
1

Building Trust in Online Rating Systems Through Signal
Modeling

Yafei Yang, Yan Lindsay Sun, Jin Ren, and Qing Yang
Department of Electrical and Computer Engineering

University of Rhode Island, Kingston, RI 02881
Emails: {yafei,yansun, rjin, qyang}@ele.uri.edu

Abstract— Online feedback-based rating systems are gaining pop-
ularity. Dealing with unfair ratings is a challenging task when the
number of ratings is relatively small and unfair ratings contribute to
a significant portion of the overall ratings. In this paper, we propose a
novel algorithm to detect unfair ratings that can not be effectively
prevented by existing state-of-the-art techniques. Our algorithm is
particularly effective to detect malicious raters that are influenced by
owners of objects to be rated. The main idea of our new algorithm
is to use a well-known signal processing method combined with
trust-enhanced rating aggregation. By means of autoregressive signal
modeling technique, we are able to detect and filter out unfair ratings
very accurately. Extensive experiments through simulations and real-
world data have been carried out to validate and evaluate our new
algorithm as compared to existing algorithms. Our experimental results
show significant improvements on detecting collaborative unfair raters
over existing algorithms.

Keywords: Ratings aggregation, Trust and reputation manage-
ment, Signal modeling

I. Introduction

The Internet, the revolutionary mass communication media, has
enabled individuals to make their personal opinions accessible to
the global community at almost no cost [1]. This results in various
on-line opinion forums and rating systems, such as Epinions and
Amazon product rating, which allow users to submit their opinions
regarding products, services or other users. The submitted opinions
are analyzed, aggregated, and made publicly available. Today’s
consumers’ purchasing decisions are more and more relying on the
rich, valuable and timely information from on-line forums and rating
systems. Ensuring the reliability of these systems is an important and
challenging task [2].

The existence of unfair ratings, which can be generated either
intentionally or unintentionally, is a key factor that undermines
the reliability of online rating systems. There have been many
approaches proposed to deal with unfair ratings. Examples include
clustering techniques [3], statistical analysis [4], endorsement-based
quality estimation [2], trust establishment [2], [5], and entropy-based
detection [6]. The details of these approaches will be reviewed in
Section II.

The existing systems share one common property: majority rule.
That is, the number of unfair ratings should be much less than the
number of good ratings. This rule usually holds when a large number
of users rate a limited number of products or services. However, in
practice, there are many scenarios where the number of ratings is
limited. This occurs when the products or services are new or not as
popular. This also occurs when rating aggregation is performed over
the ratings in a small time window, in order to catch the dynamic
behavior of the object being rated. At Amazon and Epinion, it is

This research is supported in part by grants from NSF, NASA, and URI Research
Office. Information contained in this paper is confidential and for TRAM 2007
workshop review only.

very common that a product only has a few reviews/ratings and even
fewer recent reviews/ratings. In these scenarios, dealing with unfair
ratings is very difficult due to three reasons. First, there is not a suffi-
cient number of ratings to draw statistical conclusions. Most existing
methods do not work well when the number of ratings is small.
Second, the number of unfair ratings may overweight the number
of fair ratings during a time interval or for an unpopular object.
This could undermine the foundation of most existing algorithms.
Third and more importantly, owners of objects to be rated may
influence raters for commercial purpose. As a result, collaborative
unfair ratings may cause severe damage to the trustability of the
rating system. Existing systems are not able to handle this type of
unfair ratings.

Our study of existing methods indicates that temporal information,
the time when the ratings are provided, is not investigated in
depth. Most existing methods treat the ratings as samples of a
random variable. In fact, the ratings, which are naturally provided
at different time points, are samples of a random process [7]. This
provides another dimension for detecting unfair ratings. We treat fair
ratings as noise and unfair ratings as signal. We model the overall
ratings using an autoregressive (AR) signal modeling technique and
examine the model errors. The model error can be a good indicator
of whether the ‘signal’ (unfair ratings) is present.

In addition to rating filtering, trust models can assist in produc-
ing reliable ratings. There are many trust models reported in the
literature applied to authorization, access control, ad hoc sensor
networks, and so forth. Directly applying a trust model to rating
aggregation may not produce desired results. For example, the trust
model reported in [27] outperforms other trust models in the context
of securing ad hoc routing protocols. It performs the worst in
rating aggregation among the trust models that we look at. Through
experiments, we are able to come up with a modified trust model
and aggregation algorithm that performs very well in handling rating
aggregations. In this paper, we make the following contributions:
• developing a framework that integrates trust establishment and

rating aggregation;
• identifying different types of unfair ratings in online rating

systems;
• designing an algorithm to detect suspicious ratings in the

scenarios that the majority rule does not always hold;
• developing trust-based rating aggregation algorithms that im-

prove reliability.
The proposed algorithms and systems are applied to both sim-

ulated data and real data. Extensive simulations are performed to
validate the proposed methods.

The rest of the paper is organized as follows. Background and
related work are discussed in Section II. The proposed algorithms
and systems are presented in Section III. Section IV presents system
implementation and simulation results, followed by the conclusions
in Section V.

2

II. Background and Related Work

A. Related Research

The proposed system in this paper contains two key elements:
unfair rating filtering and trust or reputation establishment.

Unfair rating filtering examines the ratings that are far away from
the majority’s opinion and are identified as abnormal to be removed.
Abnormal ratings can be determined by examining different rating
properties, such as statistical distribution, entropy, and endorsement
from other raters.

