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ABSTRACT 

This paper presents a design and implementation of a cyber-

physical system (CPS) for neurally controlled artificial legs. The 

key to the new CPS system is the neural-machine interface (NMI) 

that uses an embedded computer to collect and interpret 

electromyographic (EMG) signals from a physical system that is a 

leg amputee. A new deciphering algorithm, composed of an EMG 

pattern classifier and finite state machine (FSM), was developed 

to identify the user‟s intended lower limb movements. To deal 

with environmental uncertainty, a trust management mechanism 

was designed to handle unexpected sensor failures and signal 

disturbances. Integrating the neural deciphering algorithm with 

the trust management mechanism resulted in a highly accurate and 

reliable software system for neural control of artificial legs. The 

software was then embedded in a newly designed hardware 

platform based on an embedded microcontroller and a graphic 

processing unit (GPU) to form a complete NMI for real time 

testing. Our preliminary experiment on a human subject 

demonstrated the feasibility of our designed real-time neural-

machine interface for artificial legs. 

Categories and Subject Descriptors 

J.3. [Computer Applications]: Life and Medical Sciences-health  
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1. INTRODUCTION 
Rapid advancement of computer technology has completely 

changed the way of our life in terms of how we work, learn, 

conduct business, manufacture, and play. High speed and real 

time embedded computing systems that are widely available as 

commodity have made it possible to  automate  manufacturing, 

transportation, robotic control, wired/wireless communication, 

healthcare systems, and more. In particular, tight coupling of 

cyber systems and biomedical systems has drawn great interests in 

the research community recently. One prominent example is 

computerized prosthetic legs, in which motion and force sensors 

and a microcontroller embedded in the prosthesis form a close-

loop control and allow the user to produce natural gait patterns [1-

2]. However, the function of such a computerized prosthesis is 

still limited due to the lack of neural control. The primitive 

prosthesis control is based entirely on mechanical sensing without 

the knowledge of user intent. Users have to “tell” the prosthesis 

the intended activity manually or using body motion, which is 

cumbersome and does not allow smooth task transitions.  

To allow the user to control the artificial leg as if it is his/her own 

limb, a seamless integration of human neuromuscular system and 

computer system is essential. This integration leads to a cyber-

physical system (CPS), in which a complex physical system (i.e. 

neuromuscular control system of a leg amputee) is monitored and 

deciphered in real time by a cyber system.  The key to the success 

of such integration is the neural-machine interface (NMI) that 

senses neural signals from leg amputees, interprets such signals, 

and makes accurate decisions for prostheses control. 

Electromyographic (EMG) signals represent neuromuscular 

activity and are effective neural signals for expressing movement 

intent [3]. Although EMG-based NMI has been tested for artificial 

arms [4-5], no EMG-controlled prosthetic leg is available, and 

published studies in this area are very limited. This is because 

inevitable challenges in both hardware/software design of 

embedded computer systems (cyber) and accurate interpretation of 

neuromuscular system (physical) make the NMI design for neural 

control of lower limb prostheses difficult.  

1) In human physiological system, EMG signals recorded from leg 

muscles during dynamic movements are highly non-stationary. 

Accurate decoding of user intent from such signals requires 

dynamic signal processing strategies [6]. 

2) Accuracy in identifying the user‟s intended lower limb 

movement is essential. A 90% accuracy rate might be 

acceptable for control of artificial arms, but it may result in 

one stumble out of ten steps, which is obviously inadequate to 

ensure the patient‟s safety in prosthesis use.   

3) There might not be enough EMG recording sites available in 

leg amputees [6]. Design of an algorithm to maximally 

extracting neural information is necessary.  

4) Environmental uncertainty, such as perspiration, temperature 

change, and movement between the residual limb and 

prosthetic socket may cause unexpected sensor failure, 

influence the recorded EMG signals, and reduce the 

trustworthiness of the NMI. It is critical to develop a reliable 

and trustworthy NMI for safe use of prosthetic legs. 

5) Implementing the neural interfacing algorithms on an 

embedded computer system is essential to make the EMG-

based NMIs practical and available to patients with leg 
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amputations. The speed of the embedded system must be 

adequate because any delayed decision-making from the NMI 

also introduces instability and unsafe use of prostheses. 

Streaming and storing multiple sensor data, deciphering user 

intent, and running sensor monitoring algorithms at the same 

time superimpose a great challenge to the design of an 

embedded system for the NMI of artificial legs. 

This paper presents the first real-time, EMG-based neural-

machine interface for artificial legs. Whereas existing work [6]  

[7] provided some piecemeal solutions to certain aspects of the 

above challenges, this new design tightly integrated the human 

neuromuscular system with an embedded system and addressed 

the difficulties in the cyber-physical system described above for 

accurate and reliable user intent identification.  

