
A Case for Continuous Data Protection at
Block Level in Disk Array Storages

Weijun Xiao, Student Member, IEEE, Jin Ren, and Qing Yang, Senior Member, IEEE

Abstract—This paper presents a study of data storages for continuous data protection (CDP). After analyzing the existing data

protection technologies, we propose a new disk array architecture that provides Timely Recovery to Any Point in time, referred to as

TRAP. TRAP stores not only the data stripe upon a write to the array but also the time-stamped Exclusive ORs (XORs) of successive

writes to each data block. By leveraging the XOR operations that are performed upon each block write in today’s RAID4/5 controllers,

TRAP does not incur noticeable performance overhead. More importantly, TRAP is able to recover data very quickly to any point in

time upon data damage by tracing back the sequence and history of XORs resulting from writes. What is interesting is that the TRAP

architecture is very space efficient. We have implemented a prototype of the new TRAP architecture using software at the block level

and carried out extensive performance measurements using TPC-C benchmarks running on Oracle and Postgres databases, TPC-W

running on a MySQL database, and file system benchmarks running on Linux and Windows systems. Our experiments demonstrated

that TRAP not only is able to recover data to any point in time very quickly upon a failure but also uses less storage space than

traditional daily incremental backup/snapshot. Compared to the state-of-the-art CDP technologies, TRAP saves disk storage space by

one to two orders of magnitude with a simple and a fast encoding algorithm. In addition, TRAP can provide two-way data recovery with

the availability of only one reference image in contrast to the one-way recovery of snapshot and incremental backup technologies.

Index Terms—Disk array, disk I/O, data storage, data protection and recovery, data backup.

Ç

1 INTRODUCTION

THE RAID architecture [1] has been the most prominent
architecture advance in disk I/O systems for the past

two decades. RAID1 provides 2xN data redundancy to
protect data, while RAID3 through RAID5 store data in
parity stripes across multiple disks to improve space
efficiency and performance over RAID1. The parity of a
stripe is the Exclusive OR (XOR) of all data chunks in the
stripe. If a disk failed at time tt0 and the system found such a
failure at time tt1, the data in the failed disk can be recovered
by doing the XOR among the good disks, which may finish
at tt2. The recovered data is exactly the same image of the
data as it was at time tt0. There are recent research results
that are able to recover data from more than one disk failure
[2], [3], [4], [5], improving the data reliability further.

The question to be asked is: “Can we recover data at
time tt2 to the data image of tt0 after we found out at time tt1
that data was damaged by human errors, software defects,
virus attacks, power failures, or site failures?”

With the rapid advances in networked information
services coupled with the maturity of disk technology, data
damage and data loss caused by human errors, software
defects, virus attacks, power failures, or site failures have
become more dominant, accounting for 60 percent [6] to
80 percent [7] of data losses. Recent research [8], [9] has
shown that data loss or data unavailability can cost up to

millions of dollars per hour in many businesses. The current
RAID architecture cannot protect data from these kinds of
failures because damaged data are not confined to one or
two disks.

Traditional techniques protecting data from the above
failures are mainly periodical (daily or weekly) backups and
snapshots [10], [11], [12]. These techniques usually take a long
time to recover data [13]. In addition, the data between
backups are vulnerable to data loss. More importantly, a
recent research study has shown that 67 percent of backup
data cannot be recovered in the real world [14]. While this fact
is well known, there has been no research study on why this is
the case. Therefore, it remains unclear and an open question
why such high percentage of data recovery failed.

This paper presents an analytical study on snapshot and
backup technologies from the block-level storage point of
view. Our investigation uncovers the limitations of the
existing data protection technologies and provides theore-
tical explanations as to why so many data recoveries (over
67 percent recoveries) failed using these existing technolo-
gies. We show mathematically the data recovery capabilities
and limitations of the existing technologies.

Based on our theoretical results, we propose a new
storage architecture that overcomes the limitations of
existing technologies. We provide a mathematical proof of
the correctness of the new data protection technique.
Besides being able to recover data damaged by various
types of failures, our new architecture provides Timely
Recovery to Any Point in time, hence named TRAP
architecture. The TRAP architecture has optimal space and
performance characteristics [15]. The idea of the new TRAP
architecture is very simple. Instead of providing full
redundancy of data in the time dimension, i.e., keeping a
log of all previous versions of changed data blocks in time

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009 1

. The authors are with the Department of Electrical, Computer, and
Biomedical Engineering, University of Rhode Island, Kingston, RI 02881.
E-mail: {wjxiao, rjin, qyang}@ele.uri.edu.

Manuscript received 11 Aug. 2007; revised 8 Aug. 2008; accepted 11 Aug.
2008; published online 15 Aug. 2008.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-04-0136.
Digital Object Identifier no. 10.1109/TPDS.2008.154.

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

sequence [13], [16], [17], we compute XORs among changed
data blocks along the time dimension to improve perfor-
mance and space efficiency. With a simple and fast
encoding scheme, the new TRAP architecture presents
great space savings because of the content locality that exists
in real-world applications.

We have implemented a prototype of the new TRAP
architecture at the block level using the standard iSCSI
protocol. The prototype is a software module inside an iSCSI
target mountablebyanyiSCSI-compatible initiator. We install
the TRAP prototype on PC-based storage servers as a block-
level device driver and carry out experimental performance
evaluation as compared to traditional data recovery techni-
ques. Linux and Windows systems and three types of
databases, Oracle, Postgres, and MySQL, are installed on
our TRAP prototype implementation. Real-world bench-
marks such as TPC-C, TPC-W, and file system benchmarks
are used as workloads driving the TRAP implementation
under the databases and file systems. Our measurement
results show improvements of up to two orders of magnitude
of the new TRAP architecture over existing technologies in
terms of storage space efficiency. Such order-of-magnitude
improvements are practically important given the exponen-
tial growth of data [18]. We have also carried out data recovery
experiments by selecting any point in time in the past and
recovering data to that time point. Experiments have shown
that all recovery attempts are successful. The recovery time of
the new TRAP architecture is compared with that of existing
reliable storage architectures to show that the new TRAP
architecture canrecover data to any point in time very quickly.

We analyze the capabilities and limitations of existing
data protection technologies in the next section. The
detailed design and implementation of the new TRAP
architecture is presented in Section 3. Section 4 discusses
the system design and implementation, and Section 5
presents the experimental settings and the workload
characteristics. Numerical results and discussions are
presented in Section 6. Related work is discussed in
Section 7. We conclude our paper in Section 8.

2 CAPABILITIES AND LIMITATIONS OF CURRENT

DATA PROTECTION TECHNOLOGIES

Traditionally, data protection has been done using period-
ical backups. At the end of a business day or the end of a
week, data are backed up to tapes. Depending on the
importance of data, the frequency of backups varies. The
higher the backup frequency, the larger the backup storage
required. In order to reduce the backup volume size,
technologies such as incremental backups and copy-on-
write (COW) snapshots have been commonly used. Instead
of making full backups every time, incremental backups
and COW snapshots that only store the changed data are
done more frequently in between full backups. For
example, one can do daily incremental backups and weekly
full backups that are stored at both the production site and
the backup site.

The way incremental backup works is described as
follows: Starting from the previous backup point, the
storage keeps track of all changed blocks. At the backup
time point, a backup volume is formed, consisting of all the
latest changed data blocks. As a result, the incremental

backup contains the newest data that have changed since
the last backup. COW snapshots work differently from the
incremental backup. At the time when a snapshot is created,
a small volume is allocated as a snapshot volume with
respect to the source volume. Upon the first write to a data
block after the snapshot was started, the original data of the
block is copied from the source volume to the snapshot
volume. After copying, the write operation is performed on
the block in the source volume. As a result, the data image
at the time of the snapshot is preserved. Write I/Os after the
first change to a block is performed as usual, i.e., only the
first write to a block copies the original data to the snapshot
volume. There have been many variations of COW snap-
shots in terms of implementation details for performance
and efficiency purposes such as pointer remapping [48],
redirect on writes [19], [49], etc. The main advantage of both
incremental backups and COW snapshots is storage savings
because only changed data are backed up.

