
Design and Analysis of Block-Level Snapshots
for Data Protection and Recovery

Weijun Xiao, Member, IEEE, Qing Yang, Senior Member, IEEE,

Jin Ren, Changsheng Xie, and Huaiyang Li

Abstract—This paper presents a comprehensive study on implementations and performance evaluations of two snapshot techniques:

copy-on-write snapshot and redirect-on-write snapshot. We develop a simple Markov process model to analyze data block behavior

and its impact on application performance, while the snapshot operation is underway at the block-level storage. We have implemented

the two snapshots techniques on both Windows and Linux operating systems. Based on our analytical model and our implementation,

we carry out quantitative performance evaluations and comparisons of the two snapshot techniques using IoMeter, PostMark, TPC-C,

and TPC-W benchmarks. Our measurements reveal many interesting observations regarding the performance characteristics of the

two snapshot techniques. Depending on the applications and different I/O workloads, the two snapshot techniques perform quite

differently. In general, copy-on-write performs well on read-intensive applications, while redirect-on-write performs well on write-

intensive applications.

Index Terms—Data storage, data protection, snapshot, copy-on-write, redirect-on-write.

Ç

1 INTRODUCTION

AS organizations and businesses depend more and more
on digital information, data protection and disaster

recovery have become the top challenge for data storage
designers and administrators. In most storage systems, data
protection relies on periodic backup [1] and remote
replications [2], [3]. Both backup and replication often
make use of snapshot technologies to simplify backup and
recovery process. A snapshot creates a point-in-time image
of a data storage volume by making a full copy (clone) or
a differential copy of the volume. The differential copy
snapshot improves space efficiency upon full copy snapshot
because only changes to the volume are stored after the
snapshot. There are basically two types of differential
snapshots: copy-on-write [7] and redirect-on-write [34].

While snapshot technologies have been widely used in

various storage products for the purpose of data backup
and data protections, little is known in the open literature

about the principle of snapshots, data recoverability of
various snapshot techniques, and their impacts on applica-
tion performance. Because of such lack of understanding, a

large percentage of data recoveries based on snapshots
failed in the real world [4]. While this fact is well known,
there has been no research study on why this is the case

except for our recent analytical study that uncovered
several important unknown issues [5]. Therefore, we believe
that it is very important to understand how snapshot
techniques work and how they protect and recover data.

In addition to the understanding of how snapshots work
and how to recover data, it is also very important to
understand their performance impacts because snapshots
are runtime operations. There has been no performance
evaluation of snapshot techniques in the research literature
except for some scattered product information from storage
vendors. For example, Microsoft suggests that users should
not create snapshots more frequently than once per hour
with the default configuration being two snapshots per day
(Microsoft’s snapshot is done in Virtual Shadow Copy
Service). Otherwise, performance impact would be signifi-
cant [6]. We believe that it is desirable and important to
have a clear understanding of the performance character-
istics of various snapshot techniques independent of
specific vendor products. Such clear understanding will
benefit storage designers in making design decisions and
playing trade-offs between the performance and cost. It will
also benefit storage users in their storage configuration and
planning for data protection and recovery.

We present in this paper a simple mathematical analysis
of the snapshot techniques using a Markov process. Our
model provides insightful details helping storage research-
ers and designers in understanding how snapshots work
and how they impact application performance at runtime.
In addition to the analytical modeling, we have developed
and implemented the two snapshot techniques on Windows
operating system as well as Linux operating system. Our
implementations accurately characterize the performance of
different snapshot methods independent of other storage
optimization techniques. We have tested our implementa-
tions with many applications such as MySQL database,
Postgres database, NTFS, Tomcat 4.1, and more to show

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. XX, XXXXXXX 2009 1

. W. Xiao, Q. Yang, and J. Ren are with the Department of Electrical,
Computer, and Biomedical Engineering, The University of Rhode Island,
4 East Alumni Ave, Kingston, RI 02881.
E-mail: {wjxiao, qyang, rjin}@ele.uri.edu.

. C. Xie and H. Li are with the Department of Computer Engineering,
National Laboratory for Data Storage Systems, Huazhong University of
Science and Technology, Wuhan, Hubei 430074, P.R. China.
E-mail: cs_xie@mail.hust.edu.cn, lhyclh@sohu.com.

Manuscript received 5 Feb. 2008; revised 21 Nov. 2008; accepted 11 Mar.
2009; published online 23 July 2009.
Recommended for acceptance by A. George.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-02-0056.
Digital Object Identifier no. 10.1109/TC.2009.107.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

that they are fairly robust. We carry out measurement
experiments on the snapshot implementations to validate
our analytical model, and then, to evaluate and compare the
performance impacts of the snapshots techniques on
application performance using standard benchmarks in-
cluding IoMeter, PostMark, TPC-C, and TPC-W.

Our analysis and measurements allow us to make
several interesting observations on the two snapshot
techniques. For example, for applications with large
proportion of write I/Os, redirect-on-write performs better
than copy-on-write snapshot for small block sizes. As the
block size increases, such difference diminishes. For read-
intensive applications, the results are quite different. There
are many factors affecting the snapshot performance
including basic hashing unit for doing the snapshot, write
frequency, I/O request sizes, and overwrite rate, etc. We
use our measurement results to analyze in detail how these
factors affect storage performance.

The paper is organized as follows: In the next section,
we present the background and related work. Section 3
gives a Markov process model for analyzing the behavior
of data blocks when snapshots start. The detailed design
and implementations are discussed in Section 4. Section 5
describes our experimental settings for our performance
evaluations. Numerical results and discussions are given
in Section 6. We conclude our paper in Section 7.

2 BACKGROUND AND RELATED WORK

A snapshot creates a storage image at a point in time for the
purpose of data backup and protection. One can create a
copy of entire storage, called cloning, as a snapshot, or
record only the changed blocks, called differential snap-
shots, to save storage space. There are basically two types of
differential snapshots: copy-on-write (COW) snapshot and
redirect-on-write (ROW) snapshot.

Copy-on-write snapshot. At the time when the snapshot
is created, a small volume is allocated as a snapshot volume
with respect to the source volume. Upon the first write to a
data block after the snapshot, the original data of the block
are copied from the source volume to the snapshot volume.
After copying, the write operation is performed on the block
in the source volume. As a result, the data image at the time
of the snapshot is preserved. The combination of the source
volume and the snapshot volume presents the point-in-time
image of the data. After the snapshot is created, all
subsequent read I/Os are performed on the source volume.
Write I/Os after the first change to a block are also
performed on the source volume, i.e., only the first write
to a block copies the original data to the snapshot volume.