The neural interfacing algorithm takes EMG inputs from multiple 

EMG electrodes, decodes user intended lower limb movements, 

and monitors sensor behaviors based on trust models. An 

improved EMG pattern recognition (PR) algorithm together with 

a finite state machine (FSM) effectively tackle the difficult 

challenges, resulting from non-stationary EMG signals of leg 

muscles, for accurately deciphering user intent. The neural 

decoding algorithm consists of two phases: offline training and 

online testing. To ensure the trustworthiness of NMI under 

uncertain environment, a trust management (TM) module was 

designed to examine the changes of the EMG signals, estimate the 

trust level of individual sensors, and determine the overall trust 

level of the NMI. The trust information can be used to reduce the 

impact of untrustworthy sensors on the system performance.  

To realize the NMI to be carried by leg amputees, we designed 

new embedded hardware architecture for implementing the 

designed algorithms. The two key requirements for the hardware 

architecture were high speed processing of training process and 

real time processing of interfacing algorithm. To meet these 

requirements, the newly designed embedded architecture 

consisted of an embedded microcontroller, a flash memory, and a 

graphic processing unit (GPU). The embedded microcontroller 

provided necessary interfaces for AD/DA signal conversion and 

processing and computation power needed for real time control. 

We implemented our control algorithm on the bare machine with 

our own memory and IO managements without using existing OS 

to avoid any unpredictability and variable delays. The flash 

memory was used to store training data. EMG PR training process 

involved intensive signal processing and numerical computations, 

which needs to be done periodically when the system trust value 

is low. Such computations can be done efficiently using modern 

GPUs that provide supercomputing performance with very low 

cost. New parallel algorithms specifically tailored to the multi-

core GPU were developed exploiting memory hierarchy and 

multithreading of the GPU. Substantial speedups of the GPU for 

training process were achieved making the classifier training time 

tolerable in practice.     

Finally, to prove the NMI design concept, we tested the design 

methods and our first NMI prototype on an able-bodied subject to 

recognize his intent for sitting and standing, two basic but 

difficult tasks for patients with transfemoral amputations due to 

the lack of power from the knee joint. The system performance 

was quantified and evaluated. 

This paper made the following contributions: 

 Design of the first architecture of a NMI for artificial legs; 

 Novel design of EMG pattern classification combined with 

FSM for decoding the user's intended lower limb movements 

for neural control of artificial legs;   

 Development of abnormal detection and trust evaluation 

models to solve the problem of uncertainty in a biomedical 

application. 

 Design and offline test of a trustworthy sensor interface on 

realistic EMG data collected from a human subject.  

 Optimal neural interfacing algorithm implementation 

specifically tailored to the MPC5566 embedded system and 

GPU architecture for real time operation;   

 Demonstration of the feasibility of designed neural interfacing 

algorithm for deciphering user intent by real-time prototype 

testing on a human subject.  

This paper is organized as follows. The next section presents the 

system architecture and design of algorithms and embedded 

system. The third section describes the experimental settings of 

our first NMI prototype on an able-bodied subject. The results of 

the study are demonstrated in the section 4, followed by related 

work in the section 5 and conclusions in the section 6.     

2. SYSTEM ARCHITECTURES 

2.1 System Architecture 
The architecture of neural-machine interface is demonstrated in 

Figure 1. Multiple channels of EMG signals are the system inputs. 

EMG signals are preprocessed and segmented by sliding analysis 

windows. EMG features that characterize individual EMG signals 

are extracted for each analysis window. The system consists of 

two major pathways: one path for classifying user movement 

intent and the other for sensor trust evaluation (the dashed blocks 

in Figure 1). To identify user intent, EMG features of individual 

channels are concatenated into one feature vector. The goal of 

pattern recognition is to discriminate among desired classes of 

limb movement based on the assumption that patterns of EMG 

features at each location is repeatable for a given motion but 

different between motions [5]. The output decision stream of 

EMG pattern classifier is further processed to eliminate erroneous 

task transitions. In the path for sensor trust evaluation, the 

behaviors of individual sensors are closely monitored by abnormal 

detectors. A trust manager evaluates the trust level of each sensor 

and then adjusts the operation of the classifier for reliable EMG 

pattern recognition.  

 

Figure 1. Software architecture of EMG-based neural-

machine interface for artificial legs. 



The hardware architecture of the NMI (Figure 2) for artificial legs 

consists of seven function blocks: EMG electrodes, amplifier 

circuits, analog-to-digital converter (ADC), flash memory, RAM, 

GPU, and embedded controller. The EMG electrodes collect the 

raw EMG data from human muscles. The amplifier circuits are 

necessary to make the polarity, amplitude range, and signal type – 

whether differential or single-ended – of EMG signals compatible 

with the input requirements of ADCs. The outputs of the amplifier 

circuits are then converted to digital format by the ADCs and 

stored in a flash memory or a RAM. The embedded hardware 

works in two modes: offline training and real time testing. In the 

training mode, the digital EMG data are stored in the flash 

memory. The PR algorithm for training phase includes complex 

signal processing and numerical computations for a large amount 

of data. These computations are done efficiently in a high 

performance GPU. The parameters of trained classifier are stored 

in the flash memory. In the testing mode, the ADCs sample the 

EMG signals continuously, and the converted digital data are 

stored in a RAM of the embedded microcontroller. The 

microcontroller then runs the trained classifier in the testing phase 

and makes decisions of user intent in real time. 