The study in [3] is carried out from both technology and business
management points of view. Four unfair rating scenarios in online
trading communities, such as eBay, are identified including unfairly
high ratings from buyers, unfairly low ratings from buyers, negative
discrimination from sellers, and positive discrimination from sellers
[3]. Dellarocas proposed to avoid unfairly low ratings and negative
discrimination by concealing the identities of the buyers and sellers.
To deal with unfairly high ratings and positive discrimination, a
clustering technique is used to divide ratings, which are from the
users with similar taste, into two clusters: the lower cluster that
contains fair ratings and the upper cluster that contains unfair ratings.
Then, the ratings in the upper cluster can be eliminated.

In [2], the foundation of the defense against unfair ratings is to
evaluate the quality of individual ratings and/or reviews. This is
achieved by an endorsement method. In particular, a rater gives the
highest endorsement to other raters who provide similar ratings and
lower endorsement to the raters who provide different ratings. The
quality of a rating is the summation of the endorsements from all
other raters. The unfair ratings are expected to have low quality
value, and the raters who give unfair ratings are expected to have
low reputation.

In [4], Whitby et al. presented a statistical filtering technique in
Beta-function based rating systems. The ratings that are outside the
q quantile and (1−q) quantile of the majority opinion are identified
as unfair ratings, where q is a parameter describing the sensitivity
of the algorithm.

Recently, in [5] Weng et al. proposed an entropy-based method
to measure the quality of ratings. If a new rating leads to significant
changes in the uncertainty in the distribution of the rating, this rating
is considered to be an unfair rating. The uncertainty is measured by
entropy.

The second key element is trust establishment based on one or
several metrics that describe the quality of raters. This quality is
often referred to as trust or reputation. When the system knows
how trustworthy a rater is, the system can assign low weight to the
ratings from the raters with low trust value, and large weight to the
ratings from the ones with high trust value. This would reduce the
influence of the untrustworthy raters upon the system. In addition,
the raters with very low trust values can be declared as dishonest
and removed from the system.

At least two basic questions need to be considered in a trust
model: (1) how to determine the trustworthiness of the raters and
(2) how to aggregate ratings from the raters with different trust
values. There has been a rich literature on trust establishment and
reputation systems. There are systems designed especially for rating
systems [2], [8], [9], and systems designed for authorization and
access control [10]–[14], electronics commerce [15], peer-to-peer
networks [16]–[18], ad hoc and sensor networks [19]–[22], and
pervasive computing [23], [24]. In this work, we compare several
existing trust establishment methods, and modify an existing method
to make it suitable for rating aggregation.

B. Classification of Unfair Raters
In [3], Dellarocas summarized four types of unfair ratings in the

on-line trading environments where sellers and buyers rate each
other. Inspired by their models, we classify the unfair ratings in
on-line rating environment, where raters provide an opinion about
certain object such as a book, a product, or a restaurant, into
following categories.
• Individual unfair ratings: an individual rater provides unfairly

high or low ratings without collaborating with other raters.
This type of rating may result from raters’ personality/habit
(i.e. dispositional trust [25]), careless, or randomness in rating
behavior.

• Collaborative unfair ratings: a group of raters providing un-
fairly high or low ratings to boost or downgrade the overall
rating of an object. This type of rating may result from the
strategic manipulation from the owner of the object [26]. The
owner of the object, such as the publisher of a book or the
manager of a restaurant, can hire or influent raters in order to
praise their products or criticize the competitors’ products.

Compared with collaborative unfair ratings, individual unfair
ratings usually cause much less damage. First, individual high
ratings and individual low ratings can cancel each other. Second,
the number of individual unfair ratings should statistically be much
less than the number of normal ratings. Therefore, our focus is to
address collaborative unfair ratings.

The collaborative unfair raters can have two strategies: (1) provid-
ing ratings with a large bias; (2) providing rating with a moderate
bias. Consider the following example. Assume that the rating has 5
levels: 1, 2, 3, 4, and 5, and that the rating aggregation algorithm
is assumed to be simple averaging. Suppose the true quality of a
particular object is 3 and there are N honest raters. Suppose we
have M collaborative raters whose goal is to boost the aggregate
rating to 3.5. To achieve this goal, the following condition should
be satisfied:

3N + rM

M + N
> 3.5 (1)

From 1, one can see that

M >
0.5

r − 3.5
N (2)

In the first strategy, collaborative raters should provide the highest
rating, i.e. 5. Then, as long as M > N/3 is held, they achieve
their goal. In the second strategy, collaborative raters should provide
rating 4. In this case, their goal can be achieved when M > N .

From the detection point of view, majority rating based detection
methods, such as the ones in [2]–[4], can be used to defend against
the first strategy, when M is not too large. The challenge is to detect
the collaborative attackers using the second strategy and the cases
where M is comparable or larger than N .

III. Trust-enhanced Rating Aggregation System
Our trust-enhanced rating system consists of two main parts:

rating aggregator and trust manager, as shown in Figure 1. The
rating aggregator employs our novel signal modeling technique and
the trust manager uses a modified trust establishment framework
[27].

A. Rating Aggregator
The rating aggregator takes raw ratings as well as trust in raters

as inputs, produces aggregated rating, and provides information to
the observation buffer in the trust manager.