Let us consider a data storage that consists of indepen-
dent and equally sized data blocks (the specific size of a
block is not significant in this discussion). Each of these
data blocks is identified by a logic block address (LBA) and
contains a specific data value. Let AA be the entire set of
LBAs of the data storage considered and DD represent the
set of all possible data values contained in data blocks. A
binary relation RR between AA and DD defines a mapping of
addresses to their corresponding data values of the data
storage. Since there is exactly one ordered pair in RR with
each LBA, this binary relation is a function. We refer to this
function as storage data and use FFtt to represent this
function (storage data) from AA to DD at time tt. And we use
FFttðaaÞ to represent the image or data value of an LBA aa.
That is, FFtt contains a set of ordered pairs such as
fðaa11; dd11Þ; ðaa22; dd22Þ . . .g, whereas FFttðaaÞ is an image/data value
of aa such as FFttðaa11Þ ¼ dd11. If AA0 is a subset of AA, i.e., AA0 � A,
then we use FFtt=AA

0 to represent the restriction of FFtt to AA0.
That is, FFtt=AA

0 ¼ FFtt \ ðAA0 �DDÞ [20].
Without loss of generality, let us consider three time

points as shown in Fig. 1. Suppose that time point ii� 11
represents the original time point when data storage
operation starts and time point iiþ 11 represents the current
time point. Suppose a failure occurred at some time near
point iiþ 11. We are interested in recovering data to as it was
at time point ii. We use integer numbers to represent time
points since all storage events occur at discrete time points
with a clear sequential ordering.

Definition 1. Let AAii��AA be a set of LBAs. We define AAii to be a
write set ii if it contains all LBAs whose data value has been
overwritten between time point ii� 11 and time point ii.

Looking at the diagram shown in Fig. 1, we have AAii

containing all LBAs whose data values have been changed
by write operations between time points ii� 11 and ii and
AAiiþ11 containing all those between time point ii and time
point iiþ 11.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 1. A three-point timing diagram: ii� 11 starting point, iiþ 11 current

point, and i recovery point.

Example 1. If we have FFii ¼ fð0; 2Þ; ð1; 5Þ; ð2; 8Þg at time
point ii and FFiiþ11 ¼ fð0; 4Þ; ð1; 5Þ; ð2; 0Þg at time point iiþ 11
because of write operations, then we have AAiiþ11¼f0; 2g.
That is, data values at addresses 0 and 2 have been
changed from 2 and 8 to 4 and 0, respectively, whereas
the data value of address 1 has not been changed, since
time point ii.

It is possible that the overwritten value as seen at time
point ii is the same as the original value at time point ii� 11
caused by one or several write operations between time
points ii� 11 and ii. We therefore define a substantial write set
that actually changed data values as follows:

Definition 2. Let AA0ii � AAii. We define AA0ii to be a substantial
write set ii if the data value of every LBA in AA0ii has been
changed between time point ii� 11 and time point ii.

It should be noted here that the changed data value is
generally not related to the original value because of the
nature of write operations at block-level storages. That is,
FFiiþ11ðaaÞ is independent of FFiiðaaÞ. Furthermore, FFiiðaaÞ is
independent of FFiiðbbÞ for all bb 2 AA and bb 6¼ aa, as stated in the
beginning of this section: data blocks are independent. We
believe this assumption is reasonable because block-level
storages regard each data block as an independent block
without any knowledge of the file systems and applications
above them.

Definition 3. A COW snapshot as seen at time point iiþ 11 that
was started at time point ii is defined as FFii=AAiiþ11, where AAiiþ11

is write set iiþ 11.

As we know, a COW snapshot makes a copy of the
original data upon the first write to the block. As a result, it
keeps a set of original data of all changed blocks since the
snapshot started. Consider the storage data in Example 1.
Suppose the COW snapshot was started at time point ii. At
time point iiþ 11, we have the snapshot {(0, 2), (2, 8)}, which
is FFii=AAiiþ11. That is, AAiiþ11 gives all the LBAs that have been
written, i.e., {0, 2}, and their respective images in the
snapshot should be the same as they were at time point ii,
i.e., {2, 8}.

Lemma 1. If we have storage data at time point iiþ 11 and a COW
snapshot started at time point ii, then we can recover data as
they were at time point ii as follows:

FFii ¼ ðFFiiþ11 � FFiiþ11=AAiiþ11Þ
[
FFii=AAiiþ11; ð1Þ

where “�” and “[” are difference and union operators of sets,
respectively.

The proof of this lemma is straightforward by noting that
FFii=AAiiþ11 is the COW snapshot as seen at time iiþ 11 that was
started at time ii, and FFiiþ11=AAiiþ11 are all storage data that
have been changed since time point ii. Equation (1) replaces
all changed data with the COW snapshot that represents the
original data before changes occur. This is a typical undo
recovery process.

Lemma 1 gives the data recovery capability of COW
snapshot technology. It is able to recover data to a previous
time point provided that the most recent data is available.

This data recovery capability is very useful in practice in
case of data corruption, virus attack, user errors, software
bugs, and so forth. If we know that data was good at a
previous time point when the snapshot was started, we can
go back to that point to recover from failures caused by this
type of events.

Although the COW snapshot can recover data to a
previous time point as stated in Lemma 1, it has limitations.
In particular, if the current data (production data) is
damaged or lost because of hardware failures, OS failures,
outages, or disasters, we cannot recover data to a previous
time point even if we have COW snapshots and previous
backup data that may be safely stored in a remote backup
site. This limitation is formally stated in the following
theorem.

Theorem 1. Suppose the storage data at time point iiþ 11, FFiiþ11,
is not available and the substantial write set AA0ii is not empty
ðAA0ii 6¼ �Þ. COW snapshots cannot recover storage data FFii as
they were at time point ii if AA0ii n� AAiiþ11.

Proof. We prove this theorem by contradiction. Let us
assume that COW snapshots can recover storage data FFii

as they were at time point ii without FFiiþ11. That is, for all
aa 2 AAii, we can reconstruct FFiiðaaÞ from what we have
available:

a. Data backup made previously: FFii�11,
b. COW snapshot as seen at time point ii that was

started at time ii� 11 : FFii�11=AAii, and
c. COW snapshot as seen at time point iiþ 11 that

was started at time ii : FFii=AAiiþ11.

Since different data blocks are independent in our
storage system, for every LBA aa 2 AAii, the only way to
reconstruct its data value, FFiiðaaÞ, is to reconstruct it from
FFii�11ðaaÞ, FFii�11=AAiiðaaÞ, and/or FFii=AAiiþ11ðaaÞ.

Because AA0ii n� AAiiþ11 and AA0ii 6¼ �, there is an LBA that is
in AA0ii but not in AAiiþ11. Let �� be such an LBA such that
�� 2 AA0ii but �� =2 AAiiþ11. Now, consider the three cases:

a. Since �� 2 AA0ii, we have FFiið��Þ 6¼ FFii�11ð��Þ by
Definition 2.

b. Because FFii�11=AAii � FFii�11 and AA0ii � AAii, we have
FFii�11=AAiið��Þ ¼ FFii�11ð��Þ 6¼ FFiið��Þ.

c. The fact that �� =2 AAiiþ11 implies that FFii=AAiiþ11ð��Þ is
undefined because � is not in the domain of
FFii=AAiiþ11.

Furthermore, FFiið��Þ is not related in any way to FFii�11ð��Þ
because of the nature of write operations at block-level
storages. As a result, it is impossible to rebuild FFiið��Þ
from FFii�11ð��Þ; FF ii�11=AAiið��Þ and/or FFii=AAiiþ11ð��Þ, contra-
dicting our assumption that all data blocks can be
reconstructed from snapshots and storage data at time
point ii� 11. Therefore, COW snapshots cannot recover
storage data FFii. tu

Example 2. Consider one example with six blocks in the
storage data, as shown in Fig. 2. At time point ii� 11, we
have fð0; a0Þ; ð1; b0Þ; ð2; c0Þ; ð3; d0Þ; ð4; e0Þ; ð5; f0Þg. From
time point ii� 11 to time point ii, three blocks have been
changed to fð0; a1Þ; ð1; b1Þ; ð3; d1Þg, with the substantial
write set being {0, 1, 3}. From time point ii to time point
iiþ 11, two blocks have been changed to fð3; d2Þ; ð4; e2Þg,

XIAO ET AL.: A CASE FOR CONTINUOUS DATA PROTECTION AT BLOCK LEVEL IN DISK ARRAY STORAGES 3

with the substantial write set being {3, 4}. By Definition 3,

we have snapshot FFii�11=AAii as fð0; a0Þ; ð1; b0Þ; ð3; d0Þg and

snapshot FFii=AAiiþ11 as fð3; d1Þ; ð4; e0Þg. When original data

FFii�11 is unavailable, storage data FFii can be reconstructed

from COW snapshot FFii=AAiiþ11 and FFiiþ11 by replacing the

changed blocks ð3; d2Þ and ð4; e2Þ in FFiiþ11 with original

data blocks ð3; d1Þ and ð4; e0Þ in FFii=AAiiþ11, respectively. If

fresh data FFiiþ11 is damaged, however, FFii cannot be

recovered from FFii�11 and snapshots because substantial

write set AA0ii is not a subset of write set AAiiþ11, as stated in

Theorem 1. In this particular case, data blocks ð0; a1Þ and

ð1; b1Þ cannot be rebuilt from original data FFii�11 and

snapshots in any way.