 

2.2 Identification of User Intent  
Decoding intended movements using leg EMGs recorded from 

transfemoral amputees is challenging because (1) the recordable 

EMG sites are limited due to the limb loss and (2) the EMGs are 

highly non-stationary. A dynamic EMG pattern classification 

strategy was adopted to address these challenges in this study. 

Additionally, post-processing methods on the decision stream 

were used for improved system accuracy.  

EMG Signals: EMG signals recorded from gluteal and thigh 

muscles were considered because these muscles are still available 

for patients with transfemoral amputations. 

EMG Features: Four time-domain (TD) features [8] (the mean 

absolute value, the number of zero-crossings, the waveform 

length, and the number of slope sign changes) were proposed for 

real-time operation because of their low computational complexity 

[5] compared to frequency or time-frequency domain features. 

The detailed equation and description of these four TD features 

can be found in [8]. 

EMG Pattern Classification: Various classification methods, such 

as linear discriminant analysis (LDA) [8], multilayer perceptron 

[9], Fuzzy logic [10], and artificial neural network [6], have been 

applied to EMG PR. Due to the computation simplicity, LDA has 

been widely applied to real time control of upper limb prostheses 

[5, 11]. The idea of discriminant analysis is to classify the 

observed data to the movement class in which the posteriori 

probability )|( fCP g
 can be maximized. Cg (g[1, G]) denotes 

the movement classes; f is the feature vector in one analysis 

window. The posteriori probability is the probability of class Cg 

given the observed feature vector f and can be expressed as 
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is defined as the linear discriminant function. 

In the offline training 
g and   were estimated by feature 

vectors calculated from a large amount of training data and were 

stored in the flash memory.  
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Dynamic Pattern Classification Strategy: When EMG signals are 

non-stationary, the EMG features across time show large variation 

within the same task mode (class), which results in overlaps of 

features among classes and therefore low accuracy for PR [6]. By 

Figure 2. Hardware architecture of designed neural-machine 

interface. 

 

 



assuming that the pattern of non-stationary EMGs has small 

variation in a short-time window and EMG patterns are repeatable 

for each defined short-time phase, we designed a phase-dependent 

EMG classifier, which was successfully applied to accurately and 

responsively recognize the user‟s locomotion modes [6]. For non-

locomotion modes such as sitting and standing, the classifier can 

be built in the movement initiation phase by the same design 

concept. The structure of such a dynamic design of the classifier 

can be found elsewhere [6].   

Post-processing of Decision Stream: FSM and majority vote were 

used to eliminate erroneous decisions from the classifier. Finite 

state machine [12] models a task as a state. An action of task 

(state) transition can be executed only if a valid transition 

condition is met. Majority vote [5] simply removes the decision 

error by smoothing the decision output. Note that these methods 

can further improve the accuracy of NMI, but may sacrifice the 

system response. 

2.3 Trustworthy Sensor Interface 
The NMI for artificial legs must be reliable and trusted by the 

prosthesis users. To achieve this goal, we designed a trust 

management module that contains three parts: abnormal detection, 

trust manager, and decision support. 

Abnormal Detection: Detecting abnormality in EMG signals is a 

challenging task because the events causing sensor malfunctions 

can be diverse and unexpected. It is difficult to construct the 

training data that can represent all types of reasons behind sensor 

malfunctions. Without relying on the training data, we proposed 

to detect abnormality in EMG signals by a change detector that 

identifies changes in the statistics of EMG signals. Particularly, 

we focused on the two-sided mean change detector.  

Many statistical methods can be used to build the change detector 

[13]. In this work, we chose the Cumulative Sum (CUSUM) 

algorithm [14] because it is reliable for detecting small and 

graduate changes, insensitive to the probabilistic distribution of 

the underlying signal, and optimal in detection speed [15]. 

Two-sided CUSUM detector was used in this work [14].  

0
ˆS (i) = max(0, S (i-1) + x  - - k)hi hi i                     (5) 

0 i
ˆS (i) = max(0, S (i-1) +  - k - x ) lo lo                   (6) 

where ix represents the 
thi data sample, 

0̂  is the mean value of 

data without changes, and k is CUSUM parameter. The smaller 

the k is, the more sensitive the CUSUM detector is to small 

changes. Here, we set k  as 0.008. In (5) and (6), 
hiS and 

loS are 

used for detecting the positive and negative changes, respectively. 

If 
hiS exceeds a certain threshold, a positive change is detected. If 

loS is smaller than a certain threshold, a negative change is 

detected. The initial values of 
hiS  and 

loS were set to 0.   

Trust Manager: After the abnormal detector detects the 

disturbance in an EMG signal, the EMG sensor is either 

permanently damaged or perfectly recoverable. To evaluate the 

trust level of the sensor, let 
1p denotes the probability that a 

sensor behaves normally after one disturbance is detected. 