3

Trust Record

………

Rater 2

Rater 1

IndirectDirect

Observation
Buffer

Recom.
Buffer

Direct Trust
Establishment

Indirect Trust
Establishment

Malicious
Rater

Detection

Record
Maintenance

Initialization

Update
according to

time

Trust Establishment

Trust
Manager

Rating
Filter

Rating
Aggregation

Feature
Extraction I

Feature
Extraction II

Raw Rating

Aggregated Rating

Abnormal
Rating

normal
Rating

Raters’ Option
on other raters

Rating
Aggregator

Fig. 1. Block diagram of the trust-enhanced rating aggregation system.

• The first feature extraction module examines the raw ratings
and works with the rating filter to filter normal ratings from
abnormal ratings. The fact that a certain rating is discarded is
stored in the observation buffer. This information will be used
to calculate trust in raters by the trust manager.

• The second feature extraction module examines normal ratings
and extract information that can be used to determine trust
in raters. We use our signal modeling technique to accurately
extract rater information to be fed to the trust manager, as
discussed shortly.

• The aggregated rating is generated by the rating aggregation
module, which aggregates ratings based on normal ratings as
well as the trust in raters.

A.1. Detecting suspicious ratings through AR signal modeling
The first major innovation of our design is to use signal modeling

technique in feature extraction module II . The underlying philoso-
phy is as follows.
• A single rating is often looked as a sample of a random variable.

When we examine multiple ratings that are naturally given at
different time points, these ratings are in fact a discrete random
process x(t). In particular, the system receives the ratings R =
{r1(t1), r2(t2), · · · .rm(tm)}, where ri(ti) denotes the rating
received at time ti with rating value ri. These ratings, R, is
one sample of a random process x(t).

• When there is no collaborative raters, ratings from different
ratings should be independent. Thus, x(t)−E(x(t)) should be
very similar to white noise.

• When there are collaborative raters, x(t)−E(x(t)) is not white
noise any more. Instead, the ratings from collaborative raters
can be looked at as the signal embedded in the white noise.

Based upon above observations, we developed the core idea for
detecting collaborative ratings as follows.
• We try to model the ratings, R, using an autoaggregation (AR)

signal model and examine the model error. If the model error
is high, x(t) is close to a white noise and the probability that
there are collaborative raters is small. If the model error is low,
there are ’signal’ presented in x(t) and the probability that there
are collaborative raters is large.

To implement this idea, the overall time during which ratings
are provided is divided into windows, based on either time or the
number of ratings in the window. That is, the windows either cover
equal length time intervals or contain the same number of ratings.
These windows can overlap. Then, the ratings in each window are
modeled using the covariance method [7], and the model error
is calculated. (The covariance method is a standard method for
spectrum estimation. The details of this method can be found in
the Matlab function covm). If the model error is smaller than a
threshold, this window is suspicious. The suspicious value of the
raters who provide ratings in the suspicious window are updated. Let
C(i) denote the suspicious value of rater i. The suspicious values
will be used to calculate trust in raters.

The detailed algorithm is described in Procedure 1 for W
windows. In this procedure, only the ratings from one object is
examined. It should be straightforward to extend it to handle multiple
objects by initializing the suspicious value C(i) as 0 at the beginning
and running procedure 1 for each object.

Procedure 1 Detecting Suspicious Interval and updating suspicious
values

1: For each rater i, initialize Llatest
i = 0

2: for k = 1 : W do
3: let R denote the ratings for a certain object in the kth window.
4: find the all-pole model of the signal R using the covariance method

[7]. In particular, given the model order p, calculate the model
coefficients a = [1, a(1), ...a(p)] and normalized model error e(k)
(0 < e(k) < 1).

5: if e(k) < threshold then
6: The kth window is marked as the suspicious
7: A suspicious level is calculated as L(k) = scale(̇1 −

e(k))/threshold, where scale is scaling factor between 0 and
1.

8: for each rating in the kth window. do
9: assume this rating is from rater j

10: if Llatest
j = 0 then

11: Ci = Ci + L(k); Llatest
j = L(k);

12: else
13: if Llatest

j > l(k) then
14: Ci = Ci + L(k)− Llatest

j , Llatest
j = L(k);

15: end if
16: end if
17: end for
18: end if
19: end for

A.2. An illustrative example
A simple experiment can show how the AR signal modeling works

effectively. In this experiment, we examine the ratings for one object.
The honest ratings are generated based on the following parameters.

simu time = 60 simulation time is 60 days
arrival rate = 3 rating arrival is a Poisson

process with arrival rate 3
R level = 11 ratings which have 11 levels

can be 0, 0.1, 0.2, · · ·, or 1
quality start = 0.7 The quality of the object is
quality end = 0.8 0.7 at the beginning

and linearly increases to 0.8
at the end of the experiment.

goodV ar = 0.2 The ratings from honest raters
follow a Gaussian distribution
with mean being the quality of
the object and variance being 0.2.

Assume that the collaborative raters are recruited by the owner
of the object. The owner has two ways to do it. First, he/she

4

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1
Ratings without collaborative raters

time (day)

ra
tin

g
sc

or
es

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1
Ratings with collaborative raters(red: type 1, green: type 2)

time (day)

R
at

in
g

sc
or

es

Fig. 2. Raw ratings before filtering

can influence the raters who are supposed to provide ratings. In
particular, rater i originally wants to give rating value ri at time
ti. If rater i is affected by the owner of the object, rater i will
provide rating ri +biasshift1 at time ti. We assume that the owner
of the object can make recruitpower1 percent of regular raters to
be this type of collaborative raters, referred to as the type 1. Thus,
two parameters: biasshift1 and recruitpower1, can describe type
1 collaborative raters.