For the Incremental backup, it keeps the latest changes

on data storage. It is able to recover data to a recent time

point when the original storage data is available. This redo

recovery can be used in practice in case of disk failures,

volume crash, OS failures, outages, disasters, and so on. If

we created a full data backup before the incremental

backup was started, we can reconstruct the storage data
to the latest time point in the case of this type of failures.

However, incremental backups also have limitations.
Particularly, if the current data gets corrupted because of
virus or user errors and it happens that we do not have a
prior full backup, we cannot recover data to a good time
point using incremental backups and current data that are
available. Similar to COW snapshots, we have the following
results.

Definition 4. The incremental backup as seen at time point ii that
was started at time point ii� 11 is defined as FFii=AAii, where AAii

is write set ii.

Lemma 2. If we have storage data at time point ii� 11 and an
incremental backup as seen at time point ii, then we can recover
data as they were at time point ii as follows:

FFii ¼ ðFFii�11 � FFii�11=AAiiÞ
[
FFii=AAii; ð2Þ

where “�” and “[” are difference and union operators of sets,
respectively.

Theorem 2. Suppose the storage data at time point ii� 11, FFii�11,
is not available and substantial write set AA0iiþ11 is not empty
ðAA0iiþ11 6¼ �Þ. Incremental backups cannot recover storage data
FFii as they were at time point ii if AA0iiþ11 n� AAii.

The proofs of the above lemma and theorem are similar
to those of COW snapshots and omitted here.

3 A NEW ARCHITECTURE FOR DATA PROTECTION

As we described in Section 2, snapshots cannot redo storage
data to a recent time point, while incremental backups
cannot undo storage data to a previous good point. The
reason is that snapshots do not keep the fresh data and
incremental backups do not store the original data. To
overcome the limitations, a straightforward approach is to
keep both versions of data every time a data change occurs.
Particularly, at time point ii, both snapshot FFii�11=AAii for the
original data and incremental backup FFii=AAii for the fresh
data as seen at time point ii are stored at the backup volume.
Similarly, FFii=AAiiþ11 and FFiiþ11=AAiiþ11 at time point iiþ 11 are
kept in the storage. From the previous section, one can
easily find that storage data at time point ii, FFii, can be
recovered by using COW snapshot FFii=AAiiþ11 and fresh data
FFiiþ11 when storage data FFii�11 is unavailable or by using
incremental backup FFii=AAii and original data FFii�11 when
fresh data FFiiþ11 is damaged or lost.

Although the above approach can recover data in two
directions, it requires double the amount of storage space
because two versions of changed data are stored at the
backup storage. The question to be asked is: “Can we have
an architecture to provide two-way recovery with the
smaller size storage space?”

This question motivates us to seek for a new data
protection technology. The idea of our new approach is very
simple. Instead of keeping all versions of a data block as it is
being changed by write operations, we keep a log of parities
as a result of each write on the block. Since all parities of
write operations are stored at backup storage volume, our
approach can provide Timely Recovery to Any Point in time

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 2. Undo recovery of COW snapshots.

by parity computation. Therefore, we named our approach
as TRAP. Fig. 3 shows the basic design of the TRAP

architecture. Suppose that at time point ii, the host writes
into a data block with LBA aass that belongs to a data stripe
aa ¼ ðaa11; aa22; . . . ; aass; . . . ; aannÞ. The RAID controller performs
the following operation to update its parity disk:

PPiiðaaÞ ¼ FFiiðaassÞ
M

FFii�11ðaassÞ
M

PPii�11ðaaÞ; ð3Þ

where PPiiðaaÞ is the new parity for the corresponding stripe,
FFiiðaassÞ is the new data for data block aass, FFii�11ðaassÞ is the old
data of data block aass, and PPii�11ðaaÞ is the old parity of the
stripe. Leveraging this computation, TRAP appends the first
part of the above equation, i.e., PP 0iiðaaÞ ¼ FFiiðaassÞ � FFii�11ðaassÞ,
to the parity log stored in the TRAP disk after a simple
encoding box, as shown in Fig. 3.

Fig. 3 considers the simple case of a single block update
for parity computation. When a data stripe involves
multiple block modifications, we can still take advantage
of parity computation for TRAP design. Suppose aass and aatt
are two data blocks of data stripe aa. FFiiðaassÞ and FFiiðaattÞ are
the new data for data block aass and aatt, respectively. The
RAID controller performs the parity computation using the
follow equation:

PPiiðaaÞ ¼ FFiiðaassÞ
M

FFii�11ðaassÞ
� �M

FFiiðaattÞ
M

FFii�11ðaattÞ
� �

M
PPii�11ðaaÞ:

ð4Þ

This algorithm of parity computation is called Read-

Modify-Write, which requires reading the original data
values for all updated data blocks [21]. During the process
of the parity computation, TRAP can append the first two
parts of (4), which respectively reflect the exact changes of
data blocks aass and aatt, to the parity log stored in the TRAP

disk for recovery purposes. It should be mentioned that
there is another algorithm called Reconstruct-Write to
compute the parity for multiple block modifications besides
Read-Modify-Write. Reconstruct-Write reads the data va-
lues for all nonmodified blocks and rebuilds the parity from
the fresh data blocks in one data stripe instead of reusing
the old parity. This algorithm is very efficient for cases
where the whole stripe or most of data blocks in a stripe

need to be updated because it can reduce READ I/O
operations [22]. If parity computation is done in this way,
TRAP cannot take advantage of RAID parity computation
and has to pay an additional cost for parity computation
and encoding. Fortunately, this additional overhead is not

noticeable compared to disk accesses; we will discuss this
overhead further in later sections.

The TRAP architecture makes it possible to recover data
either backward, referred to as “undo,” or forward, referred
to as “redo.” With traditional snapshot or backup storages,
this two-way recovery is impossible, as shown in Section 2.
Existing technologies can only recover data in one direction:
COW snapshots can only recover data by “undo,” while
incremental backups can recover data by “redo.” Being able
to recover data in two directions gives a lot of practical
benefits in terms of recoverability and recovery time.

Consider the parity log corresponding to a data block, aa,
after a series of write operations, the log contains
ðPP 011ðaaÞ; PP 022ðaaÞ; . . . ; PP 0ii�11ðaaÞ; PP 0iiðaaÞ; . . .Þ with time points 11;
22; . . . ; ii� 11, and ii associated with the parities. Suppose that
we only have the data image at time point rr ð11 � rr � iiÞ and
all parities, and we would like to recover data backward or
forward. To do a forward recovery to time point ss ðss > rrÞ,
for example, we perform the following computation for each
data block aa:

FFssðaaÞ ¼ FFrrðaaÞ
M

PP 0rrþ11ðaaÞ
M

. . .
M

PP 0ss�11ðaaÞ
M

PP 0ssðaaÞ;
ð5Þ

where FFssðaaÞ denotes the data value of block aa at time
point ss and FFrrðaaÞ denotes the data value of aa at time
point rr. Note that

PP 0llðaaÞ
M

FFll�11ðaaÞ ¼ FF llðaaÞ
M

FFll�11ðaaÞ
M

FFll�11ðaaÞ ¼ FFllðaaÞ;

for all ll ¼ 11; 22; . . . ; ii. Therefore, (5) gives FFssðaaÞ correctly,
assuming that the data value, FFrrðaaÞ, exists.

The above process represents a typical redo recovery
process while earlier data is available. A backward process
is also possible with the parity log if the newest data is
available by doing the following computation instead of (5):

FFssðaaÞ ¼ FFrrðaaÞ
M

PP 0rrðaaÞ
M

PP 0rr�11ðaaÞ
M

. . .
M

PP 0ssþ11ðaaÞ;
ð6Þ

where ss < rr. This is a typical undo process by using the
newest data that is available. In order to recover data in
either direction, only one reference image is needed along
the time dimension because of the commutative property of
XOR computation. This reference image could be the
original data image, the fresh data image, or any data
image in the middle. It does not need double the size of data
images for two-way recovery.