Assume all disturbances are independent. The probability that a 

sensor is still normal after i disturbances, denoted by
ip , is 

1

i

ip p . The trust value is computed from the probability 

value by the entropy-based trust quantification method[16], as    

1 ( ), 0.5 1

( ) 1, 0 0.5

i i

i i

H p if p
T

H p if p

  
 

  

, 

where T is the trust value and ( )iH p is the entropy calculated as 

2 2( ) log ( ) (1 )log (1 )i i i i iH p p p p p      (7) 

Different 1p values should be set according to the nature of the 

disturbance. The larger the 1p value, the less likely the 

disturbance can damage the sensor. The calculation of trust is 

extendable to the case that different disturbances are detected for 

one sensor. If two disturbances, whose 1p values are 0.8 and 0.9, 

respectively, are detected for a sensor, the ip  value in (7) can be 

replaced by 0.8 0.9. 

Decision Making and Report: The trust information is provided to 

the user intent identification (UII) module to assist trust-based 

decisions. There are two levels of decisions. 

1) Sensor level: When the sensor‟s trust value drops below a 

threshold, this sensor is considered as damaged, and its 

reading is removed from the UII module.  

2) System level: After removing the damaged sensors, we can 

calculate the system trust by the summation of trust values of 

the remaining sensors. If the system trust is lower than a 

threshold, this entire UII model is not trustworthy, and 

actions for system recovery must be taken. One possible 

action is to re-train the classifier. Another possible action is 

to instruct the patient to manually examine the artificial leg 

system.  

2.4 Hardware Design  
Technical challenges in hardware design are twofold. First of all, 

in order to increase the decision accuracy, frequent training 

computations are often necessary. Such training computations 

need to be done not only periodically with predetermined time 

intervals but also whenever the system trust level goes below our 

predetermined threshold.  The training algorithms require 

intensive numerical computations that take very long time in the 

range of a few minutes to  hours on a general purpose computer 

system [7]. It is very important to substantially speed up this 

training computation to make the training time of our NMI 

practically tolerable. The second challenge is the real time 

processing of decision making in order to have smooth control of 

artificial legs. Such real time processing includes signal sampling, 

AD/DA conversion, storage of digital information in memory, 

executing PR/FSM algorithms, periodical trust management, and 

decision outputs. To meet these technical challenges, we 

presented a new hardware design incorporating a multi-core GPU 

and an embedded system with a built-in flash memory.  

High performance and low cost multi-core GPUs [17-20] have 

traditionally been thought of as commodity chips to drive 

consumer video games. However, the push for realism in such 

games along with the rapid development of semiconductor 

technologies has made GPUs capable of supercomputing 

performance for many applications at very low cost. There are 

many low-end to medium GPU controller cards available on the 

market for under $50. However they deliver extraordinary 

computation power in the range of several hundreds of GFLOPS. 



Besides high performance and low cost, there has also been a 

technology drive for reliable and low power GPUs alongside 

FPGAs and CPUs for embedded applications such as military 

systems. For example, an embedded system using the ATI Radeon 

HD 3650 GPU [21] draws very little power but delivers 

performance levels of hundreds of GFLOPS. The next-generation 

mobile GPUs are expected to nearly double this performance with 

a similar power envelope.  

Our NMI makes the first attempt to exploit such high speed and 

low cost GPU for the purpose of speeding up complex PR training 

computations. Our design for the training of the classifier used a 

NVIDIA 9500GT graphic card that has four multiprocessors with 

32 cores working at the clock rate of 1.4GHz. Each 

multiprocessor supports 768 active threads giving rise to a total of 

3072 threads that can execute in parallel. These threads are 

managed in blocks. The maximum number of threads per block is 

512. The size of the global memory is 1GB with bandwidth of 

25.6GB/s. 64KB of the global memory is read-only constant 

memory. The threads in each block have 16KB shared memory 

which is much faster than the global memory because it is cached. 

In this study, we connected this GPU card using the x16 PCI 

Express bus. Whenever the training computation was triggered, 

the GPU was called in to perform the training process and store 

the parameters of trained classifier in the flash memory to be used 

for real time decision-making.  

The second part of the hardware design is based on Freescale‟s 

MPC5566 132 MHz 32 bits microcontroller unit (MCU) with the 

Power Architecture as shown in Figure 3. The MCU has 40 

channels of ADCs with up to 12 bit resolution and two levels of 

memory hierarchy. The fastest memory is 32KB unified cache. 

The lower level memories include 128KB SRAM and 3MB flash 

memory. The default system clock of the MCU is 12 MHz. The 

frequency modulated phase locked loop (FMPLL) generates high 

speed system clocks of 128 MHz from an 8 MHz crystal 

oscillator. The direct memory access (DMA) engine transfers the 

commands and data between SRAM and ADC without direct 

involvement of the CPU. Minimizing the intervention from CPU 

is important for achieving optimal system response. The device 

system integration unit (SIU) configures and initializes the control 

of general-purpose I/Os (GPIOs). The real-time decision of the 

EMG classifier is sent to a GPIO pin and displayed by a LED 

light on MPC5566 EVB.  