Redirect-on-write snapshot. Copy-on-write requires
three I/O operations upon the first write to a block [7]:
1) read the original block from the source volume; 2) write
the original block to the snapshot volume; and 3) write the
new data in the source volume. These I/O operations are
done at production time, which may negatively impact
application performance. To overcome this, one can do
redirect-on-write that leaves the original block in the source
volume intact and the new write operation is performed on
the snapshot volume. This eliminates the extra I/O opera-
tions of the copy-on-write method. After the snapshot, all

subsequent write I/Os are performed on the snapshot
volume, while read I/Os may be from source volume or
snapshot volume depending on whether the block has been
changed since the snapshot. The point-in-time image of the
data at the time of a snapshot is the source volume itself
since the source volume has been read-only since the
snapshot time. The source volume will be updated at a later
time, hopefully not in production time, by copying data
from the snapshot volume.

It should be mentioned that COW copies only the
original data to the snapshot volume upon the first write
to a data block at production time, while ROW redirects all
writes to the snapshot. From the performance point of view,
there is a trade-off between COW and ROW. This trade-off
is similar to the trade-off between buying and renting. COW
(analogous to buying) pays a higher upfront cost but is
profitable if there are lots of subsequent accesses. ROW
(analogous to renting) pays low costs upfront but the costs
are incurred on an ongoing basis. The background costs
come from the time necessary to identify the data blocks
and possibly merge data from the source volume and
snapshot volume.

Snapshot has been widely used in the storage industry
for data protection and data recovery. A good summary of
various snapshot methods can be found in [7]. In general, a
snapshot can be used in a file system for versioning or it can
be used in a block-level device for backup and recovery of a
data volume.

For file versioning, a snapshot can be implemented
efficiently with the availability of file system intelligence
and access to indexes. For example, Peterson and Burns [8]
designed a versioning file system named as Ext3cow that
uses snapshot functionality. Although the snapshot is called
copy-on-write, the actual implementation allocates a new
block for a new write and preserves a copy of the old block
in the old version. The pointer in the I-node will be updated
to reflect different versions of the file. Similarly, NetApp’s
WAFL (Write Anywhere File Layout) writes a new data
block to another place on the disk and changes the I-node to
point to the new block. The point-in-time snapshot image
still refers to the original block that is unmodified on the
disk [9]. Clotho implements remap-on-write to provide
transparent data versioning as a Linux device driver [10].
From performance point of view, these file-system-based
snapshots should be similar to the redirect-on-write de-
scribed in this paper. There are many versioning file systems
such as Tops-20 [11], VMS [12], Elephant [13], and CVFS [14]
that make use of copy-on-write snapshot.

For data backup and recovery, Plan 9 [15], Petal [16],
Microsoft Volume Shadow Copy Service (VSS) [17], and
Spiralog [18] backup systems use copy-on-write to create
snapshots. Plan 9 backups data daily by creating snapshots
of the file system. When creating a snapshot, it freezes the
state of the file system and makes subsequent modifications
to a copy of the frozen data [1], [15]. Petal creates a virtual
disk backup using tar command through snapshots [16].
VSS provides a backup infrastructure for Microsoft Win-
dows XP and Microsoft Windows Server 2003 operating
systems, as well as a mechanism for creating consistent

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. XX, XXXXXXX 2009

point-in-time copies [17]. Spiralog provides online backup
of a log-structured file system (LFS) [19].

At the block level, there are many storage products using
snapshot technologies. Typical products include EMC’s
TimeFinder/Snap [20], HDS’s copy-on-write Snapshot [21],
Microsoft’s VSS, and NetApp’s Snapshot [22]. Most of these
products use copy-on-write method [7] with the exception
of NetApp that uses a method similar to the redirect-on-
write described in this paper.

3 A SIMPLE ANALYTICAL MODEL

Consider a block storage system with N active data blocks
that are uniformly accessed by applications during a time
period. These N data blocks can be viewed as the working
set of upper layer applications during this time period. Let
us assume that the applications issue � I/O requests
per second and the write ratio of the I/O request is , i.e.,
the probability of a given I/O being a write is � and the
probability of being a read is 1� �. We further assume that
the I/O requests to follow a Poisson distribution. Suppose
that the interval between two consecutive snapshots is an
exponentially distributed random variable with mean 1/�.
Whenever a new COW snapshot starts, the storage system
will make a copy of a block upon the first write.
Subsequent writes to the same block are done as usual
without making copies. Therefore, the write I/O time
depends on whether the block has been written before or
not. In order to analyze the I/O time, we first determine
the state of the block to be written. We use a two-state
Markov process to model the state of each data block, as
shown in Fig. 1. State 0 means that the block has not been
written since the new snapshot started, while state 1 means
that the block has been written at least once since the
snapshot started. In this Markov model, we have assumed
that an I/O request goes to any one of N data blocks
equally likely, i.e., all the blocks are uniformly accessed.
Let P0 and P1 be the steady-state probabilities that the
block is in state 0 and state 1, respectively. Solving the
Markov chain model, we derive these steady-state prob-
abilities as follows:

P0 ¼
�

XX
; P1 ¼

�

XX
:

In case of COW snapshot, the first write to a block
requires three I/O operations: read old data, write old data
to snapshot volume, and write the new data in place.
Subsequent writes to the same block and all read operations
are performed as usual without additional I/O operations.
Therefore, the average I/O response time is given by

TCOW ¼ ð1� �Þ �Dþ � � ðP1 �Dþ P0 � 3DÞ; ð1Þ

where D is the average disk access time.
In case of ROW snapshot, on the other hand, a write

operation will not incur any additional I/Os because all
writes are redirected to the snapshot volume. However,
read operations require determination of which volume will
supply the data. More importantly, all changed data blocks
since the snapshot started need to be written in place from
the snapshot volume to the source volume. This update can
be done before the start of another snapshot or offline when
storage is not actively serving applications. If this write-
back operation is done at runtime before next snapshot
starts, the average I/O response time of ROW snapshot is
given by

TROW ¼ ð1� �Þ � ðDþ �Þ þ � �DþN � P1 � 2D� �; ð2Þ

where � is the time it takes to identify and merge read data
that can potentially come from one of or both source
volume and snapshot volume. Compared to the disk access
time, � is usually a small quantity since it involves only
simple computation that does not need additional disk
operations. The last term in the above equation takes into
account the overhead of writing back the latest data in the
snapshot volume to the source volume in place. If this write
back operation can be done offline, while storage is not
serving application request, then the overhead can be
ignored. In this case, the average I/O response time of
ROW is given by

TROW ¼ ð1� �Þ � ðDþ �Þ þ � �D: ð3Þ

It should be mentioned that our analytical model is
meant to provide a quick and rough estimate of snapshot
performance. A more comprehensive performance model
can be found in [23] for general storage systems.