The second way is to ask the raters who originally would not
provide ratings to provide biased ratings to the object. These raters
are referred to as type 2 collaborative raters. It is assumed that type
2 collaborative raters will provide ratings that follow a Gaussian
distribution with mean badMean and variance badV ar, where,
badMean is the sum of the quality of the object and biasshift2
and badV ar is one tenth of goodV ar. Type 2 collaborative raters
arrive following a Poisson process with the average arrival rate being
arrival rate · recruitpower2. Thus, three parameters: biasshift2,
badV ar, and recruitpower2, can describe type 2 collaborative
raters. We generate unfair ratings using the following parameters.

A start = 30 The unfair ratings arrive
A end = 44 between day 30 and day 44
biasshift1 = 0.2 during the attack interval,
recruitpower1 = 0.3 30% raters increase their

original ratings by 0.2
biasshift2 = 0.15 type 2 collaborative ratings,
badV ar = 0.02 whose arrival rate is 3, follow
recruitpower2 = 1 a Gaussian distribution with

variance 0.02, and
mean = object quality + 0.15.

Figure 2 shows one example of raw ratings generated using above
parameters. The upper plot contains the ratings from honest raters,
and the lower plot contains ratings from honest raters (black dots),
type 1 collaborative raters (red dots), and type 2 collaborative raters
(green dots).

Figure 3 shows the histogram of the ratings. One can see that
the information presented in the histogram is not sufficient to
differentiate honest and collaborative ratings. There are two reasons.
First, the number of ratings is not sufficiently large, which occurs
in most practical applications. Second, the collaborative raters use
a smart strategy that their ratings are not very far away from the
majority.

Figure 4 shows the effects of rating filtering and the detection of
suspicious intervals. In this figure, the upper plot shows the moving
average performed upon (1) honest ratings, (2) all ratings from

0 0.2 0.4 0.6 0.8 1
0

20

40

60
Histgram of ratings(without collaobrative rater)

rating score

of

 s
uc

h
ra

tin
g

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
Histgram of ratings (with collaobrative rater)

rating score

of

 s
uc

h
ra

tin
g

Fig. 3. Histogram of ratings

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

0.9

time (day)

m
ea

n
of

 r
at

in
gs

Mean of ratings (20 ratings in each window)

0 10 20 30 40 50 60 70 80 90
0.01

0.02

0.03

0.04

time (day)

A
R

 m
od

el
 e

rr
or

AR model error (50 ratings in each window

without CR
with CR
with CR & beta filter

without CR
with CR

Fig. 4. Average of the ratings and the model error

both honest and collaborative raters; and (3) ratings passing through
the rating filter. Each window for calculating the moving average
contains 20 ratings. The step size for windows is 10 ratings. From
this figure, two observations are in order. First, the collaborative
raters can greatly raise the aggregated rating, if the aggregation
method is simple averaging. (2) the beta-function based filtering
technique is not very effective because most collaborative ratings
are not far away from the majority opinion.

The lower plot in Figure 4 shows the model error calculated using
Procedure 1. The black curve is the model error when there are
only honest ratings, the magenta curve is the model error when
collaborative ratings are present. It can be seen that the model
error drops significantly when there are collaborative ratings. The
proposed method with a proper threshold detects the suspicious
intervals and filters out collaborative unfair ratings successfully. To
investigate the detection rate and false alarm rate, we perform the
experiment for 500 times and obtain

Detection Ratio = 0.782;
False Alarm Ratio = 0.06.

Besides working on simulated data, we applied the proposed
methods to real movie rating data provided by Netflix [28]. The
first movie in the dataset, Dinosaur Planet, is selected. We in-
serted collaborative unfair ratings using the following parameters:
A start = 212, A end = 272, BiasShift1 = 0.2, RecruitPower1

= 0.5, BiasShift2 = 0.25, RecruitPower2 =1, and badV ar =
0.25 · GoodV ar, where GoodV ar is the variance of the original
ratings. Figure 5 shows the model error generated by the proposed

5

0 100 200 300 400 500 600 700
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time (day)

A
R

 m
od

el
 e

rr
or

Applying Signal Modeling Techniquest to Real Movie Rating data

raw movie rating data from Netflix
raw data + simulated collaborative ratings

Fig. 5. Model errors for original data and data with collaborative ratings. (Dinosaur
Planet, 2003.)

algorithm when applying it to the original data and the original
data with simulated collaborative ratings, respectively. It can be seen
that the model error drops significantly during the time when the
collaborative unfair ratings are present. This experiment validates
again the effectiveness of our algorithm.

B. Trust Manager
Trust establishment can be a complicated process. Before dis-

cussing the detailed design of the trust manager, we briefly introduce
some fundamental concepts in trust establishment.

A trust relationship is always established between two parties for
a specific action. That is, one party trusts the other party to perform
an action. The first party is referred to as the subject and the second
party as the agent. A notation {subject : agent, action} is used to
represent the trust relationship [29]. For each trust relationship, one
or multiple numerical values, referred to as trust values, describe
the level of trustworthiness.