Besides being able to recover data in two directions,
TRAP is very space efficient. Our extensive experiments
have demonstrated a very strong content locality that exists
in real-world applications and have shown that only
5 percent to 20 percent of bits inside a data block actually
change on a write operation. The parity, PP 0iiðaaÞ, reflects the
exact changes at the bit level of the new write operation on
the existing block. As a result, this parity block contains
mostly zeros with a very small portion of bitstream that is
nonzero. Therefore, it can be easily encoded to a small-size
parity block to be appended to the parity log reducing the
amount of storage space required to keep track of the
history of writes.

XIAO ET AL.: A CASE FOR CONTINUOUS DATA PROTECTION AT BLOCK LEVEL IN DISK ARRAY STORAGES 5

Fig. 3. Block diagram of the TRAP design.

4 SYSTEM DESIGN AND IMPLEMENTATION

We have designed and implemented a software prototype
of TRAP. The software prototype is a block-level device
driver below a file system or database systems. As a result,
our implementation is file system and application indepen-
dent. Any file system or database applications can readily
run on top of our TRAP. The prototype driver takes write
requests from a file system or database system at the block
level. Upon receiving a write request, TRAP performs a
normal write into the local primary storage and at the same
time performs parity computation as described above to
obtain PP 0. The results of the parity computation are then
appended to the parity log corresponding to the same LBA
to be stored in the TRAP storage.

Our implementation is done using the standard iSCSI
protocol, as shown in Fig. 4. In the iSCSI protocol, there are
two communication parties, referred to as the iSCSI initiator
and the iSCSI target [23]. Our TRAP module is implemented
inside the iSCSI target as an independent module. The main
functions inside the TRAP module include parity computa-
tion, parity encoding, and logging. The parity computation
part calculates PP 0iiðaaÞ as discussed above. Our implementa-
tion works on a configurable and fixed block size, referred
to as the parity block size. The parity block size is the basic
unit based on which parity computation is done. All disk
writes are aligned to the fixed parity block size. As a result,
a disk write request may be contained in one parity block or
may go across several blocks, depending on the size and
starting LBA of the write. The parity encoding part uses the
open source [24] library to encode the parity before
appending it to the corresponding parity log. The logging
part organizes the parity log, allocates disk space, and
stores the parity log in the TRAP disk. The TRAP module
runs as a separate thread parallel to the normal iSCSI target
thread. It communicates with the iSCSI target thread using a
shared-queue data structure.

It should be mentioned that we applied a very simple
encoding algorithm from zlib to our implementation
because parties have strong content locality. Although there
are better compressing and encoding algorithms available,
such as motion estimation, running-length encoding [25],
etc., we take a simple approach in this paper.

As shown in Fig. 4, our implementation is on top of the
standard TCP/IP protocol. As a result, our TRAP can be set
up at a remote site from the primary storage through an
Internet connection. Together with a mirror storage at the

remote site, TRAP can protect important data from site
failures or disaster events.

We have also implemented a recovery program for our
TRAP. For a given recovery time point rr, the recovery
program retrieves the parity log to find maximum time
point ss such that ss � rr for every data block that have been
changed. We then decode the parity blocks and compute
XOR using either (5) or (6) to obtain the data block as it was
at time point rr for each block. Next, the computed data are
stored in a temporary storage. Consistency check is then
performed using the combination of the temporary storage
and the mirror storage. The consistency check may be done
several times until the storage is consistent. After consis-
tency is checked, the data blocks in the temporary storage
are stored in place in the primary storage, and the recovery
process is complete.

It should be noted that a bit error in the parity log could
potentially break the entire log chain, which would not be the
case for traditional continuous data protection (CDP), which
keeps all data blocks. There are two possible solutions to this:
adding an error correcting code to each parity block or
mirroring the entire parity log. Fortunately, TRAP uses orders
of magnitude less storage, as will be evidenced in Section 6.
Doubling parity log is still more efficient than traditional
CDP. More research is needed to study the trade-offs
regarding tolerating bit errors in parity logs.

5 EVALUATION METHODOLOGY

This section presents the evaluation methodology that we
use to quantitatively study the performance of TRAP as
compared to other data protection technologies. Our
objective here is to evaluate three main parameters: storage
space efficiency, performance impacts on applications, and
recovery time.

5.1 Experimental Setup

Using our implementation described in the last section, we
install our TRAP on a PC serving as a storage server, shown
in Fig. 4. There are four PCs that are interconnected using
Intel’s NetStructure 10/100/1,000 Mbps 470T switch. Two
of the PCs act as clients running benchmarks. One PC acts
as an application server. The hardware characteristics of the
four PCs are shown in Table 1.

In order to test our TRAP under different applications and
different software environments, we set up both Linux and
Windows operating systems (OSs) in our experiments. The
software environments on these PCs are listed in Table 1. We
install Fedora 4 (Linux Kernel 2.6.9) on one of the PCs and
Microsoft Windows XP Professional on the other PCs. On the
Linux machine, the UNH iSCSI implementation [26] is
installed. On the Windows machines, the Microsoft iSCSI
initiator [27] is installed. Since there is no iSCSI target on
Windows available to us, we have developed our own iSCSI
target for Windows. After installing all the OS and iSCSI
software, we install our TRAP module on the storage server
PC inside the iSCSI targets.

On top of the TRAP module and the OSs, we set up three
different types of databases and two types of file systems.
Oracle Database 10g is installed on Windows XP Profes-
sional. Postgres Database 7.1.3 is installed on Fedora 4.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 4. System architecture of TRAP-4 implementation.

MySQL 5.0 database is set up on Windows. Ext2 and NFTS
are the file systems used in our experiments. To be able to
run real-world Web applications, we install a Tomcat 4.1
application server for processing Web application requests
issued by benchmarks.

5.2 Workload Characteristics

Right workloads are important for performance studies [28].
In order to have an accurate evaluation of the TRAP
architecture, we use real-world benchmarks. The first bench-
mark, TPC-C, is a well-known benchmark used to model the
operational end of businesses where real-time transactions
are processed [29]. TPC-C simulates the execution of a set of
distributed and online transactions (OLTP) for a period of
between 2 and 8 hours. It is set in the context of a wholesale
supplier operating on a number of warehouses and their
associated sales districts. TPC-C incorporates five types of
transactions with different complexities for online and
deferred execution on a database system. These transactions
perform the basic operations on databases such as inserts,
deletes, updates, and so on. At the block storage level, these
transactions will generate reads and writes that will change
data blocks on disks. For the Oracle database, we use one of
the TPC-C implementations developed by the Hammerora
Project [30]. We build data tables for five warehouses with
25 users issuing transactional workloads to the Oracle
database following the TPC-C specification. The installation
of the database including all tables takes totally 3-Gbyte
storage. For the Postgres database, we use the implementa-
tion from TPCC-UVA [31]. Ten warehouses with 50 users are
built on the Postgres database, taking 2-Gbyte storage space.
Details regarding TPC-C workload specification can be found
in [29].

Our second benchmark, TPC-W, is a transactional Web
benchmark developed by the Transaction Processing Perfor-
mance Council that models an online bookstore [32]. The
benchmark comprises a set of operations on a Web server and
a back-end database system. It simulates a typical online/e-
commerce application environment. Typical operations
include Web browsing, shopping, and order processing. We

use the Java TPC-W implementation of the University of
Wisconsin, Madison [33], and build an experimental envir-
onment. This implementation uses Tomcat 4.1 as an applica-
tion server and MySQL 5.0 as a back-end database. The
configured workload includes 30 emulated browsers and
10,000 items in the ITEM TABLE.

Besides benchmarks operating on databases, we have
also formulated file system microbenchmarks as listed in
Table 2. The first microbenchmark, tar, chooses five
directories randomly on the ext2 file system and creates
an archive file using the tar command. We run the tar
command five times. Each time before the tar command is
run, files in the directories are randomly selected and
randomly changed. Similarly, we run zip, latex, and basic
file operations cp/rm/mv on five directories randomly chosen
for five times with random file changes and operations on
the directories. The actions in these commands and the file
changes generate block-level write requests. Two compiler
applications, gcc and VC++6.0, compile the Postgres source
code and our TRAP implementation codes, respectively.
Linux Install, XP Install, and App Install are actual software
installations on the VMWare Workstation that allows
multiple OSs to run simultaneously on a single PC. The
installations include Redhat 8.0, Windows XP, Office 2000,
and Visual C++ for Windows.