4 DESIGN AND IMPLEMENTATION

In this section, we present our implementations of the two
snapshot techniques on Windows OS and Linux OS. On
Windows system, we make use of the standard iSCSI
initiator available in Windows system. We have designed
and implemented a complete block-level storage target
using the iSCSI protocol. Our implementation of the iSCSI
target is similar to UNH iSCSI implementation [24] built on
top of the TCP/IP stack, as shown in Fig. 2. There has been
research in the literature on the iSCSI protocol including
storage implementations [24], [25], [26], [27], performance
evaluations using simulations [33], [28] and measurements
[29], [30], [31]. It has been shown in these studies that iSCSI
performs very well as a block-level data storage.

Our iSCSI target conforms to the IPS draft (20) [32] and
runs on the Windows machine as a user mode program. It

XIAO ET AL.: DESIGN AND ANALYSIS OF BLOCK-LEVEL SNAPSHOTS FOR DATA PROTECTION AND RECOVERY 3

Fig. 1. State diagram of the Markov process.
Fig. 2. Software stack of the iSCSI implementation.

can export any disk file, disk volume, or the whole disk as a
device to provide block-level services to the iSCSI initiator.
User authentication is based on the IP address of the
machine running the iSCSI initiator. The iSCSI target
includes four modules: user interface, basic I/O module,
disk and volume manager, and iSCSI protocol module. The
entire target is implemented using MS Visual C++ 6.0 and
has been tested extensively to show that it is fairly robust
and performs well. We are currently trying to integrate
iCache mechanism [33] to improve the performance further.

Based on our iSCSI target implementation, we have
designed and implemented the two snapshot methods:
copy-on-write and redirect-on-write. The snapshots are
implemented as an independent module, called snapshot
module, embedded in the iSCSI target. Upon receiving a
snapshot request from the host, the snapshot module
allocates a small volume as the snapshot volume. The size
of snapshot volume is determined by the size of the source
volume and the change rate of the source volume. This size
can be configurable and dynamically changeable. Cur-
rently, we allocate 10 percent of the space of the source
volume as the size of the snapshot volume. To simplify our
implementation, the snapshot volume is managed using a
fixed block size similar to the paging mechanism. That is,
all accesses to the data in the snapshot volume are done
using the fixed data unit referred as snap_block. This
snap_block size is a user configurable parameter ranging
from 512 B to 64 KB. Using a fixed data unit simplifies the
indexing structure and recovery process. However, it may
suffer from a performance penalty when actual I/O request
sizes differ greatly from the snap_block size in the snapshot
volume. For example, the request size can be much larger
than the snap_block size and the starting LBA address
might be in the middle of a snap_block. This penalty comes
from frequent fragmentations of the I/O request data to fit
the snap_block size. Alternatively, one can manage the
snapshot volume using variable block sizes to optimize
performance with the extra cost of complicated indexing
structure and recovery process. For simplicity, in this
paper, we only consider the fixed snap_block size
implementation.

Besides the implementation of two snapshot technolo-
gies on Windows OS, we have also designed and
implemented them on Linux OS as a block device driver.
This block device driver runs on top of physical hard disk
drivers to manage the source and snapshot volumes. As
shown in Fig. 3, we allocate a 512-byte data block at the
beginning of the snapshot volume to store system metadata
followed by the independent volume snapshots. The system
metadata include snapshot flag, created time, and begin-
ning and ending addresses of volume snapshots on disk.

For each volume snapshot, storage space is organized as
snapshot segments. A snapshot segment has three types of
blocks on disk: version block, hash table block, and physical
data blocks. The version block stores the created time of
snapshot, starting and ending offset of hash table, and
corresponding source volume flag. The hash table is the
index of physical data blocks. The size of hash table and
snapshot data blocks can be customized and adjusted
dynamically. The advantage of aforementioned data orga-
nization is that a snapshot volume can be used to store the
snapshots for multiple source volumes.

Because the snap_block is user-configurable, we use a
hash table and simple MOD hash function to manage LBA
requests in our implementation. This hash table can be
loaded from and saved to physical storages. It should be
noted that we can also use other data structures to handle
LBA requests such as bitmaps, linked lists, and so on.
Although these data structures may save some memory
space, they involve complicated address computations and
table lookups.

4.1 Copy-on-Write Snapshot Implementation

For the copy-on-write implementation, a write I/O request
goes through the process of determining whether or not it is
the first write to the block after the snapshot. This process
involves the hash table lookup using the LBA of the write
I/O. Depending on the snap_block size and the write I/O
size, LBA alignment and data fragmentation may need to
be done. The details of alignment and fragmentation will be
discussed shortly. If the write I/O goes across snap_block
boundaries either because the data size is larger than the
snap_block size or the LBA of the I/O is not aligned with
the snap_block, the write I/O is decomposed into several
small writes of the snap_block size. For every small write,
we use its LBA as the key to look up the hash table. If the
LBA cannot be found in the hash table, this indicates that
this write is the first time to this block. The original data
block is copied from the source volume to the snapshot
volume. In addition, a new hash entry with this LBA is
inserted into the hash table. On the other hand, if the LBA is
found in the hash table, this shows that this write is not the
first time to this block, nothing needs to be done on the
snapshot volume for this snap_block. After copying all data
blocks pertaining to this write I/O from the source volume
to the snapshot volume, the write I/O is performed on the
source volume.

For read I/Os, there is no need to access the hash table.
Our snapshot module will forward read I/Os directly to the
source volume. The read operations are performed as usual
disk operations in the source volume.