There are two common ways to establish trust in computer
networks. First, when the subject can directly observe the agent’s
behavior, direct trust can be established. Second, when the subject
receives recommendations from other entities about the agent,
indirect trust can be established. A very special type of direct
trust is recommendation trust. It is for trust relationship {subject :
agent, making correct recommendations}. Recommendation trust is
important for establishing indirect trust.

Trust can transit through third parties. For example, if A and B
have established a recommendation trust relationship and B and C
have established a direct trust relationship, then A can trust C to a
certain degree if B tells A its trust opinion (i.e. recommendation)
about C. This phenomenon is called trust propagation. Indirect trust
is established through trust propagations. The rules that govern trust
propagation are often called trust models.

Next, we map these basic concepts to the problem of rating
aggregation. In the context of rating aggregation, we care about
three types of trust relationships:
• {rater : object, having a certain quality}. The trust value of

this trust relationship is just the rater’s rating. It is often
assumed that a rater’s rating is based on his/her direct experi-
ences. Thus, this is a direct trust.

• {system : rater, providing fair rating}. The trust value of this
trust relationship is just the trust in rater, defined earlier in the
paper. This is a recommendation trust.

• {system : object, having a certain quality}. The trust value of
this relationship is the aggregated rating. This is an indirect
trust because the system does not have direct experience of the
object.

Indirect trust can be calculated from the direct trust and recom-
mendation trust using trust models. Thus, aggregated rating can be

calculated from raters’ ratings and trust in raters using similar trust
models. The most important observation is that the calculation in
rating aggregation can be determined or inspired by existing trust
models.

Based on this observation, we design the trust manager by
simplifying the generic framework for trust establishment proposed
in [29]. This trust manager contains several building blocks.
• Observation Buffer collects observations on whether the ratings

from specific raters are filtered out or have certain features. The
observations are used to calculate direct trust values associated
with {system : rater, providing fair rating} by the Direct
Trust Establishment module.

• Some practical online rating and review systems allow a rater to
comment on whether others’ ratings/reviews are useful. When
this type of information is available, it is stored in the Rec-
ommendation Buffer and can be used to calculate indirect trust
values associated with {system : rater, providing fair rating},
by the Indirect Trust Establishment module.

• Trust Record stores information about trust in raters.
• Malicious Rater Detection module determines how to handle

the raters with low trust values.
• An honest rater may become compromised or an incapable rater

may become capable after gaining some experiences. Thus,
the observation collected long time ago should not carry the
same weight as the observation collected recently. This problem
is addressed by some forgetting schemes [27]. The Record
Maintenance module handles the forgetting scheme as well as
the initialization of rater’s trust.

B.1. Design challenges
In the beta-function-based trust establishment method proposed

in [30], trust value is calculated as S+1
S+F+2 , where S denotes the

number of previous successful actions and F denotes the number of
previous failed actions. This method has been used in various appli-
cation scenarios [27], [29], [31]. For rating aggregation, however, it
is difficult to determine S and F values.

Assume that we are examining the trust in rater i. In this case, S
should be the number of honest ratings provided by i, and F should
be the number of dishonest ratings provided by i. If a rating from
i is filtered out by the rating filter, this rating can be classified as a
dishonest rating. However, a rating that passed the rating filter is not
necessarily an honest rating. A smart and biased rater can provide
ratings that are not too far away from majority. This type of ratings
cannot be filtered out unless the system can tolerate a very high
false alarm ratio. This type of ratings is difficult to identify. That
is, the system cannot perfectly monitoring rater i’s past behavior,
and must estimate S and F values through, for example, the second
feature extraction module.

The first challenge is to design the feature extraction module II
. This module analyzes the ratings that have passed the rating filter,
and generates features that can be used directly to estimate S and
F values for specific raters. In the design of this module, one must
consider the fact that the ratings often have a few levels and the
number of ratings can be limit. Our signal modeling method solves
this problem effectively.

The second challenge is to determine the algorithm for rating
aggregation. As discussed previously, the rating aggregation module
can use trust models to calculate the aggregated rating. However,
there are many trust models available. It is important to choose or
design a trust model that is suitable for rating aggregation. This is
our next task to be discussed below.

B.2. Comparison of different rating aggregations

6

In order to find a good trust model for the rating aggregator that
takes the trust in raters and the ratings as inputs and generates aggre-
gated ratings as outputs, we present the algorithms for calculating
trust in raters and then compare several existing trust models through
a case study.

Trust in raters can be established using the beta-function model.
The calculation is described in Procedure 2. In this procedure, trust
in raters is updated at time t(1), t(2), · · · , t(K). A parameter b(0 <
b < 1) is used to control the relative badness between a rating that
is filtered out and a rating that is in the suspicious interval.

Procedure 2 Computing Trust in Raters
1: For each rater i, initialize Si = 0, and Fi = 0
2: for k = 1 : K do
3: for each rater i do
4: Set si = ni = fi = Ci = 0,
5: During the time t(k − 1) and t(k), determine:

ni: the number of ratings that is provided by rater i
fi: the number of ratings from rater i which are

filtered out by the rating filter
si: the number of ratings from rater i which lies

in at least one suspicious interval.
Ci: the suspicious value of i (see procedure 1)

6: calculate Fi = Fi + fi + b · Ci and Si = Si + ni − fi − si.
7: calculate trust in rater i at time t(k) as: (S + 1)/(S + F + 2).
8: end for
9: end for

Let R denote the raters whose ratings are the input to the rating
aggregation module. If rater i belongs to R, let ri denote the rating
from rater i, Ti denote the trust in raters. Rag denotes the aggregated
rating, and |R| denotes the number of ratings. Here, each rater
provides only one rating. In addition, some algorithms use Si and
Fi values, which are determined in Procedure 2.