6 NUMERICAL RESULTS AND DISCUSSIONS

6.1 Space Usage Evaluation

Our first experiment is to measure the amount of storage
space required to store TRAP data while running bench-
marks on three types of databases: Oracle, Postgres, and
MySQL. We concentrate on block-level storages and
consider three types of data protection technologies in our
experiments. Snapshot stores only changed data blocks at
the end of each run. Traditional CDP stores all versions of a
data block as disk writes occur while running the bench-
marks. TRAP keeps parity logs as described in Section 3. To
make a fair space usage comparison, we have also
performed data compression in the traditional CDP
architecture. The compression is done on the entire log as
opposed to individual blocks. The latter would consume
more space because it cannot take advantage of access

XIAO ET AL.: A CASE FOR CONTINUOUS DATA PROTECTION AT BLOCK LEVEL IN DISK ARRAY STORAGES 7

TABLE 1
Hardware and Software Environments

TABLE 2
File System Microbenchmarks

patterns among different data blocks. The compression
algorithm is based on the open source library [24]. Each
benchmark is run for about 1 hour on a database for a given
block size. We carry out our experiments for six different
parity block sizes: 512 bytes, 4 Kbytes, 8 Kbytes, 16 Kbytes,
32 Kbytes, and 64 Kbytes. Recall that the parity block size is
the basic unit for parity computations. Actual data sizes of
disk write requests are independent of the parity block size
but are aligned with parity blocks. If a write request
changes a data block that is contained in a parity block, then
only one parity computation is done. If a write request
changes a data block that covers more than one parity block,
more parity computations have to be done. Whether or not
a write data is within one parity block depends on the
starting LBA and the size of the write.

Fig. 5 shows the measured results in terms of megabytes
of data stored in the TRAP storage. There are six sets of bars
corresponding to the six different block sizes. Each set
contains four bars corresponding to the amount of data
stored using snapshot, CDP, CDP with compression, and
TRAP, respectively. It is shown in this figure that TRAP
presents dramatic reductions in required storage space
compared to other architectures. For the block size of
8 Kbytes, TRAP reduces the amount of data to be stored in
the TRAP storage by an order of magnitude compared to
CDP. For the block size of 64 Kbytes, the reduction is close
to two orders of magnitude. Even with data compression
being used for CDP, TRAP reduces data size by a factor of
five for the block size of 8 Kbytes and a factor of 23 for the
block size of 64 Kbytes, as shown in the figure.

As shown in Fig. 5, we observed in our experiments that
space efficiency and performance are limited by using the
block size of 512 bytes, the sector size of disks. The reason is
that many write operations write large data blocks of
8 Kbytes or more. Using a 512-byte block size for parity
computation, a write into an 8-Kbyte block fragments the
data into at least 16 different parity groups, giving rise to
more overheads and larger indexing/metadata. In the
following experiments, we consider only the other five
larger parity block sizes.

The results of the TPC-C benchmark on the Postgres
database are shown in Fig. 6. Again, we run the TPC-C on
the Postgres database for approximately 1 hour for each
block size. Because Postgres was installed on a faster PC
with Linux OS, the TPC-C benchmark generated more

transactions on the Postgres database than on the Oracle

database for the same 1-hour period. As a result, a much

larger data set was written, as shown in Figs. 5 and 6. For

the block size of 8 Kbytes, CDP needs about 3.7-Gbyte

storage space to store different versions of changed data

blocks in the 1-hour period. Our TRAP, on the other hand,

needs only 0.198 Gbyte, an order of magnitude savings in

storage space. If data compression is used in CDP,

1.6 Gbytes of data is stored, eight times more than TRAP.

The savings are even greater for larger data block sizes. For

example, for the block size of 64 Kbytes, the TRAP storage

needs 0.23-Gbyte storage, while CDP requires 17.5-Gbyte

storage, close to a two-order-of-magnitude improvement.

Even with data compression, TRAP is 26 times more

efficient than CDP. Notice that larger block sizes reduce

index and metadata sizes for the same amount of data,

implying another important advantage of TRAP since the

space required by TRAP is not very sensitive to block sizes,

as shown in the figure.
Fig. 7 shows the measured results for the TPC-W

benchmark running on the MySQL database using Tomcat

as the application server. We observed similar data

reduction by TRAP as compared to CDP. For example, for

the block size of 8 Kbytes, TRAP stores about 6.5 Mbytes of

data in the TRAP storage during the benchmark run,

whereas traditional CDP keeps 54 Mbytes of data for the

same time period. If the block size is increased to 64 Kbytes,

the amounts of data are about 6 Mbytes and 179 Mbytes for

TRAP and traditional CDP, respectively.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 5. Data size comparison for TPC-C on the Oracle database.
Fig. 6. Data size comparison for TPC-C on the Postgres database.

Fig. 7. Data size comparison for TPC-W on the MySQL database.

Results for file system benchmarks are shown in Figs. 8, 9,

10, and 11. Nine microbenchmarks are run for two different

block sizes: 8 Kbytes and 16 Kbytes. The space savings of

TRAP over other architectures vary from one application to

another with two exceptions of Visual C++6 and Linux

Installation. We observed the largest gain for cp/rm/mv

commands and the smallest for Visual C++6. The largest

gain goes up to two orders of magnitude, while the smallest

gain is about 60 percent. In general, Unix file system

operations demonstrate better content locality. Our analysis

of Microsoft file changes indicates that some file changes

result in a bitwise shift at the block level. Therefore,

XOR operations at the block level are not able to catch the

content locality. The data reduction ratios of all microbe-

nchmarks are shown in Fig. 12 in logarithmic scale. As shown

in the figure, the ratio varies between 1.6 and 256 times.

The average gain for the 8-Kbyte block size is 28 times, and
the average gain for the 16-Kbyte block size is 44 times.

6.2 Performance Impact

Computing and logging parities in the TRAP architecture
may introduce additional overhead in online storages. Such
overhead may negatively impact application performance.
In order to quantify such impacts, we have measured the
additional computation time. Table 3 lists the measured
computation time of our implementation. It can be seen that
the XOR computation takes tens to hundreds of micro-
seconds using the software running on the PC. Similarly,
the encoding/decoding times are in the same range.
Compared to the disk I/O time, these times should be
tolerable in most applications.

In order to see quantitatively how much impact such
additional computation time has on real applications, we
have also measured the TPC-C throughputs while running
TPC-C on the Oracle and Postgres databases with two
storage systems. One storage system has TRAP installed,

XIAO ET AL.: A CASE FOR CONTINUOUS DATA PROTECTION AT BLOCK LEVEL IN DISK ARRAY STORAGES 9

Fig. 8. Data size comparison for microbenchmarks blocksize = 8 Kbytes.

Fig. 9. Data size comparison for microbenchmarks blocksize =

16 Kbytes.

Fig. 10. Data size comparison for microbenchmarks blocksize =

8 Kbytes.

Fig. 11. Data size comparison for microbenchmarks blocksize =

16 Kbytes.

Fig. 12. Data reduction ratio of TRAP over CDP for microbenchmarks.

TABLE 3
Measured Computation Time for XOR and Decoding Process in

the TRAP Implementation on PC1

and the other has no TRAP installed. We then compare the
two measured throughputs and calculate the overhead rate.
The overhead rate is the ratio of the two measured
throughputs minus one. This overhead rate is a measure
of the slowdown of TRAP. Fig. 13 plots the overhead rates
for different block sizes. Most of the overhead rates are less
than 8 percent with one exception of 64 Kbytes on the
Postgres database. The lowest overhead is less than
2 percent for the block size of 16 Kbytes.

It should be noted that our implementation does not
assume a RAID controller. All the parity computations are
done using software and considered extra overhead. As
mentioned previously, TRAP can leverage the parity
computation of RAID controllers. Therefore, if TRAP was
implemented inside a RAID array, the overheads would be
much lower.

6.3 Recovery Time Evaluation

The recovery of data in the real world is measured by two
key parameters: recovery point objective (RPO) and
recovery time objective (RTO) [13], [8]. RPO measures the
maximum acceptable age of data at the time of outage. For
example, if an outage occurs at time tt00 and the system
found such an outage at time tt11, the ideal case is to recover
data as it was right before tt00 or as close to tt00 as possible. A
daily incremental backup would represent an RPO of
approximately 24 hours because the worst-case scenario
would be an outage during the backup, i.e., tt00 is the time
point when a backup has just started. RTO is the maximum
acceptable length of time to resume normal data processing
operations after an outage. RTO represents how long it
takes to recover data. For the above example, if we
successfully recover data at time tt22 after starting the
recovery process at tt11, then the RTO is tt22 � tt11.