4.2 Redirect-on-Write Snapshot Implementation

For the redirect-on-write implementation, a write I/O
request goes through the similar process of the hash table
lookup, LBA alignment, and fragmentation. The difference is
that if the LBA is found in the hash table, an overwrite
operation is performed on the snapshot volume. No write
operation is performed on the source volume. If the LBA of
the write I/O is not found in the hash table, a new entry with
the LBA is inserted into the hash table and a new write is
performed on the snapshot volume. Redirect-on-write leaves

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. XX, XXXXXXX 2009

Fig. 3. Data organization of snapshot volume.

the source volume intact. As a result, the original data are
preserved in the source volume and all changes happen in the
snapshot volume. The point-in-time snapshot image is
completely contained in the source volume. The source
volume will be updated afterward when backup is done or
another snapshot is created. Therefore, redirect-on-write
snapshot does not eliminate copying but defer it to a later
time and hopefully not in the production time [34].

Because the latest changed data are in the snapshot
volume and unchanged data in the source volume, read I/Os
need to merge data from the two volumes. When a read I/O
request comes, the read request is fragmented into one or
several requests based on the snap_block size and the LBA.
For every fragmented read request, we use its LBA as the key
to look up the hash table. If the LBA is found, it indicates that
the fresh data to this block are in the snapshot volume. We
read the data block from the snapshot volume. Otherwise, the
data are from the source volume. When all the fragmented
reads are done, we merge all required data blocks to the read
buffer and send the read response to the requestor. Several
optimizations are possible for read I/Os. One straightfor-
ward optimization is using Bloom filter technique to quickly
determine which volume we will read data from [35].

4.3 Fragmentation and Alignment

For both copy-on-write and redirect-on-write, fragmenta-
tions and alignments are necessary. Fragmentation divides a
request into several small requests. The LBA of an I/O
request needs to be aligned with an LBA of a snap_block
since an I/O request can start from any address that might
be in the middle of a snap_block. Because any I/O request
could be started from any valid LBA address, the fragmen-
tation algorithm may deal with partial data of a block. In our
current implementation, we simplify this process by align-
ing the LBA address and fill up the rest of data from the
source volume for the first and the last block fragments. The
fact that a snap_block is filled with partial data is known as
internal fragmentation. Such internal fragmentations cause
performance loss because an internal fragmentation not only
takes additional space in the snapshot volume but also
involves additional I/O operations. Several optimizations
are possible to avoid this additional cost such as using
variable block sizes. But these optimizations generally
require additional data structure in the hash table. This will
make the hash table complicated and the effectiveness
remains to be seen. Our current implementation uses the
fixed snap_block size that is user configurable.

5 EXPERIMENTAL METHODOLOGY

This section presents experimental methodology and the
testbed that we use to study quantitatively the performance
of the two different snapshot technologies.

5.1 Experiment Setup

Using our implementation described in the last section, we
installed our prototype software on a PC serving as a
storage server, as shown in Fig. 2. Two PCs are inter-
connected using the Intel’s NetStructure 10/100/1,000 Mbps
470 T switch. One of the PCs acts as an application server
running benchmarks with the iSCSI initiator installed and

the other acts as the storage server with our iSCSI target
installed. The hardware characteristics of the PCs are shown
in Table 1.

In order to test our snapshot implementations under
different applications and different software environments,
we set up both Linux and Windows operating systems in
our experiments. The software environments on these PCs
are listed in Table 1. We install Fedora 4 (Linux Kernel 2.6.9)
and Microsoft Windows XP Professional on the PCs. On the
Linux machine, the UNH iSCSI initiator [24] is installed. On
the Windows machine, the Microsoft iSCSI initiator [36] is
installed.

On top of the snapshot module, we set up two different
types of databases and two types of file systems. Postgres
Database 7.1.3 is installed on Fedora 4. MySQL 5.0 database
is set up on Windows. To be able to run real-world Web
applications, we install Tomcat 4.1 application server for
processing Web application requests issued by benchmarks.
For File system benchmarks, IoMeter runs on Windows and
PostMark runs on Fedora 4.

5.2 Workload Characteristics

Workloads that drive the performance evaluation are very
important to provide meaningful and accurate performance
results. We choose a set of standard benchmarks that are
widely used in the research community and industry. The
first benchmark we select is IoMeter [37] that was originally
developed by the Intel Corporation and latter maintained
and further developed by the Open Source Development
Lab (OSDL). It has been registered at SourceForge.net since
2001. IoMeter is a flexible and configurable benchmark tool
that is widely used in industry and the research community.
It can be used to measure and characterize the performance
of a mounted file system or a block device. As indicated by
the original document, IoMeter does for a computer’s I/O
subsystem what a dynamometer does for an engine. It is
particularly suitable to our evaluation here because it
measures performance under a controlled load and can be
configured to emulate the disk or network I/O load, or can

XIAO ET AL.: DESIGN AND ANALYSIS OF BLOCK-LEVEL SNAPSHOTS FOR DATA PROTECTION AND RECOVERY 5

TABLE 1
Hardware and Software Environments

be used to generate entirely synthetic I/O loads. Specifi-

cally, we can change write ratios, the proportion of write

IOs, address distribution of IOs, and block sizes, which

allow us to provide a comprehensive evaluation of COW

and ROW performances.
Another popular standard benchmark is PostMark that is

widely used as file system benchmark tool written by
NetApp, Inc., [38]. It measures the performance in terms of
transaction rates in an ephemeral small-file environment by
creating a large pool of continually changing files. Once the
pool has been created, a specified number of transactions
occur. Each transaction consists of a pair of smaller
transactions, i.e., create file/delete file and read file/append
file. Each transaction’s type and files it affected are chosen
randomly. The read and write block size can be tuned. In
our experiments, we set PostMark workload to include
50,000 files and to perform 100,000 transactions. Read and
write buffer sizes are set to 4 KB.

To evaluate how the two snapshot techniques affect
database performance, we have also chosen two typical
benchmarks that run on databases. TPC-C is a well-known
benchmark used to model the operational end of businesses
where real-time transactions are processed [39]. TPC-C
simulates the execution of a set of distributed and online
transactions (OLTP) for a period of 2-8 hours. It is set in the
context of a wholesale supplier operating on a number of
warehouses and their associated sales districts. TPC-C
incorporates five types of transactions with different com-
plexity for online and deferred execution on a database
system. These transactions perform the basic operations on
databases such as inserts, deletes, updates, and so on. From
data storage point of view, these transactions will generate
reads and writes that will change data blocks on disks. We set
up the Postgres database based on the implementation from
TPCC-UVA [40]. Five warehouses with 50 users are built on
Postgres database taking 2 GB storage space. Details regard-
ing TPC-C workloads specification can be found in [39].