Four rating aggregation algorithms are compared.
1. simple average: Rag = 1

|R|
∑

i:i∈R ri.
2. beta function aggregation proposed in [30]:

Rag =
S′ + 1

S′ + F ′ + 2
,

where S′ =
∑

i:i∈R ri and F ′ =
∑

i:i∈R(1− ri).
3. modified weighted average :

Rag =
1∑

i:i∈R max(Ti − 0.5, 0)

∑

i:i∈R

max(Ti − 0.5, 0) · ri

4. beta-function trust model proposed in [27]. The detailed equa-
tions can be found in equation (14) (22) and (23) in [27].

Method 3 differs from traditional weighted average from two
perspectives. First, if a trust value of a rater is lower than 0.5,
the rating from this rater is not considered. Second, the weight is
calculated based Ti−0.5, not the absolute trust value. This 0.5 value
represents the neutral opinion on a rater, i,e, no trust and no distrust.

The above algorithms are compared in the following simulation
setup. The trust values of honest raters are generated using a Gaus-
sian distribution with mean 0.95 and variance 0.05. The trust values
of collaborative raters are generated using a Gaussian distribution
with mean 0.6 and variance 0.1. The number of ratings provided
previously by each rater is uniformly distributed in [1, 20]. The
ratings from honest raters follow a Gaussian distribution with mean
0.8 and variance 0.05. The ratings from the collaborative ratings
follow a Gaussian distribution with mean 0.4 and variance 0.02.
Here, the goal of the collaborative raters is to reduce the aggregated

rating. The ratio between honest and collaborative raters is 1:1; and
there are 10 honest raters. No filtering technique is used.

We run the experiment for 500 times and obtain the average
aggregated ratings as:

Method 1 Method 2 Method 3 Method 4
Rag 0.6365 0.6138 0.7445 0.5985

The desired Rag is the mean of honest ratings, i.e 0.8. When
using method 1 and method 2, the aggregated rating is significantly
reduced. However, considering trust in raters does not necessarily
leads to a good result. Trust model in [27] over perform other trust
models in the context of securing ad hoc routing protocols. However,
it has the worst performance in rating aggregation. Among all four
models that we studied in this paper, the modified weighted average
(Method 3) has the best performance. With 50% of collaborative
raters, Rag in Method 3 only dropped 7%. Method 3 is used in the
remaining simulations in this paper.

IV. System Implementation and Simulation

We implemented a simulator in C++, Matlab and MySQL based
on the approaches presented in Section III. This tool includes two
parts: (1) rating generation and (2) trust-enhanced rating aggregation.
As mentioned in Section III, the collaborative raters can have two
strategies. Since large bias shift can be detected easily by some
existing schemes, we focus on detecting attacks using their second
and smart strategy, which is hard to detect in general.

A. Simulation Setup
The parameters used for generating ratings are as follows. The

rating scores, which have 10 levels, can be 0.1, 0.2, · · ·, 1. There
are total 800 raters. Among them, 400 are reliable raters, 200 are
careless raters and 200 are potential collaborative unfair raters.
Both reliable raters and careless raters are honest, and their ratings
follow a Gaussian distribution with mean being the quality of the
product. The variance of the ratings from reliable raters and that
from the careless raters are denoted by goodV ar and CarelessV ar,
respectively. We choose goodV ar = 0.2, carelessV ar = 0.3 in our
simulation. The potential collaborative (PC) raters can be recruited
by the owner of dishonest objects. If a PC rater is not recruited, it
behaves as a reliable rater. If it is recruited, it behaves as a type
2 collaborative rater, whose behavior is described by BiasShift2
and badV ar defined in the previous section.

All raters participate in rating 60 products during 360 days (a
year) with each product being just one object. The term object is
used in the previous sections to represent the general concept. In
this section, the term product is used. In each month (30 days),
4 honest products and 1 dishonest product receive ratings. The
products rated in different months are different. The quality of the
products is assumed to be uniformly distributed between 0.4 and
0.6. A dishonest product recruits collaborative raters in 10 days
each month and it can recruit a total RecruitPower3 percent of
PC raters.

In each day, the probability that a reliable or careless rater rates
the products is Prate. One rater cannot rate more than once on each
product. For a PC rater, if it is recruited, it will rate the products with
probability a1 · Prate. If it is not recruited, it will rate the products
with probability a2 · Prate, where, a1(> 1) and a2(< 1) are two
scaling factors chosen in such a way that a1 · Prate and a2 · Prate

are less than 1.
For rating aggregation, the following parameters are used. Rating

filtering technique in [4] is used with sensitivity parameter 0.1 in

7

0 2 4 6 8 10 12
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Mean of Raters’ Trust

Time (month)

T
ru

st
 V

al
u

e

Dishonest rater
Reliable rater
Careless rater

Fig. 6. Mean of rater’s trust in 12 months.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rater id

T
ru

st
 v

al
u

e

Raters’ Trust in the 6th Month

For honest raters,
false alarm rate is 1%

For careless raters,
false alram rate is 3%

For Collabrative raters,
detecetion rate is 72%

Fig. 7. Raters’ trust in the 6th month

Feature Extraction I module. The window for applying the filter is
30 days and the windows do not overlap. The window for applying
AR model analysis in Feature Extraction II module is 10 days, and
adjacent windows overlap by 5 days. The threshold of model error
in the detection of suspicious interval is 0.02. The b parameter used
in Procedure 2 is set to 1.