Using our recovery program, we carry out experiments
to recover data to different time points in the past. For a
given block size, we first run the TPC-C benchmark on the
Oracle database installed on TRAP for a sufficiently long
time. As a result of the benchmark run, the TRAP storage
was filled with parity logs. We then perform recoveries for
each chosen time point in the past. Because of the time limit,
all our parity logs and data are on disks without tape
storage involved. We have made 30 recovery attempts and
all of them have been able to recover correctly within the

first consistency check. Fig. 14 shows the RTO as a function
of RPO for the five different block sizes. Note that our
recovery process is actually an undo process using (6) as
opposed to (5), which represents a redo process. An undo
process starts with the newest data and traces back the
parity logs, while a redo process starts with a previous data
image and traces forward the parity logs. With the undo
process, RTO increases as RPO increases because the farther
we trace back in the parity logs, the longer time it takes to
recover data. The results would be just the opposite if we
were to recover data using (5). Depending on the types of
outages and failure conditions, one can choose to use either
process to recover data. For example, if the primary storage
is damaged without newest data available, we have to
recover data using a previous backup together with parity
logs using (5). On the other hand, if a user accidentally
performed a wrong transaction, an undo process could be
used to recover data using (6).

Whether we do an undo recovery using (6) or a redo
recovery using (5), RTO depends on the amount of parity data
traversed during the recovery process. To illustrate this
further, we plot RTO as a function of parity log sizes traversed
while doing recovery, as shown in Fig. 15. The recovery time
varies between a few seconds to about 1 hour for the data sizes
considered. In comparison to traditional CDPs that ideally
have the same RTO for different RPOs, this variable recovery
time is disadvantageous. Fortunately, the smaller storage
space required by TRAP may compensate to some extent. It
should be noted that the amount of storage for the traditional
CDP architecture is more than 10 Gbytes, corresponding to
the parity size of 300 Mbytes. Fig. 15 can be used as a guide to
users for choosing a shorter RTO recovery process, depend-
ing on the RPO, the parity log size, and the availability of
newest data or a previous backup.

During our recovery experiments, we observed that
block sizes of 8 Kbytes and 16 Kbytes give the shortest
recovery time, as shown in Figs. 14 and 15. This result can
be mainly attributed to the fact that most disk writes in our
experiments fall into these block sizes. As a result, write
sizes match well with parity block sizes. If the block size for
parity computation were too large or too small, we would
have to perform more parity computations and disk I/Os
than necessary, resulting in a longer recovery time and
higher overhead, as will be discussed shortly.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

Fig. 13. Overhead of TRAP-4.

Fig. 14. The relationship between RPO and RTO.

As shown in (5) or (6), TRAP needs additional XOR

computation for recovering data compared to traditional
CDP. In order to quantify the impacts of the XOR

computation on recovery time, we plot the proportion of
time that the XOR computation takes in the total recovery
time for different block sizes. As shown in Fig. 16, the XOR

computation time is a small fraction of the recovery time for
data recovery. It ranges from a subpercentage to the
maximal of less than 3 percent. This result is expected
because a large proportion of time is spent on I/O
operations for retrieving parity logs.

Let us now compare the recovery time, RTO, of our
TRAP with that of traditional CDP using the measured XOR

and decoding times of TRAP, as shown in Table 3. Since we
have only implemented the recovery program for TRAP but
not for traditional CDP, we will carry out the following
simplified analysis just to approximately compare the two.
Suppose that traditional CDP reads the index node first to
find out the exact location of the data block with a given
time point for each changed data block. Next, the data block
is read out from the CDP storage to a temporary storage. If
we have a total of NNBB changed data blocks, the data
retrieval time for traditional CDP to recover data is
approximately given by

ðinode size=IO RateþBlock size=IO Rateþ2Sþ2RÞNB;

where S and R are the average seek time and rotation
latency of the hard drive, respectively. To recover data,
TRAP needs not only to retrieve the parity log for each data

block but also to decode the parity and compute XORs. Let
TDEC and TXOR denote the decoding time and XOR time.
The data retrieval time for TRAP to recover data is
approximately given by

ðTDEC þTXOR þAvg log size=IO Rateþ SþRÞNB;

where Avg_log_size is the average parity log size for each
data block. Our experiments show that the average log size
is 38 Kbytes. Therefore, an entire log is read from the TRAP
disk every time when we try to recover one block of data. It
is important to note that the data log sizes of traditional
CDP are generally too large to be read in one disk operation.
That is why it needs two disk operations, one for reading
the I-node (header) of the corresponding log and the other
for the data block pointed by the I-node. Using the above
two formulas, we plot the data retrieval time of the TRAP
and traditional CDP architectures, as shown in Fig. 17,
assuming the average seek time to be 9 ms, the average
rotation latency to be 4.15 ms, and the IO_Rate to be
45 Mbytes/s. Note that the time it takes to do a consistency
check and a write in place should be the same for both
systems. As shown in the figure, TRAP generally takes a
shorter time to retrieve data from the TRAP storage even
though additional computations are necessary for decoding
and XOR. However, the actual recovery time depends on the
real implementation of each recovery algorithm and many
other factors such as caching effect and indexing structure.

7 RELATED WORK

Depending on the different values of RPO and RTO, there
exist different storage architectures capable of recovering
data upon an outage. We summarize existing related works
in three different categories based on different RPOs.

Snapshot or incremental backup. Data protection and
recovery have traditionally been done using periodical
backups [10], [12] and snapshots [11]. Typically, backups
are done nightly when data storage is not being used since
the process is time consuming and degrades application
performance. During the backup process, user data are
transferred to a tape, a virtual tape, or a disk for disk-to-disk
backup [10], [34]. To save backup storage, most organiza-
tions perform full backups weekly or monthly with daily
incremental backups in between. Data compression is often
used to reduce the backup storage space [12], [35]. A good
survey of various backup techniques can be found in [12].

XIAO ET AL.: A CASE FOR CONTINUOUS DATA PROTECTION AT BLOCK LEVEL IN DISK ARRAY STORAGES 11

Fig. 15. RTO versus parity sizes.

Fig. 16. Time comparison of XOR computation.

Fig. 17. Retrieval time comparison for recovery between CDP and TRAP.

Snapshot is a functionality that resides in most modern disk
arrays [36], [37], [38], file systems [34], [39], [40], [41], [42],
[43], [44], [45], volume managers [46], [47], NAS filers
(network attached storages) [48], [49], [50], and backup
software. A snapshot is a point-in-time image of a collection
of data allowing online backup. A full-copy snapshot creates
a copy of the entire data as a read-only snapshot storage
clone. To save space, the COW snapshot copies a data block
from the primary storage to the snapshot storage upon the
first write to the block after the snapshot was created [47]. A
snapshot can also redirect all writes to the snapshot storage
[11], [49] after the snapshot was created. Typically, snap-
shots can be created up to a half dozen a day [46] without
significantly impacting application performance.

File versioning. Besides periodical data backups, data
can also be protected at the file system level using file
versioning, which records a history of changes to files.
Versioning was implemented by some early file systems
such as the Cedar File System [41], 3DFS [51], and CVS [52]
to list a few. Typically, users need to create versions
manually in these systems. There are also COW versioning
systems exemplified by Tops-20 [53] and VMS [54] that have
automatic versions for some file operations. Elephant [45]
transparently creates a new version of a file on the first write
to an open file. CVFS [55] versions each individual write or
small metadata using highly efficient data structures.
OceanStore [56] uses versioning not only for data recovery
but also for simplifying many issues with caching and
replications. The LBFS [57] file system exploits similarities
between files and versions of the same files to save network
bandwidth for a file system on low-bandwidth networks.
Peterson and Burns have recently implemented the ext3cow
file system that brings snapshot and file versioning to the
open source community [40]. Other programs such as rsync,
rdiff, and diff also provide versioning of files. To improve
efficiency, flexibility, and portability of file versioning,
Muniswamy-Reddy et al. [58] presented a lightweight
user-oriented versioning file system called Versionfs that
supports various storage policies configured by users.

File versioning provides a time-shifting file system that
allows a system to recover to a previous version of files.
These versioning file systems have controllable RTO and
RPO. But they are generally file system dependent and may
not be directly applicable to enterprise data centers that use
different file systems and databases.