Our second database benchmark, TPC-W, is a transac-
tional Web benchmark that models an online bookstore. The
benchmark comprises a set of operations on a Web server
and a back-end database system. It simulates a typical
online/e-commerce application environment. Typical op-
erations include Web browsing, shopping, and order
processing. We use the Java TPC-W implementation of the
University of Wisconsin-Madison [41] and build an experi-
mental environment. This implementation uses Tomcat 4.1
as an application server and MySQL 5.0 as a back-end
database. The configured workload includes 30 emulated
browsers and 10,000 items in the item table.

6 NUMERICAL RESULTS AND DISCUSSIONS

Using our implementations and the experimental settings
described in the previous sections, we carried out experi-
ments to measure snapshot performance. In order to isolate
the effects of various file systems, we use two raw partitions
for the source volume and the snapshot volume in our
experiments. All results reported here are measured using
the two raw partitions.

6.1 Validation of the Analytical Model

Our first experiment is to verify and validate our theoretical
analysis in Section 3. We ran IoMeter benchmark on a
4 GB disk partition with NTFS installed for 20 minutes and
measured the results in terms of average I/O response time.
The buffer size is 4 KB and all I/O operations are randomly
generated. We compared our measured results with the
analytical results from (1) and (2) by substituting D and �
with the values of 8.4 and 4.95 ms, respectively. The values
of D and substituting D and � are taken from the average
values of 100 I/O experiments. Fig. 4 shows such
comparison and validation for COW snapshot with differ-
ent write ratios. As shown in this figure, our analysis
matches very well with experiments. The two curves show
exactly the same trend while changing the write ratio. The
maximum error is less than 6 percent indicating high
accuracy of our analytical model. Fig. 5 shows the same
validation of ROW snapshot. The results are similar to the
COW case implying high accuracy of the model.

6.2 Performance Evaluation

Our second experiment is to study how write ratios affect the
performances of two snapshot technologies. We ran IoMeter
benchmark with six different write ratios ranging from 0 to
100 percent for three snap_block sizes of 1, 2, and 4 KB. Fig. 6
shows the results in terms of average I/O response time for
1 KB snap_block size. As shown in this figure, the
performance trends of COW and ROW are consistent with
the results by using our analytical model, as shown in Figs. 4
and 5. That is, the response time of COW increases and the
one of ROW decreases as write ratio increases. This fact
demonstrates that our analytical model can quickly and
correctly predict the relative performance of ROW and
COW. Specifically, the performance of COW decreases as
the write ratio increases. This is because higher write ratio
will incur more additional I/O operations for COW as we
mentioned before. On the contrary, the performance of ROW
increases as the write ratio increases. In other words, ROW
performs better when write ratio is high because ROW does
not have the extra I/O operations of COW and redirects all

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. XX, XXXXXXX 2009

Fig. 4. Response time validation for COW. Fig. 5. Response time validation for ROW.

new write IOs to the snapshot volume. In addition, we also
observed that ROW has better performance than COW when
write ratio is greater than 20 percent which is the threshold
of performance turnover between COW and ROW.

Figs. 7 and 8 show the similar results for 2 and 4 KB
snap_block sizes, respectively. The only difference is that
the threshold of performance turnover for 2 KB snap_block
is 40 percent and the one for 4 KB snap_block is 60 percent.
In other words, large block sizes make COW perform better
than ROW for a large range of write ratios. This result is well
under our expectation. Recall that COW copies the original
data block upon the first write to the block, which is the
major overhead of COW snapshot. When block size is large,
the chance that subsequent write operations addressed to
the same block becomes high. Consider a 4 KB block as an
example. When a write operation changes the first 1 KB of
the block, COW makes a copy of the original block (4 KB) to

the snapshot volume. Subsequent writes to the second KB,

the third KB, and the fourth KB of the same block can be

done in place with no copying necessary. As a result, the

overhead of COW is amortized by large block sizes and

subsequent overwrite to the block.
In order to further validate our analysis above, we plot

overwrite ratios for different snap_block sizes with 40 per-

cent random writes of IoMeter. Fig. 9 shows the overwrite

ratio of COW as a function of block sizes. We observed that

increasing snap_block size will increase the overwrite ratio.

As we discussed in Section 2, overwrite I/Os to a block do

not need to copy the original data to the snapshot volume.

As a result, the threshold of performance turnover between

COW and ROW increases as the block size increases.
In the third experiment, our objective is to demonstrate

the performance characteristics of ROW and COW for

different snap_block sizes. We measured the performance

XIAO ET AL.: DESIGN AND ANALYSIS OF BLOCK-LEVEL SNAPSHOTS FOR DATA PROTECTION AND RECOVERY 7

Fig. 6. Average I/O response time comparison for 1KB snap_block size

of IoMeter benchmark.

Fig. 7. Average I/O response time comparison for 2KB snap_block size

of IoMeter benchmark.

Fig. 8. Average I/O response time comparison for 4KB snap_block size

of IoMeter benchmark.

Fig. 9. Overwrite ratio of COW as a functionn of snap_block sizes for

IoMeter benchmark.

results for different benchmarks in descending order of
write ratio.

We began with 100 percent random writes for IoMeter
benchmark. Fig. 10 shows measured results of the average
I/O response time for four different snap_block sizes. For
such a write-intensive workload, we observed that ROW
performs better than copy-on-write for all snap_block sizes
except for 64 KB when over write ratio becomes high.
Furthermore, internal fragmentations and LBA alignments
become excessive when block size is very large. For the
snap_block size of 512 B, the redirect-on-write snapshot
implementation performs four times better than the copy-
on-write implementation. For snap_block size of 4 KB, the
performance difference is about 40 percent. The perfor-
mance difference can mainly be attributed to the reduced
I/O operations of the redirect-on-write compared to the
copy-on-write. Recall that three I/Os are needed for the
first write to each data block after the snapshot. Note that
the redirect-on-write snapshot does not eliminate the copy
operations but defer them to a later time. If the copy
operations can be done offline and not during production
time, one can benefit from such deferring of data copies.
Again, as block size increases, the performance difference
between the two decreases because of high chance of
overwrites to the same block.