B. Collaborative Unfair Rater Detection
In the first experiment, we set scaling factor a1 = 6 and a2 = 0.5.

Hence, the potential collaborative raters are 6 times more likely to
rate a dishonest product. In Figure 6, we compare the average trust
values of reliable, careless and PC raters when using the proposed
scheme. The initial trust value of each rater is 0.5. As time increases,
the average trust value of PC raters is reduced quickly to 0.4 and the
average trust values of careless and reliable raters rise continuously.
Some ratings from careless raters are removed by the rating filter.
Thus, the trust in careless raters is slightly smaller than that in
reliable raters.

We use threshold sus = 0.5 to detect the PC raters. Figures 7
and 8 show trust values of all raters at the end of the 6th month and
the 12th month, respectively. In the sixth month, shown in Figure 7,
only 1% reliable raters and 3% careless raters are falsely detected
and 72% of PC raters are detected. As time increases, the honest
raters’ trust goes up and PC raters’ trust descends even more. In the
last month, shown in Figure 8, the false alarm for honest raters is
zero and 87% of PC raters are detected.

In order to quantitatively evaluate the capability of detecting
unfair ratings of our new algorithm, we have carried out experiments
to observe the percentages of detected unfair ratings as shown in
Figure 9. In this figure, we draw two curves for detection ratio
and false alarm ratio, respectively. It is shown in this figure that
the detection ratio increases while the false alarm ratio decreases
as time increases indicating clearly the superb effectiveness of our
new algorithm. The detection ratio goes as high as 87% and the false
alarm rate goes as low as negligible. Our original intention of this

0 100 200 300 400 500 600 700 800
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rater id

T
ru

st
 v

al
u

e

Raters’ Trust in the 12th Month

For honest raters,
false alarm rate is 0

For careless raters,
false alarm rate is 0

For collabrative raters,
detection rate is 87%

Fig. 8. Raters’ trust in the 12th month

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Unfair Rating Detecting Capability of the New Algorithm

Time (month)

D
et

ec
ti

o
n

 r
at

io

Unfair rating detection

Fair rating false alarm

Fig. 9. Unfair rating detection capability of the new algorithm

experiment was to compare our algorithm with existing algorithms.
Surprisingly, no existing algorithms are able to detect collaborative
unfair raters that use their second strategy (with biased ratings not
too far away from majority). As a result, the detection ratios are all
0 which can not be shown in this figure.

C. Rating Aggregation
In the second experiment, several rating aggregation algorithms:

simple average, beta function based aggregation and the proposed
scheme, are compared. The scaling factors are set to a1 = 8 and
a2 = 0.5. Figure 10 shows the aggregated ratings for 48 honest
products (id number is from 1 to 48), when BiasShift2 = 0.15.
Since there are no collaborative unfair ratings for these products,
the aggregated ratings generated by all three schemes are very close
to the product quality.

With the same simulation setup, Figure 11 shows the aggregated
ratings of the 12 dishonest products (id number is from 49 to
60). One can see that the proposed scheme works very well. The
collaborative unfair raters did not affect the aggregated rating much.
In other two schemes, the aggregated ratings are higher than the
actual product quality.

In Figure 12, the PC raters choose BiasShift2 = 0.2. That is,
the PC raters increase the bias in their ratings, compared with the
case in Figure 11. Here, the proposed scheme generate very reliable
aggregated ratings. The largest difference between the aggregated
ratings and the product quality is only 0.02. On the other hand,
this difference in the other two schemes is about 0.1, an order of
magnitude higher!

V. Conclusions

In this paper, we have addressed the problem of detecting and
handling unfair ratings in on-line rating systems. In particular, we
designed a framework for integrating trust into rating aggrega-
tion process, developed an AR signal modeling based detecting

8

0 5 10 15 20 25 30 35 40 45 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Rating Aggregation for Honest Products

Honest product id

R
at

in
g

 a
g

g
re

g
at

io
n

 s
co

re

Simple average Beta function aggregation Modified weighed average Quality of product

Fig. 10. Rating aggregation for honest products (BiasShift = 0.15)

48 50 52 54 56 58 60
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Rating Aggregation for Dishonest Products (BiasShift = 0.15)

Dishonest product id

R
at

in
g

 a
g

g
re

g
at

io
n

 s
co

re

Simple average
Beta function aggregation
Modified weighed average
Quality of product

Fig. 11. Rating aggregation for dishonest products(BiasShift = 0.15)

algorithm, and found a good rating aggregating algorithm through
comparison among existing trust models. The proposed solution
can detect dishonest raters who collaboratively manipulate rating
systems and carefully control their risk of being detected by
providing biased ratings that are not far away from majority’s
opinion. This type of unfair raters is difficult to catch by the
existing approaches. In addition, even before these dishonest raters
are detected, their influence to the system is limited through trust
establishment mechanisms. The future work will be along several
directions. First, we will perform more experiments on real-world
data. Second, we will study the possible attacks to the proposed
solutions and systems.

REFERENCES

[1] C. Dellarocas, “The digitization of word-of-mouth: Promise and challenges of
online reputation systems,” Management Science, vol. 49, no. 10, pp. 1407–
1424, October 2003.