Traditional CDP. To provide timely recovery to any point
in time at the block level, one can keep a log of changed data
for each data block in a time sequence [13], [16], [59]. In the
storage industry, this type of storage is usually referred to as
the CDP storage. Laden et al. proposed four alternative
architectures for CDP in a storage controller and compared
them analytically with respect to both write performance and
space usage overhead [60]. Zhu and Chiueh proposed a user-
level CDP architecture that is both efficient and portable [61].
They implemented four variants of this CDP architecture for
NFS servers and compared their performance characteristics.
Lu et al. presented an iSCSI storage system named Mariner to
provide comprehensive CDP on commodity ATA disk and
Gigabit Ethernet technologies [62]. The main drawback of the
CDP storage is the huge amount of storage space required,

which has thus far prevented it from being widely adopted.
There have been research efforts attempting to reduce the
storage space requirement for traditional CDP. Flouris and
Bilas [63] proposed a storage architecture named Clotho
providing transparent data versioning at the block level.
Clotho coalesces the updates that take place within a period
of time by creating new versions for them. This versioning
happens at discrete time points, not necessarily continuous
as done in CDP. What is interesting in their work is that they
observed storage space savings by binary differential
compression to store only the delta data that has been
modified since the last version. Morrey III and Grunwald [16]
observed that for some workloads, a large fraction of disk
sectors to be written contain identical content to previously
written sectors within or across volumes. By maintaining
information (128-bit content summary hash) about the
contents of individual sectors, duplicate writes are avoided.
Zhu et al. [35] proposed an efficient storage architecture that
identifies previously stored data segments to conserve
storage space. A recent study [64] described three techniques
to avoid the disk bottleneck in the Data Domain deduplica-
tion file system. These data reduction techniques generally
require a search in the storage for an identical data block
before a write is performed. Such a search operation is
generally time consuming, although a smart search algo-
rithm and intelligent cache designs can help in speeding up
the process [16], [35]. These data reduction techniques are
more appropriate for periodic backups or replications where
timing is not as much a critical concern as the timing of online
storage operations.

It should be noted that keeping a log of changed data has
been studied and used in other contexts other than data
recovery. For example, the log-structured file system has
been researched extensively for improving disk write
performance [65], [66]. There are variations of such log-
structured file system, such as DCD [28] proposed by Hu
and Yang and Vagabond [67] proposed by Norvag and
Bratbergsengen for optimizing disk write performance.
Norvag and Bratbergsengen also noticed the space savings
of storing a delta object in the buffer space when an object is
changed, which suggests that data locality exists in write
operations.

8 CONCLUSIONS

We have presented a novel disk array architecture capable
of providing Timely Recovery to Any Point in time for
CDP, referred to as the TRAP architecture. A prototype of
the new TRAP architecture has been implemented as a
block-level device driver. File systems such as ext2 and
NTFS and databases such as Oracle, Postgres, and MySQL
have been installed on the prototype implementation. Real-
world benchmarks including TPC-C, TPC-W, and file
system benchmarks are used to test the performance of
the new storage architecture. Extensive experiments have
demonstrated improvements of up to two orders of
magnitude in terms of storage efficiency. In addition, we
have given theoretical proofs for the one-way recovery of
traditional snapshots and incremental backups compared to
the two-way recovery of the TRAP architecture. Recovery
experiments have also been carried out several dozen times

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

to show the quick recovery time of the new architecture.

Measurements have also shown that the new architecture

has little negative performance impact on application

performance while providing CDP capability.

ACKNOWLEDGMENTS

This research is sponsored in part by the US National

Science Foundation (NSF) under Grant CCR-0312613, SGER

Grants 0610538, and CCF-0811333. This work is also

supported in part by the National Natural Science Founda-

tion of China under Grant NSFC-60736013. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not

necessarily reflect the views of the NSF. The authors would

like to thank the anonymous reviewers for the valuable

comments that improved the quality of this paper.

REFERENCES

[1] D.A. Patterson, G. Gibson, and R.H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” Proc. ACM SIGMOD ’88,
pp. 109-116, 1988.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An
Optimal Scheme for Tolerating Double Disk Failures in RAID
Architectures,” Proc. 21st Ann. Int’l Symp. Computer Architecture
(ISCA), 1994.

[3] G.A. Alvarez, W.A. Burkhard, and F. Christian, “Tolerating
Multiple Failures in RAID Architectures with Optimal Storage
and Uniform Declustering,” Proc. 24th Ann. Int’l Symp. Computer
Architecture (ISCA), 1997.

[4] C.I. Park, “Efficient Placement of Parity and Data to Tolerate Two
Disk Failures in Disk Arrays Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 6, pp. 1177-1184, Nov. 1995.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar, “Row-Diagonal Parity for Double Disk Failure
Correction,” Proc. Third Usenix Conf. File and Storage Technologies
(FAST ’04), Mar. 2004.

[6] D.M. Smith, “The Cost of Lost Data,” J. Contemporary Business
Practice, vol. 6, no. 3, 2003.

[7] D. Patterson et al., “Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies,” Computer
Science Technical Report UCB/CSD-0201175, Univ. of California,
Berkeley, Mar. 2002.

[8] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes, “Designing
for Disasters,” Proc. Third Usenix Conf. File and Storage Technologies
(FAST), 2004.

[9] D. Patterson, “A New Focus for a New Century: Avail-
ability and Maintainability >> Performance,” FAST Keynote,
http://www.cs.berkeley.edu/~patterson/talks/keynote.html,
Jan. 2002.

[10] M. Rock and P. Poresky, “Shorten Your Backup Window,” Storage,
special issue on managing the information that drives the
enterprise, pp. 28-34, Sept. 2005.

[11] G. Duzy, “Match Snaps to Apps,” Storage, special issue on
managing the information that drives the enterprise, pp. 46-52,
Sept. 2005.

[12] A.L. Chervenak, V. Vellanki, and Z. Kurmas, “Protecting File
Systems: A Survey of Backup Techniques,” Proc. Joint NASA and
IEEE Mass Storage Conf., Mar. 1998.

[13] J. Damoulakis, “Continuous Protection,” Storage, vol. 3, no. 4,
pp. 33-39, June 2004.

[14] The 451 Group, Total Recall: Challenges and Opportunities for the
Data Protection Industry, http://www.the451group.com/reports/
executive_summary.php?id=218, May 2006.

[15] Q. Yang, W. Xiao, and J. Ren, “TRAP-Array: A Disk Array
Architecture Providing Timely Recovery to Any Point-in-
Time,” Proc. 33rd Int’l Symp. Computer Architecture (ISCA ’06),
June 2006.

[16] C.B. Morrey III and D. Grunwald, “Peabody: The Time Traveling
Disk,” Proc. 11th NASA Goddard/20th IEEE Conf. Mass Storage
Systems and Technologies (MSST ’03), Apr. 2003.

[17] B. O’Neill, “Any-Point-in-Time Backups,” Storage, special issue on
managing the information that drives the enterprise, Sept. 2005.

[18] J. Gray, Turing Lectures, http://research. Microsoft.com/~gray,
2008.

[19] H. Simitci, Storage Network Performance Analysis. Wiley, 2003.
[20] J.P. Tremblay and R. Manohar, Discrete Mathematical Structures

with Applications to Computer Science. McGraw-Hill, 1975.
[21] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson,

“RAID: High-Performance, Reliable Secondary Storage,” ACM
Computing Surveys, June 1994.

[22] HP Corporation, Miscellaneous RAID-5 Operations, http://www.
docs.hp.com/en/B7961-90018/ch08s12.html, 2001.

[23] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and
E. Zeidner, iSCSI Draft Standard, http://www.ietf.org/internet-
drafts/draftietf-ips-iscsi-20.txt, Jan. 2003.

[24] G. Roelofs and J.L. Gailly, zlib Library, http://www.zlib.net, 2005.
[25] B. Furht, J. Greenberg, and R. Westwater, Motion Estimation

Algorithms for Video Compression. Springer, 1996.
[26] UNH, iSCSI Reference Implementation, http://unh-iscsi.source

forge.net, 2005.
[27] Microsoft Corporation, Microsoft iSCSI Software Initiator

Version 2.0, http://www.microsoft.com/windowsserversystem/
storage/default.mspx, 2005.

[28] Y. Hu and Q. Yang, “DCD-Disk Caching Disk: A New Approach
for Boosting I/O Performance,” Proc. 23rd Ann. Int’l Symp.
Computer Architecture (ISCA ’96), May 1996.

[29] Transaction Processing Performance Council, TPC BenchmarkTM
C Standard Specification, http://tpc.org/tpcc., 2005.

[30] S. Shaw, Hammerora: Load Testing Oracle Databases with Open Source
Tools, http://hammerora.sourceforge.net, 2004.

[31] J. Piernas, T. Cortes, and J.M. Garcı́a, TPCC-UVA: A Free,
Open-Source Implementation of the TPC-C Benchmark, http://
www.infor.uva.es/~diego/tpcc-uva.html, 2005.

[32] H.W. Cain, R. Rajwar, M. Marden, and M.H. Lipasti, “An
Architectural Evaluation of Java TPC-W,” Proc. Seventh Int’l Symp.
High-Performance Computer Architecture (HPCA ’01), Jan. 2001.

[33] M.H. Lipasti, Java TPC-W Implementation Distribution, http://
www.ece.wisc.edu/~pharm/tpcw.shtml, 2003.