In addition, one observation in Fig. 10 is that the
performance of 512 B snap_block size is not as good as
other block sizes, as shown in Fig. 10. This observation
suggests that using sector size to do snapshot is not an
optimal solution even though it does not incur any internal
fragmentation. To further clarify this observation, we
carried out a small experiment of reading and writing a
64 KB data in a buffer to a disk using different block sizes at
the block device. We measured the read and write I/O
times in the experiment. The results are listed in Table 2. As
shown in Table 2, larger block sizes take shorter time to
write than smaller block sizes. However, the time differ-
ences for the block sizes of 8, 16, and 64 KB are not
significant. Noticeable longer time is observed when the
block size changes from 8 to 4 KB. There is a dramatic
increase in time for the block size of 512 B. This result
explains again why 512 B snap_block performs poorly in
the benchmark studied.

Measurement for PostMark has been done with 100,000

transactions on 50,000 files. For this experimental setting,

the average proportion of write IOs is 99 percent. Fig. 11

shows the measured results in terms of total running time.

As shown in this figure, we observed that ROW has better

performance than COW which is in agreement with our

expectation because ROW benefits from write-intensive

benchmark. Once again, it has also been demonstrated that

the performance difference of two snapshot technologies

decreases as the block size increases because of the high

probability of overwrites.
For the TPC-C benchmark, we measured the throughputs

running on Postgres database using our iSCSI target as the

block-level storage. We measured the write ratio of this

benchmark to be 90 percent. Fig. 12 shows the measured

results based on Windows implementation in terms of tpmC

that is the number of transactions finished per minute. For

the snap_block size of 512 B, we observed noticeable

difference between copy-on-write and redirect-on-write.

As the snap_block size increases, the performance differ-

ence reduces. It is interesting to note that the performance of

both snapshot methods increases as we increase the

snap_block size from 512 B to 8 KB. As discussed before,

large snap_block sizes increase the chance of internal

fragmentations and LBA alignments, giving rise to perfor-

mance penalties. However, our experiments show that this

penalty is compensated by large and integrated I/O

operations on the snapshot volume. But if we increase the

snap_block size further beyond 8 KB, performance drops

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. XX, XXXXXXX 2009

Fig. 10. Average I/O response time comparison for 100 percent random

write of IoMeter benchmark.

TABLE 2
I/O Time Measurements with Different Snap_Block Sizes

Fig. 11. Running time comparison for PostMark benchmark.

because of excessive internal fragmentations. Fig. 13 shows

the similar results for Linux implementation.
Throughput results for TPC-W are shown in Fig. 14. We

ran the TPC-W benchmark on MySQL database to measure

the throughputs in terms of WIPS that is the Web interactions

finished per second. The TPC-W results are quite different

from the results of previous benchmarks. For all the

snap_block sizes, copy-on-write method performs much

better than redirect-on-write for TPC-W benchmark, as

shown in Fig. 14. The reason for this phenomenon is that

the proportion of write IOs of TPC-W is about 39 percent,

whereas the proportions of write IOs for the previous three

benchmarks are all greater than 90 percent. With large
proportion of read I/Os in the TPC-W benchmark, copy-on-
write snapshot shows better performance because read I/Os
are not affected by the snapshot. Redirect-on-write, on the
other hands, suffers from performance penalty because of
read merging. In addition, we also observed from Fig. 14 that
the throughputs for both copy-on-write and redirect-on-
write increase as the snap_block size increases except for the
case of 64 KB. This observation is consistent with our
discussions above: larger block sizes take shorter time to
access data than smaller block sizes. For the large snap_block
size of 64 KB, the performance of COW and ROW drops
down because of excessive fragmentation and LBA
alignment.

6.3 Storage Space Analysis

Small block sizes not only slow down I/O operations but
also require large index data structure for hashing. Figs. 15
and 16 show the space used for the snapshot volume and
the sizes of the index data structure for different block
sizes. For 512 B block size, the index structure takes about
10 percent of the snapshot volume size, whereas for
8 KB block size, the index structure takes about half of a
percent of the snapshot volume. For 64 KB block size, the
index structure is less than 0.08 percent of the snapshot
volume. These two figures clearly show that the larger the
snap_block size is, the smaller the index structure will
be. Therefore, to limit the overhead in the index data
structure, one would like to use large block sizes.

On the other hand, large block sizes incur internal
fragmentations as discussed previously. The internal frag-
mentation not only wastes storage space but also add more
unnecessary IO operations in the snapshot volume. To
quantitatively observe internal fragmentations, we measured

XIAO ET AL.: DESIGN AND ANALYSIS OF BLOCK-LEVEL SNAPSHOTS FOR DATA PROTECTION AND RECOVERY 9

Fig. 12. Measured throughtputs comparison for TPC-C benchmark

(Windows implementation).

Fig. 13. Measured throughtputs comparison for TPC-C benchmark

(Linux implementation).

Fig. 14. Measured throughtputs comparison for TPC-W benchmark.

Fig. 15. Space usage of snapshot volume (in logarithmic scale).

Fig. 16. Space required for index structure (in logarithmic scale).

the space efficiency defined as the average ratio between the
sizes of the write IOs coming from the host and the actual data
size written in the snapshot volume because of the write IOs.
The space efficiency is an indicator of the degree of internal
fragmentations. The efficiency of 100 percent means that the
data size written in the snapshot volume is exactly the same
as the write IOs data size from the host without storage waste.
A smaller efficiency implies a large internal fragmentation.
To see how the internal fragmentation occurs, consider the
following example. Suppose two consecutive 16 KB snap_-
blocks with the LBAs of A and A+32, respectively. If the host
issues a write I/O of size 2 KB with starting LBA of A+30, the
write I/O will result in changes in both of the two snap_-
blocks. The first 1 KB is written at the end of the first
snap_block with the LBA of A and the other 1 KB at the
beginning the second snap_block with the LBA of A+32. The
total internal fragmentation is 30 KB.

Fig. 17 shows the space efficiency of the two snapshot
methods for different benchmarks. Note that the two
snapshot methods use the same amount of storage space
in our implementation. As shown in the figure, the
efficiency for the snap_block size of 512 B is 100 percent
without storage waste. The space efficiency drops rapidly as
block size increases implying large internal fragmentations.
For 64 KB block size, the efficiency drops below 20 percent.
Therefore, to minimize internal fragmentations, one would
like to use small block sizes.