[2] M. Chen and J.P. Singh, “Computing and using reputations for internet ratings,”
in Proceedings of the 3rd ACM conference on Electronic Commerce, 2001.

[3] C. Dellarocas, “Immunizing online reputation reporting systems against unfair
ratings and discriminatory behavior,” in Proceedings of the 2nd ACM conference
on Electronic commerce, 2000.

[4] A. Whitby, A. Jsang, and J. Indulska, “Filtering out unfair ratings in Bayesian
reputation systems,” in Proc. 7th Int. Workshop on Trust in Agent Societies,
2004.

[5] J. Weng, C. Miao, and A. Goh, “An entropy-based approach to protecting rating
systems from unfair testimonies,” IEICE TRANSACTIONS on Information and
Systems, vol. E89-D, no. 9, pp. 2502–2511, September 2006.

[6] J. Zhang and R. Cohen, “Trusting advice from other buyers in e-marketplaces:
the problem of unfair ratings,” in Proceedings of the 8th international
conference on Electronic commerce, 2006.

[7] M.H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley
and Sons, 1996.

[8] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for peer-
to-peer electronic communities,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 7, pp. 843–857, July 2004.

[9] K. Fujimura and T. Nishihara, “Reputation rating system based on past behavior
of evaluators,” in Proceedings of the 4th ACM conference on Electronic
commerce, 2003.

[10] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” in
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp. 164-
173, May 1996.

48 50 52 54 56 58 60
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Rating Aggregation for Dishonest Products (BiasShift = 0.2)

Dishonest product id

R
at

in
g

 a
g

g
re

g
at

io
n

 s
co

re

Simple average
Beta function aggregation
Modified weighed average
Quality of product

Fig. 12. Rating aggregation for dishonest products(BiasShift = 0.2)

[11] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “KeyNote: Trust management
for public-key infrastructures,” Lecture Notes in Computer Science, vol. 1550,
pp. 59–63, 1999.

[12] U. Maurer, “Modelling a public-key infrastructure,” in Proceedings 1996
European Symposium on Research in Computer Security(ESORICS’ 96), volume
1146 of Lecture Notes in Computer Science, pp. 325-350, 1996.

[13] M. K. Reiter and S. G. Stubblebine, “Toward acceptable metrics of authenti-
cation,” in Proceedings of the 1997 IEEE Symposium on Security and Privacy,
1997.

[14] A. Jsang, “An algebra for assessing trust in certification chains,” in Proceedings
of the Network and Distributed Systems Security (NDSS’99) Symposium, 1999.

[15] A. Jsang, R. Ismail, and C. Boyd, “A survey of trust and reputation systems
for online service provision,” in Decision Support Systems, 2005.

[16] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in Proceedings of
12th International World Wide Web Conferences, May 2003.

[17] R. Guha, R. Kumar, P. Raghavan, and A.T. Propagation, “Propagation of trust
and distrust,” in Proceedings of International World Wide Web Conference,
2004.

[18] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer information
system,” in CIKM ’01: Proceedings of the tenth international conference on
Information and knowledge management, New York, NY, USA, 2001, pp. 310–
317, ACM Press.

[19] S. Buchegger and J. L. Boudec, “Performance analysis of the CONFIDANT
protocol,” in Proceedings of ACM Mobihoc, 2002.

[20] Y. Sun, W. Yu, Z. Han, and K. J. Ray Liu, “Information theoretic framework of
trust modeling and evaluation for ad hoc networks,” IEEE JSAC special issue
on security in wireless ad hoc networks, April 2006.

[21] L. Eschenauer, V. Gligor, and J. S. Baras, “On trust establishment in mobile
ad-hoc networks,” in Security Protocols, Proc. of 10th International Workshop,
Springer Lecture Notes in Computer Science (LNCS), April 2002.

[22] S. Ganeriwal and M. B. Srivastava, “Reputation-based framework for high
integrity sensor networks,” in Proceedings of ACM Security for Ad-hoc and
Sensor Networks (SASN), 2004.

[23] N. Shankar and W. Arbaugh, “On trust for ubiquitous computing,” in
Proceedings of Workshop on Security in Ubiquitous Computing, UBICOMP’02,
2002.

[24] M. Langheinrich, “When trust does not compute - the role of trust in ubiquitous
computing,” in Proceedings of UBICOMP’03, 2003.

[25] D. H. McKnight and N. L. Chervany, “The meanings of trust,” MISRC Working
Paper Series, Technical Report 94-04, arlson School of Management, University
of Minnesota, 1996.

[26] C. Dellarocas, “Strategic manipulation of internet opinion forums: Implications
for consumers and firms,” Management Science, October 2006.

[27] Y. Sun, Z. Han, W. Yu, and K. J. Ray Liu, “A trust evaluation framework
in distributed networks: Vulnerability analysis and defense against attacks,” in
Proc. IEEE INFOCOM’06, April 2006.

[28] “Netflix prize dataset,” www.netflixprize.com/download.
[29] Y. Sun and Y. Yang, “Trust establishment in distributed networks: Analysis and

modeling,” submitted to IEEE ICC’07.
[30] A. Jsang and R. Ismail, “The beta reputation system,” in Proceedings of the

15th Bled Electronic Commerce Conference, June 2002.
[31] S. Buchegger and J-Y Le Boudec, “The effect of rumor spreading in reputation

systems in mobile ad-hoc networks,” in Proceedings of Wiopt’03, 2003.