3. EXPERIMENTS AND PROTOTYPE  

3.1 Evaluation of Designed Algorithms 
Assigned Tasks: To prove the design concept, the NMI system 

was designed to decipher the task transitions between sitting and 

standing. These tasks are the basic activity of daily living but 

difficult for patients with transfemoral amputations due to the lack 

of knee power. During the transition phase, EMG signals are non-

stationary. The classifier was designed in the short transition 

phase. Although it is possible to activate the knee joint directly 

based on the magnitude of one EMG signal or force data recorded 

from the prosthetic pylon, unintentional movements of the 

residual limb in the sitting or standing position may accidently 

activate the knee, which in turn may cause a fall in leg amputees. 

Hence, intuitive activation of a powered artificial knee joint for 

mode transitions requires accurate decoding of EMG signals for 

identifying the user‟s intent from the brain.  

Data Collection: This study was conducted with Institutional 

Review Board (IRB) approval and informed consent of subjects. 

One male subject, free from orthopedic or neurological 

pathologies, was recruited. The seven monitored gluteal and thigh 

muscles in one side of the lower limb included the gluteus 

maximus (GMA), gluteus medius (GME), rectus femoris (RF), 

vastus lateralis (VL), vastus medialis (VM), biceps femoris long 

head (BFL), and biceps femoris short head (BFS). The EMG 

electrodes were placed over the anatomical locations described in 

[22]. The EMG electrodes contained a pre-amplifier, which band-

pass filtered the EMG signals between 20 Hz and 450 Hz with a 

pass-band gain of 1000. The EMG System (Myomonitor®, Delsys 

Inc., MA) recorded the signals with a 16 Bits signal resolution.  

The states of sitting and standing were indicated by a pressure 

measuring mat. The sensors were attached to the gluteal region of 

the subject. During the weight bearing standing, the recording of 

the pressure sensors were zero; during the non-weight bearing 

sitting, the sensors gave non-zero readings. In addition, force 

sensing resistors (FSR) were used to record the timings, when the 

disturbances were introduced to an EMG sensor. All the signals 

were digitally sampled at a rate of 1000Hz.  

Experiment Protocol: In one trial, the subject was instructed to sit 

on a chair (60 cm high), stand up without any assistance, and then 

sit down again. In the sitting or standing position, the subject was 

allowed to move the legs and shift the body weight. A total of 25 

trials were conducted. Rest periods were allowed between trials in 

order to avoid fatigue. 

To evaluate the sensor trust algorithm, another 50 trials were 

tested. In each trial, one of two types of sensor disturbances, i.e. 

motion artifacts and loss of electrode contact, were introduced 

randomly in each task phase. To add motion artifacts, the subject 

tapped an EMG electrode. To simulate loss of electrode contact, 

the EMG electrode was detached from the skin purposely. Each 

type of disturbance was tested 25 times. The timings, when the 

disturbances were introduced, were recorded by a FSR attached 

on the electrode.  

Offline Evaluation of EMG Pattern Recognition: Four classes 

during the movement initiation phase were considered: sitting, sit-

to-stand transition, standing, and stand-to-sit transition. Note that 

the classes of sitting and standing were not stationary because the 

subject was instructed to move the legs and shift the body weight 

Figure 3. Block diagram of embedded system design on 

MPC5566 EVB for real-time testing. MPC5566: device 

modules; ADC: analog-to-digital converter; FMPLL: 

frequency modulated phase-locked loop; SRAM: internal 

static RAM; SIU: system integration unit; DMA: direct 

memory access. 

 

 



in these positions. The actual movements (classes) were identified 

by the pressure data under the gluteal region. If the pressure data 

was zero, the subject was in the standing position; if the pressure 

data was above 80% of maximum value recorded, the subject was 

in the sitting position. Otherwise, the subject was in a transition 

from either sit to stand or stand to sit, depending on the previous 

state. Four TD features defined in [8] and LDA-based classifier 

were used. Overlapped analysis windows were used in order to 

achieve prompt system response. For the offline algorithm 

evaluation, 150ms window length and 20ms window increment 

were chosen. Due to the relatively small number of tested trials, 

leave-one-out cross-validation (LOOCV) was utilized in order to 

receive precise estimation of the classification performance. In the 

LOOCV procedure, data in one trial was applied as the testing 

data; the data in the remaining trials were used as the training 

data.  This procedure was repeated so that each trial was used 

once as the testing data. In addition, a simple FSM was designed 

and used to improve the system accuracy (Figure 4). Only if the 

transition condition shown above the arrows was classified, the 

action of switching states was executed.   

Offline Evaluation of Abnormal Detection and Trust 

Management: EMG electrodes recorded EMG signals under the 

task transitions, unintentional leg movements, as well as 

disturbances. There were 3 different states: transitions between 

sitting and standing (S), normal leg movements (N), and 

disturbances (D). The detectors detected two types of results: 

normal (N) or disturbance (D).  