It is very interesting to observe the two contradicting
objectives: increasing block size for better performance
(Figs. 10, 11, 12, 13, and 14) and decreasing block size for
better space efficiency (Fig. 17). Therefore, there is a trade-off
between performance and space efficiency in selecting the
snap_block size in designing a snapshot implementation.
Clearly, our experiments suggest against sector size and
favor 8 KB or 16 KB block sizes depending on applications.

7 CONCLUSIONS

In this paper, we have presented a comprehensive study on
implementations and performance evaluations of two differ-
ential snapshot methods: copy-on-write and redirect-on-
write. A simple Markov model has been developed for quick
performance estimates of the two snapshot technologies. To
provide detailed and meaningful performance evaluation
and comparison of the two snapshots, we have designed and
implemented the two snapshot methods on Windows and
Linux platforms. Extensive experiments have been carried
out to measure the performance impacts of the two snapshot

methods. We use standard benchmarks such as IoMeter,
Postmark, TPC-C, and TPC-W to measure and compared the
performances. Our numerical results uncover many impor-
tant performance characteristics that were unknown before.
In general, copy-on-write snapshot performs well for read-
intensive workloads, while redirect-on-write snapshot per-
forms well for write-intensive workloads. There are many
trade-offs in terms of performance and cost depending on the
workload characteristics of applications. Our experimental
results can provide a useful guide to storage designers in
making their design decisions and to storage users in
planning their data protection and recovery strategies.

ACKNOWLEDGMENTS

This research is sponsored in part by the National Science
Foundation under grants CCR-0312613, CCF-0610538, and
CCF-0811333. This work is also supported in part by the
Natural Science Foundation of China under grant number
NSFC-60736013 and Chinese 973 grant number
2004CB318203. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation. The authors would like to
thank the anonymous reviewers for the valuable comments
that improve the quality of this paper.

REFERENCES

[1] A.L. Chervenak, V. Vellanki, and Z. Kurmas, “Protecting File
Systems: A Survey of Backup Techniques,” Proc. Joint NASA and
IEEE Mass Storage Conf., Mar. 1998.

[2] M. Ji, A. Veitch, and J. Wilkes, “Seneca: Remote Mirroring Done
Write,” Proc. 2003 USENIX Ann. Technical Conf., pp. 253-268, 2003.

[3] M. Zhang, Y. Liu, and Q. Yang, “Cost- Effective Remote Mirroring
Using the iSCSI Protocol,” Proc. 21st IEEE Conf. Mass Storage
Systems and Technologies, pp. 385-398, Apr. 2004.

[4] The 451 Group, “Total Recall: Challenges and Opportunities for
the Data Protection Industry,” http://www.the451group.com/
reports/executive_summary.php?id=218, May 2006.

[5] W. Xiao and Q. Yang, “Can We Really Recover Data If Storage
Subsystem Fails?” Proc. 28th Int’l Conf. Distributed Computing
Systems (ICDCS ’08), June 2008.

[6] Novastor Corporation, “Microsoft Shadow-Copy Service and Its
Role in an Organization’s Total Backup Strategy,” http://
www.novastor.com/graphics/VSS_White_Paper.pdf, 2009.

[7] G. Duzy, “Match Snaps to Apps,” Storage, Special Issue on
Managing the Information That Drives the Enterprise, pp. 46-52,
Dec. 2004.

[8] Z. Peterson and R.C. Burns, “Ext3cow: A Time-Shifting File
System for Regulatory Compliance,” ACM Trans. Storage, vol. 1,
no. 2, pp. 190-212, 2005.

[9] D. Hitz, J. Lau, and M. Malcolm, “File System Design for an NFS
File Server Appliance,” Proc. USENIX Winter Technical Conf.,
pp. 235-245, 1994.

[10] M.D. Flouris and A. Bilas, “Clotho: Transparent Data Versioning
at the Block I/O Level,” Proc. 12th NASA/IEEE Conf. Mass Storage
Systems and Technologies (MSST ’04), Apr. 2004.

[11] L. Moses, “An Introductory Guide to TOPS-20,” Technical Report
TM-82-22, USC/Information Sciences Inst., 1982.

[12] K. McCoy, VMS File System Internals. Digital Press, 1990.
[13] D.S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Veitch, R.W.

Carton, and J. Ofir, “Deciding When to Forget in the Elephant File
System,” Proc. 17th ACM Symp. Operating System Principles,
pp. 110-123, Dec. 1999.

[14] C.A.N. Soules, G.R. Goodson, J.D. Strunk, and G.R. Ganger,
“Metadata Efficiency in Versioning File Systems,” Proc. Second
USENIX Conf. File and Storage Technologies, pp. 43-58, Mar. 2003.

[15] R. Pike et al., “Plan 9 for Bell Labs,” http://plan9.bell-labs.com/
sys/doc/, 2009.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. XX, XXXXXXX 2009

Fig. 17. Space efficiency as a function of snap_block size.

[16] E.K. Lee and C.A. Thekkath, “Petal: Distributed Virtual Disks,”
Proc. Seventh Int’l Conf. Architecture Support for Programming
Languages an Operating Systems (ASPLOS-7), 1996.

[17] A. Sankaran, K. Guinn, and D. Nguyen, “Volume Shadow Copy
Service,” http://www.microsoft.com, Mar. 2004.

[18] R. Green, A. Baird, and C. Davies, “Designing a Fast, On-Line
Backup System for a Log-Structured File System,” Digital
Technical J., vol. 8, no. 2, pp. 32-45, Oct. 1996.

[19] M. Rosenblum and J. Ousterhout, “Log-Structured File System,”
Proc. 13th ACM Symp. Operating Systems Principles, pp. 1-15, June
1991.

[20] EMC Corporation, “EMC TimeFinder Family,” http://www.emc.
com/products/software/timefinder.jsp, 2009.

[21] Hitachi, Ltd., “Hitachi ShadowImage Implementation Service,”
http://www.hds.com/copy_on_write_snapshot_467_02.pdf, June
2001.

[22] NetAppliance Corporation, “Snapshot Technology,” http://
www.netapp.com/products/snapshot.html, 2009.

[23] M. Mesnier, M. Wachs, R. Sambasivan, A. Zheng, and G. Ganger,
“Modeling the Relative Fitness of Storage,” ACM SIGMETRICS
Performance Evaluation Rev., vol. 35, no. 1, pp. 37-48, June 2007.