[34] L.P. Cox, C.D. Murray, and B.D. Noble, “Pastiche: Making Backup
Cheap and Easy,” Proc. Fifth Usenix Symp. Operating System Design
and Implementation (OSDI ’02), Dec. 2002.

[35] M.B. Zhu, K. Li, and R.H. Patterson, Efficient Data Storage System,
US patent 6 928 526.

[36] E.K. Lee and C.A. Thekkath, “Petal: Distributed Virtual Disks,”
Proc. ACM Seventh Int’l Conf. Architecture Support for Programming
Languages an Operating Systems (ASPLOS-7), 1996.

[37] EMC Corporation, EMC TimeFinder Product Description Guide,
http://www.emc.com/products/product_pdfs/timefinder_
pdg.pdf, 1998.

[38] Hitachi Ltd., Hitachi ShadowImage Implementation Service, http://
www.hds.com/pdf_143_implem_shadowimage.pdf, June 2001.

[39] J.J. Kistler and M. Satyanarayanan, “Disconnected Operation in
the Coda File System,” Proc. 13th ACM Symp. Operating System
Principles (SOSP ’91), Oct. 1991.

[40] Z. Peterson and R.C. Burns, “Ext3cow: A Time-Shifting File
System for Regulatory Compliance,” ACM Trans. Storage, vol. 1,
no. 2, pp. 190-212, 2005.

[41] D.K. Gifford, R.M. Needham, and M.D. Schroeder, “Cedar File
System,” Comm. ACM, vol. 31, no. 3, pp. 288-298, Mar. 1988.

[42] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols,
M. Satyanarayanan, R.N. Sidebotham, and M.J. West, “Scale
and Performance in a Distributed File System,” ACM Trans.
Computer Systems, vol. 6, no. 1, pp. 51-81, Feb. 1988.

[43] N.C. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz,
S. Kleiman, and S. O’Malley, “Logical versus Physical File
System Backup,” Proc. Third Usenix Symp. Operating System
Design and Implementation (OSDI ’99), pp. 239-250, Feb. 1999.

[44] S. Quinlan and S. Dorward, “Venti: A New Approach to Archival
Storage,” Proc. Usenix Conf. File and Storage Technologies (FAST ’02),
pp. 89-101, Jan. 2002.

[45] D.S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Veitch,
R.W. Carton, and J. Ofir, “Deciding When to Forget in the
Elephant File System,” Proc. 17th ACM Symp. Operating System
Principles (SOSP ’99), pp. 110-123, Dec. 1999.

[46] A. Sankaran, K. Guinn, and D. Nguyen, Volume Shadow Copy
Service, http://www.microsoft.com, Mar. 2004.

XIAO ET AL.: A CASE FOR CONTINUOUS DATA PROTECTION AT BLOCK LEVEL IN DISK ARRAY STORAGES 13

[47] A.J. Lewis, J. Thormer, and P. Caulfield, LVM How-To, http://
www.tldp.org/HOWTO/LVM-HOWTO.html, 2006.

[48] D. Hitz, J. Lau, and M. Malcolm, “File System Design for an
NFS File Server Appliance,” Proc. Usenix Winter Technical Conf.,
pp. 235-245, 1994.

[49] W. Xiao, Y. Liu, Q. Yang, J. Ren, and C. Xie, “Implementation and
Performance Evaluation of Two Snapshot Methods on iSCSI
Target Storages,” Proc. 14th NASA Goddard/23rd IEEE Conf. Mass
Storage Systems and Technologies (MSST ’06), May 2006.

[50] G.A. Gibson and R.V. Meter, “Network Attached Storage
Architecture,” Comm. ACM, vol. 43, no. 11, pp. 37-45, Nov. 2000.

[51] D.G. Korn and E. Krell, “The 3-D File System,” Proc. Usenix
Summer Conf., pp. 147-156, 1989.

[52] B. Berliner and J. Polk, Concurrent Versions System (CVS), http://
www.cvshome.org, 2001.

[53] L. Moses, “An Introductory Guide to TOPS-20,” Technical
Report TM-82-22, Information Sciences Inst., Univ. of Southern
California, 1982.

[54] K. McCoy, VMS File System Internals. Digital Press, 1990.
[55] C.A.N. Soules, G.R. Goodson, J.D. Strunk, and G.R. Ganger,

“Metadata Efficiency in Versioning File Systems,” Proc. Second
USENIX Conf. File and Storage Technologies (FAST ’03), pp. 43-
58, Mar. 2003.

[56] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz, “Pond: The OceanStore Prototype,” Proc. Second
Usenix Conf. File and Storage Technologies (FAST ’03), Mar. 2003.

[57] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-Bandwidth
Network File System,” Proc. 18th ACM Symp. Operating Systems
Principles (SOSP ’01), Oct. 2001.

[58] K. Muniswamy-Reddy, C.P. Wright, A. Himmer, and E. Zadok,
“A Versatile and User-Oriented Versioning File System,” Proc.
Third Usenix Conf. File and Storage Technologies (FAST), 2004.

[59] J. Damoulakis, “Time to Say Goodbye to Backup,” Storage, vol. 4,
no. 9, pp. 64-66, Nov. 2006.

[60] G. Laden, P. Ta-shma, E. Yaffe, and M. Factor, “Architectures for
Controller Based CDP,” Proc. Fifth Usenix Conf. File and Storage
Technologies (FAST ’07), Feb. 2007.

[61] N. Zhu and T. Chiueh, “Portable and Efficient Continuous Data
Protection for Network File Servers,” Proc. 37th Ann. IEEE/IFIP
Int’l Conf. Dependable Systems and Networks (DSN ’07), June 2007.

[62] M. Lu, S. Lin, and T. Chiueh, “Efficient Logging and Replication
Techniques for Comprehensive Data Protection,” Proc. 24th IEEE
Conf. Mass Storage Systems and Technologies (MSST), Sept. 2007.

[63] M.D. Flouris and A. Bilas, “Clotho: Transparent Data Versioning
at the Block I/O Level,” Proc. 12th NASA Goddard/21st IEEE Conf.
Mass Storage Systems and Technologies (MSST ’04), Apr. 2004.

[64] B. Zhu and K. Li, “Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System,” Proc. Sixth Usenix Conf. File
and Storage Technologies (FAST), 2008.

[65] M. Rosenblum and J. Ousterbout, “The Design and Implementa-
tion of a Log-Structured File System,” ACM Trans. Computer
Systems, pp. 26-52, Feb. 1992.

[66] M. Seltzer, K. Bostic, M.K. McKusick, and C. Staelin, “An
Implementation of a Log-Structured File System for UNIX,” Proc.
Winter Usenix Technical Conf., pp. 307-326, Jan. 1993.

[67] K. Norvag and K. Bratbergsengen, “Log-Only Temporal Object
Storage,” Proc. Eighth Int’l Conf. Database and Expert Systems
Applications (DEXA ’97), Sept. 1997.

Weijun Xiao received the bachelor’s and
master’s degrees in computer science from
Huazhong University of Science and Technol-
ogy, China, in 1995 and 1998, respectively. He
is currently a PhD candidate in the Department
of Electrical, Computer, and Biomedical Engi-
neering, University of Rhode Island, Kingston.
His research interests include computer archi-
tecture, networked storage system, embedded
system, and performance evaluation. He is a

student member of the IEEE and the IEEE Computer Society.

Jin Ren received the bachelor’s degree in
material science and engineering and the
master’s degree in computer science from
Huazhong University of Science and Technol-
ogy, China, in 1999 and 2002, respectively. He
is currently a PhD candidate in the Department
of Electrical, Computer, and Biomedical En-
gineering, University of Rhode Island, Kingston.
His research interests include computer archi-
tecture, networked storage system, and perfor-
mance evaluation.

Qing Yang received the BSc degree in compu-
ter science from Huazhong University of
Science and Technology, Wuhan, China, in
1982, the MASc degree in electrical engineering
from the University of Toronto, Canada, in 1985,
and the PhD degree in computer engineering
from the Center for Advanced Computer Stu-
dies, University of Louisiana, Lafayette, in 1988.
Presently, he is a distinguished engineering
professor in the Department of Electrical,

Computer, and Biomedical Engineering, University of Rhode Island,
Kingston, where he has been a faculty member since 1988. His
research interests include computer architectures, memory systems,
disk I/O systems, data storages, parallel and distributed computing,
performance evaluation, and local area networks. He is a senior
member of the IEEE and the IEEE Computer Society and a member of
the ACM SIGARCH.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. X, XXX 2009