For the data sets with motion artifacts, the data in each trial were 

divided into analysis windows. A state (S, N or D) was assigned 

to each window. We assumed that the state S is perfectly 

identified by the classifier and therefore, did not consider state S 

when evaluating the performance of abnormal detector. There 

were four detection results: (1) Hit (H): Truth = „D‟, Detection = 

„D‟; (2) False Alarm (F): Truth = „N‟, Detection = „D‟; (3) Miss 

Detection (M): Truth = „D‟, Detection = „N‟; and (4) Correct no 

detection (Z): Truth = „N‟, Detection = „N‟. The performance of 

designed detector were evaluated by 

Probability of detection :
H

PD
H M




 

Probability of false alarm : 
F

PFA
F Z




 

The trust value was also quantified. In this study, the probability 

that a sensor behaves normally after one disturbance (P1) was set 

to 0.05 for loss of electrode contact and 0.8 for motion artifacts.   

3.2 Program Implementation on NMI 

Hardware System 
Both training algorithm and real time testing PR algorithm were 

implemented on the NMI hardware described in the previous 

section. The window length and increment were set to 140ms and 

80ms, respectively. This is because the speed of MPC5566 is 

limited; MPC5566 needs approximate 80ms to compute the EMG 

PR algorithm on data in a 140ms window. Therefore, the window 

increment should be no less than 80ms. If the window length is 

over 120ms, enlarging the window length does not affect the 

classification performance [6] but increases the time for a 

decision-making, which causes delayed system response.   

The computation intensive part of the training algorithm was 

parallelized for the GPU architecture using CUDA: Compute 

Unified Device Architecture, which is a parallel computing engine 

developed by NVIDIA. At the time of this experiment, our GPU 

was not directly connected to the embedded MCU. Rather, we 

used NVIDIA 9500GT graphic card plugged into the PCI-Express 

slot of the PC server to perform the training computation. The 

training results were then stored in the flash memory of the 

embedded system board for real time testing. The GPU took the 7 

original EMG inputs, each of which had about 10,000 data points. 

We divided the EMG data into windows with 140 ms in length. 

As a result, each window contained a 140×7 matrix. The training 

algorithm first extracted 4 TD features from each channel, 

producing a 28×1 result matrix for each window. Our parallel 

algorithm on the CUDA spawned 7 threads for each window 

resulting in totally 2,800 threads for 400 windows. All these 

threads were executed in parallel on the GPU to speed up the 

process. The resultant features were stored in a 28×W matrix, 

where W is the number of windows. The algorithm then set up K 

thread blocks, where K is the number of observed motions of the 

user. Each one of the K thread blocks had 28×14 threads, and a 

total of K×28×14 threads could execute simultaneously in parallel 

on the GPU architecture. 

To demonstrate the speedup provided by our parallel 

implementation of this algorithm on the GPU, we conducted an 

experiment that compared the training times of our training 

algorithm on both the GPU system and the fully equipped 3GHz 

Pentium 4 PC server.The real time decision algorithm was 

implemented on Freescale‟s MPC5566 embedded system. The 

parameters of the trained classifier, a 28×4 matrix and a 1×4 

matrix, calculated in the training phase by GPU were stored in the 

built-in flash memory on the MPC5566 EVB in advance. The 

ADC sampled raw EMG data of 7 channels at the sampling rate of 

1000 Hz continuously. Same as in the training phase, the EMG 

data were divided into windows of length 140ms. A 28×1 feature 

vector was derived from each window and then fed to the trained 

classifier. After the EMG pattern classification, one class out of 

four was identified. The result was post- processed by the FSM 

and the majority vote algorithm to produce a final decision – sit or 

stand. 

Timing control and data storage are two challenges for the 

implementation due to the speed and memory limitations of the 

embedded controller. We developed our own hardware 

management mechanism on the bare machine of the MPC5566 

without depending on any real time OS to avoid unpredictability 

and delay variations. A circular buffer was used to allow 

simultaneous data sampling and decision making. The circular 

buffer consisted of three memory blocks B1, B2 and B3 that were 

used to store the ADC sampling data. Each block stored the data 

sampled in one window increment. Another memory block, B4, 

was used as a temporary storage during algorithm computation.  

Figure 4. Finite state machine (FSM) model. Ellipses: states 

(i.e. tasks). Arrows: transitions between tasks. 

 

 

 



Figure 6. Offline evaluation of designed EMG pattern 

classifier for identifying user intent. Blue line: pressure under 

the gluteal region of the subject. Black lines: decision output 

of designed NMI system when the number of training 

windows are 100, 500, and 1000, respectively. The value of the 

decision stream denotes two states, i.e. 0: standing; 1: sitting. 

 

 

 

Figure 5 shows the timing diagram of the control algorithm during 

the real-time decision making process. In Figure 5, t equals to 

the window increment and PRt  is the execution time of PR 

algorithm. Two conditions need to be satisfied to ensure the 

smooth control of decision making without delay: (1) ttPR  ; 

(2) ttw  2 , where 
wt is the window length. At point 

0t , the 

ADC begins to sample EMG signals continuously and the digital 

data are stored in B1. From point t1, B1 is filled up and the 

incoming data are stored in B2. At t2, the data for the first window 

W1 are available (stored in B1 and B2), and an interrupt request is 

generated to notify the MCU that the PR algorithm program is 

ready to run. The PR computation starts. At the same time, new 

data kept coming in to be stored in B3. After the time interval of 

PRt , at point t3, the PR computation of W1 completes. The first 

decision D1 is made, identifying user‟s intent in window W1 

whether to sit or stand. At time t4, B3 is filled up and data for W2 

are ready for the PR computation again. At this time, B1 is no 

longer in use so it can be replaced by new sampling data. At time 

t5, the decision D2 of window W2 is made. At time t6, data for W3 

(stored in B3 and B1) are available, PR computation for W3 

begins. At time 
7t , D3 is done and B2 can be reused.  