[24] UNH, “iSCSI Reference Implementation,” http://unh-iscsi.
sourceforge.net., 2005.

[25] H. Xiong, R. Kanagavelu, Y. Zhu, and K.L. Yong, “An iSCSI Design
and Implementation,” Proc. 12th NASA Goddard/21st IEEE Conf.
Mass Storage Systems and Technologies (NASA/IEEE MSST ’04), 2004.

[26] Intel Co., “Intel iSCSI Reference Implementation,” http://
sourceforge.net/projects/intel-iscsi, 2009.

[27] Cisco, “Linux-iSCSI Project,” http://linux-iscsi.sourceforge.net/,
2008.

[28] Y. Lu, F. Noman, and D.H.C. Du, “Simulation Study of iSCSI-
Based Storage System,” Proc. 12th NASA Goddard/21st IEEE Conf.
Mass Storage Systems and Technologies (NASA/IEEE MSST ’04),
pp. 399-408, 2004.

[29] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy, “A
Performance Comparison of NFS and iSCSI for IP-Network
Storage,” Proc. Third USENIX Conf. File and Storage Technologies
(FAST), 2004.

[30] S. Aiken, D. Grunwald, A.R. Pleszkun, and J. Willeke, “A
Performance Analysis of the iSCSI Protocol,” Proc. 20th IEEE/
11th NASA Goddard Conf. Mass Storage Systems and Technologies
(MSS ’03), Apr. 2003.

[31] I. Dalgic, K. Ozdemir, R. Velpuri, J. Weber, U. Kukreja, Atrica, H.
Chen, and U. Kukreja, “Comparative Performance Evaluation of
iSCSI Protocol over Metro, Local, and Wide Area Networks,” Proc.
12th NASA Goddard/21st IEEE Conf. Mass Storage Systems and
Technologies (NASA/IEEE MSST ’04), 2004.

[32] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E.
Zeidner, “iSCSI Draft Standard,” http://www.ietf.org/internet-
drafts/draftietf-ips-iscsi-20.txt, Jan. 2003.

[33] X. He, Q. Yang, and M. Zhang, “A Caching Strategy to Improve
iSCSI Performance,” Proc. IEEE Ann. Conf. Local Computer
Networks, Nov. 2002.

[34] H. Simitci, “Backups Using Snapshots,” Storage Network Perfor-
mance Analysis, pp. 280-282, Wiley Publishing, Inc., 2003.

[35] B. Bloom, “Space/Time Trade-Offs in Hashing Coding with
Allowable Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, July
1970.

[36] Microsoft Corp., “Microsoft iSCSI Software Initiator Version 2.0,”
http://www.microsoft.com/windowsserversystem/storage/
default.mspx, 2005.

[37] Intel, “IoMeter: Performance Analysis Tool,” http://www.
iometer.org/, 2009.

[38] J. Katcher, “PostMark: A New File System Bench-Mark,”
Technical Report 3022, Network Appliance, 1997.

[39] Transaction Processing Performance Council, “TPC Bench-
markTM C Standard Specification,” http://www.tpc.org/tpcc,
2005.

[40] J. Piernas, T. Cortes, and J.M. Garcı́a, “TPCC- UVA: A Free, Open-
Source Implementation of the TPC-C Benchmark,” http://www.
infor.uva.es/~diego/tpcc-uva.html, 2005.

[41] H.W. Cain, R. Rajwar, M. Marden, and M.H. Lipasti, “An
Architectural Evaluation of Java TPC-W,” Proc. Seventh Int’l Symp.
High-Performance Computer Architecture (HPCA ’01), Jan. 2001.

Weijun Xiao received the bachelor’s and mas-
ter’s degrees in computer science from Huaz-
hong University of Science and Technology,
China, in 1995 and 1998, respectively. He is
currently working toward the PhD degree in
electrical, computer, and biomedical engineering
at The University of Rhode Island. He holds a
faculty position in the School of Computer
Science and Technology at Huazhong University
of Science and Technology. His research inter-

ests include computer architecture, networked storage system, em-
bedded system, and performance evaluation. He is a student member of
the IEEE and a student member of the IEEE Computer Society.

Qing Yang received the BSc degree in compu-
ter science from Huazhong University of
Science and Technology, Wuhan, China, in
1982, the MASc degree in electrical engineering
from the University of Toronto, Canada, in 1985,
and the PhD degree in computer engineering
from the Center for Advanced Computer Stu-
dies, University of Louisiana, Lafayette, in 1988.
Presently, he is a distinguished engineering
professor in the Department of Electrical and

Computer Engineering at The University of Rhode Island, where he has
been a faculty member since 1988. His research interests include
computer architectures, memory systems, disk I/O systems, data
storages, parallel and distributed computing, performance evaluation,
and local area networks. He is a senior member of the IEEE, a senior
member of the IEEE Computer Society, and a member of the SIGARCH
of the ACM.

Jin Ren received the bachelor’s degree in
material science and engineering and the mas-
ter’s degree in computer science from Huazhong
University of Science and Technology, China, in
1999 and 2002, respectively. He is currently
working toward the PhD degree in electrical,
computer, and biomedical engineering at The
University of Rhode Island. His research inter-
ests include computer architecture, networked
storage system, and performance evaluation.

Changsheng Xie received the BS and MS
degrees in computer science from Huazhong
University of Science and Technology (HUST),
China, in 1982 and 1988, respectively. Pre-
sently, he is a professor in the Department of
Computer Engineering at Huazhong University
of Science and Technology. He is also the
director of the Data Storage Systems Laboratory
of HUST and the deputy director of the Wuhan
National Laboratory for Optoelectronics. His

research interests include computer architecture, disk I/O system,
networked data storage system, and digital media technology. He is the
vice chair of the expert committee of Storage Networking Industry
Association (SNIA), China.

Huaiyang Li received the PhD degree in
computer architecture from Huazhong Univer-
sity of Science and Technology (HUST),
Wuhan, China, in 2006, the MS degree in
computer engineering from Air Force University
of Engineering, Xi’an, China, in 1999, and the
associate college degree in electron information
engineering from Huazhong University of
Science and Technology (HUST), Wuhan,
China, 1991.

XIAO ET AL.: DESIGN AND ANALYSIS OF BLOCK-LEVEL SNAPSHOTS FOR DATA PROTECTION AND RECOVERY 11

