersed with snapshot data.

The implementation is done at block device level as an

independent device driver that can be added to MD

software RAID device. Extensive experiments have been

carried out to show the implementation is fairly robust.

Standard benchmarks are used to evaluate the

performance and cost of the implementation. Numerical

results have shown that the overhead is manageable. The

major advantage of ST-CDP is low RTO that is RPO

independent. Our future work includes investigating

reliability and recoverability of TRAP by adding error

correcting code in parity chains and implementing it in

hardware RAID controllers.

Acknowledgments

The authors would like to thank Jing Yang and Yu Cheng
of Data Storage Division, Wuhan National Laboratory for

Optoelectronics, Huazhong University of Science and

Technology, for their help in system implementation and

testing. Their contribution to this work is greatly appreciated.

This research is sponsored in part by National Science

Foundation of China under grants number NSFC-60736013,

60603074, and 60603075 and Chinese 973 grant number

2004CB318203 and US National Science Foundation under

grants CCR-0312613 and CCF0610538. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

References

[1] D. M. Smith, “The cost of lost data,” Journal of

Contemporary Business Practice, Vol. 6, No. 3, 2003.

[2] D. Patterson, A. Brown and et al. “Recovery oriented

computing (ROC): Motivation, Definition,

Techniques, and Case Studies,” Computer Science

Technical Report UCB/CSD-0201175, U.C. Berkeley,

March 15, 2002.

[3] J. Damoulakis, “Continuous protection,”Storage, Vol.

3, No. 4, pp. 33-39, June 2004.

[4] K. Keeton, C. Santos, D. Beyer, J. Chase, J. Wilkes,

“Designing for disasters,” In Proc. of 3rd

Conference on File and Storage Technologies, San

Francisco, CA, 2004.

[5] Linux Kernel Drivers, Available:

http://sourceforge.net
[6] D.K. Gifford, R.M. Needham and M.D. Schroeder,

“Cedar file system,” Communication of the ACM,

Vol.31, No.3, pp. 288-298, March 1988.

[7] D. G. Korn and E. Krell, “The 3-D file system,” In

Proc. of the USENIX Summer Conference, Baltimore,

DC, Summer 1989, pp.147-156.

010002000300040005000
0.5 1 2 4 8Time Span(Hours)Recover Time(s)

TRAP(4KB) TRAP(64KB) ST-CDP(4KB) ST-CDP(64KB)

8

[8] B. Berliner and J. Polk, “Concurrent Versions

System (CVS),” 2001, http://www.cvshome.org.

[9] L. Moses, “An introductory guide to TOPS-20,” Tech.

Report TM-82-22, USC/Information Sciences

Institutes, 1982.

[10] K. McCoy, “VMS File System Internals,” Digital

Press, 1990.

[11] D. S. Santry, M.J. Feeley, N.C. Hutchinson, A.C.

Veitch, R.W. Carton, and J. Ofir, “Deciding when to

forget in the Elephant file system,” In Proc. of 17th

ACM Symposium on Operating System Principles,

Charleston, SC, Dec. 1999, pp. 110-123.

[12] C.A.N. Soules, G. R. Goodson, J. D. Strunk, and

G.R. Ganger, “Metadata efficieny in versioning file

systems,” In Proc. of the 2nd USENIX Conference on

File and Storage Technologies, San Francisco, CA,

March 2003, pp. 43-58.

[13] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B.

Zhao, and J. Kubiatowicz, “Pond: The OceanStore

prototype,” In Proc. of the 2nd USENIX Conference

on File and Storage Technologies (FAST), San

Francisco, CA, March 2003.

[14] A. Muthitacharoen, B. Chen, and D. Mazières,

"A low-bandwidth network file system," In Proc.

of the Eighteenth ACM symposium on

Operating systems principles, Alberta, Canada,

October 2001.
[15] Z. Peterson and R. C. Burns, “Ext3cow: A Time-

Shifting File System for Regulatory Compliance”,

ACM Transactions on Storage, Vol.1, No.2, pp. 190-

212, 2005.

[16] K. Muniswamy-Reddy, C. P. Wright, A. Himmer,

and E. Zadok, “A versatile and user-oriented

versioning file system,” In Proc. of the 3rd USENIX

Conference on File and Storage Technologies, San

Francisco, CA, 2004.

[17] Q. Yang , W. Xiao , and J. Ren, “TRAP-Array: A

Disk Array Architecture Providing Timely Recovery

to Any Point-in-time”, In Proceedings of the 33rd

annual international symposium on Computer

Architecture, June 2006, pp. 289-301.

[18] Yiming Hu and Qing Yang, “DCD---Disk Caching

Disk: A New Approach for Boosting I/O

Performance,” In 23rd Annual International

Symposium on Computer Architecture (ISCA),

Philadelphia, PA, May 1996.
[19] Transaction Processing Performance Council, “TPC

BenchmarkTM C Standard Specification,” 2005,
http://www.tpc.org/tpcc.

[20] J. Piernas, T. Cortes and J. M. García, “TPCC-

UVA: A free, open-source implementation of the
TPC-C Benchmark,” 2005,
http://www.infor.uva.es/~diego/tpcc- uva .html.

[21] Intel, “IoMeter: Performance Analysis Tool,”
http://www.iometer.org/.

[22] J. Katcher, “PostMark: A new file system bench -
mark,” Network Appliance, Tech. Rep. 3022, 1997.

[23] W. Xiao, Y Liu, Q. Yang, J Ren, and C Xie,
“Implementation and performance evaluation of two
snapshot methods on iSCSI target stores,” in Proc. of
IEEE/NASA Conf. on Mass Storage Systems and

Technologies, May 2006.