3.3 Real-Time Testing of NMI Prototype  
Using the NMI prototype design described above, we carried out 

real time test on the same human subject recruited for the offline 

study. The subject performed transitions between sitting and 

standing continuously. Neural signals as results of such sit-stand 

transitions were sensed and collected from the subject‟s muscle. 

These EMG signals were then fed directly to the embedded 

system as analog signals. Our decision algorithm was trying to 

decipher what the subject‟s intended movement was in real time. 

The movement decisions made by the classification system were 

displayed on a LED light and a computer monitor in real time. In 

our experiment, a 5-window majority vote was applied to the 

decision stream to further eliminate the classification errors. 

4. RESULTS AND DISCUSSIONS 

4.1 Performance of EMG Pattern Classifier  
The performance of designed EMG pattern classifier in one 

representative trial is shown in Figure 6. The value of the pressure 

under the gluteal region of the subject indicates the timing when 

the subject was either in non-weight bearing sitting (non-zero 

values) or weight-bearing standing state (zero values). When the 

number of training windows was 100, decision errors occurred in 

half of the tested trials. When the training data size increased, the 

classification error reduced. When the number of training 

windows was 1000, only 3 out of 25 tested trials had decision 

errors. Therefore, a large number of training data are desired for 

improved system accuracy, which, however, increases the 

computation requirements and therefore challenges the hardware 

design in practice. 

 

It is noteworthy that the output decisions for mode switches 

always occur before the rising and falling edges of the pressure 

signal for all the trials with correct decisions (e.g. the solid 

decision line in Figure 6). That means our designed EMG 

classifier can accurately identify the user‟s intent before the 

subject fully completed the task transitions. Such a system 

response is desirable because the neural control of prosthetic joint 

should occur in the early phase of task transition so that the 

control signal can trigger the action of the joint.  

When 1000 training windows were used, the decision errors were 

caused by the misclassification between the sit-to-stand class and 

the stand-to-sit class during the task transition phase. If a 5-

window majority vote method is used, the error can be reduced to 

0; however, the system response is deteriorated. Other solutions to 

further improve the system accuracy are to develop more complex 

EMG features and PR algorithms than the TD features and LDA 

method. Time-frequency domain features can be efficient in 

extracting information from non-stationary signals. However, the 

computation complexity for the time-frequency features is too 

high, which challenges the hardware design for a fast training 

process. Our previous study demonstrated that GPU can produce 

up to 100 times of speedup for computing time-frequency features 

compared to the regular CPU [7]. Therefore, our designed 

hardware with GPU power extends our design capability to 

develop more sophisticated EMG PR methods for improved 

performance of NMI.  

The performance of EMG classifier under two studied 

disturbances is shown in Figure 7. If an electrode was detached 

from the skin, a large EMG spike was observed, which resulted in 

Figure 5. Timing diagram of real-time decision making 

process. 

 



decision errors (Figure 7A). Tapping the electrodes also elicited 

signal spikes with relatively small magnitude and sometimes 

signal baseline drifts (Figure 7B). Not all the motion artifacts led 

to decision errors; the ones resulting in the baseline drifts had 

more negative impact on the performance of the EMG classifier 

(Figure 7B). Hence, the design of a trust manager proposed in this 

study is essential to improve the robustness of designed NMI 

system.    

 

4.2 Performance of Sensor Trust Algorithm 
Figure 8 shows the performance of designed trust management 

method. The CUSUM detection curves were sensitive to two 

studied disturbances, but insensitive to the muscle activity due to 

the normal leg motions. Additionally, the CUSUM had very small 

detection delay. The detection curves immediately yielded high 

spikes after the disturbances occurred. The trust value for loss of 

electrode contact directly fell under zero after one event was 

detected; the trust value for motion artifacts gradually reduced 

when consistent disturbances were detected. In the future work, 

we will explore other methods for trust value calculation. For 

instance, for sensors with non-perfect trust values, we can check 

whether their future readings are consistent with other sensors that 

have high trust values. By doing so, the sensors that experienced 

an occasional disturbance and were not damaged can gradually 

regain the trust. We compared the ROC curves of the CUSUM 

detector with two other often suggested change detectors: sliding 

window detector and mean change detector [23] (Figure 9). The 

CUSUM detector shows the best performance with very high 

accuracy. The performance of CUSUM detector achieved 95% 

detection rate and less than 2% false alarm rate.  

The designed CUSUM detector is accurate and prompt. The 

limitations of current study are that we disturbed only one 

electrode and the trust manager evaluated the trust at the sensor 

level. In addition, the algorithm has not been implemented in real 

time. In the next design phase, we will consider the situation with 

multiple sensor failures and implement the communication 

between the trust manager and the classifier for improved system 

trustworthiness. 

 

 

4.3 Performance of CPU vs. GPU for 

Training Procedure 
Table 1 shows the measured speedup of our parallel algorithm on 

the NVIDIA GPU over the PC server for different window sizes. 

It is clear from this table that our parallel implementation on the 

GPU gives over an order of magnitude speedup over the PC 

server. This order of magnitude speedup is practically significant. 

Consider the case where the training time took half hour on a PC 

server [7]. The same training algorithm takes less than a minute 

using our new parallel algorithm on the GPU. From an amputee 

user point of view, training for less than a minute for the purpose 

of accurate and smooth neural control of the artificial leg is fairly 

manageable as compared to half hour training every time when 

training is necessary. Furthermore, the speedup increases as the 

number of windows increases (Table 1). As a result, parallel 

computation of the training algorithm on GPU helps greatly in the 

NMI design since the larger the number of windows, the higher its 

decision accuracy will be, as shown in Figure 6. 

Table 1. Speedups of our GPU parallel training algorithm over 

the 3GHz PC server. 

Window size 100 200 400 600 800 

Speedup 22.98 29.50 35.94 37.16 39.21 

4.4 System Performance in Real-Time 
The real time performance of the NMI prototype is shown in 

Figure 10. The continuous testing lasted for over 10 minutes. All 

B. Motion Artifacts A. Loss of contact 

Figure 7. Offline performance of EMG pattern classifier 

under two disturbances: (A) loss of electrode contact and (B) 

motion artifacts. The EMG signals under disturbances are 

demonstrated. The timings when the disturbances were 

introduced are indicated by FSR data (0: normal; 1: under 

disturbance). The output decisions (0: standing; 1: sitting) are 

aligned with the pressure data (the lower panels). 

 

 

 
Figure 9. Comparison of ROC curves of the detectors based 

on CUSUM, change detectors, and the sliding window. 

 

 

 

B. Motion Artifacts A. Loss of Contact 

Figure 8. Offline performance of the abnormal detector 

under (A) loss of electrode contact and (B) motion artifacts. 

The representative EMG signals (upper panel), the detection 

curves of CUSUM (middle panel), and the trust value (lower 

panel) are demonstrated. 

 

 

 



the transitions between sitting and standing were accurately 

identified. Although the subject moved the instrumented side of 

leg in the sitting and standing position and shifted the weight in 

the standing position, no erroneous mode switch was presented. 

Since a 5-window majority vote method was applied, around 

400ms decision delay for the sit-to-stand transitions were 

observed, compared to the falling edges of pressure data 

(indicated by arrows in Figure 10). The video of real-time system 

performance can be found at 

http://www.ele.uri.edu/linc/htm/video.html.  Based on the 

subject‟s performance, the decision switched from sitting to 

standing before the full weight-bearing standing position. Clearly, 

the majority vote method significantly improves the system 

accuracy but sacrifices the system response. 

The 100% classification accuracy in the real time testing 

demonstrates the potential of our designed NMI prototype. 

Although the system response for sit-to-stand should occur before 

the subject lifts all the weight from the chair, 400ms delay may be 

acceptable for leg amputees. This is because the prosthetic joint 

does not react and the amputee cannot stand up until the decision 

from the NMI is made. In addition, the system response can be 

improved by using other types of embedded system faster than 

Freescale‟s MPC5566. Due to the speed limitation of MPC5566, 

the decision could only be updated every 80ms in this study. If a 

faster embedded system were used, the window increment size 

could have been reduced, and the decision update rate can be 

improved.   

 

5. Related Work 
Real-time EMG pattern recognition has been designed to increase 

the information extracted from EMG signals and improve the 

dexterity of myoelectric control for upper limb prosthetics [5, 11]. 

However, no EMG-controlled lower-limb prostheses are 

available. Recently, the need for neural control of prosthetic legs 

has brought the idea of EMG-based control back to attention. Two 

previous studies have attempted to use EMG signals to identify 

locomotion modes for prosthetic leg control [6, 24].  Jin et al. 

[24] used features extracted from EMG signals from a complete 

stride cycle. Using such features, the algorithm results in a time 

delay of one stride cycle in real-time. In practical application, this 

is inadequate for safe prosthesis use. Our previous study designed 

a phase-dependent EMG pattern recognition method [6], which is 

a dynamic classifier over time. The result indicated over 90% 

classification accuracy, which can be applied for real time NMI. 

While both studies demonstrated that EMG information recorded 

from transfemoral amputees is sufficient for accurate 

identification of user intent, there has been no experimental study 

on design and implementation of embedded system to realize the 

NMI for reliable and real time control of prosthesis.  

Trust has been a well-studied concept in sociology and 

psychology [25].  Recently, it was introduced to the distributed 

computer networks for the purpose of (a) enhancing network 

security and reliability and (b) stimulating cooperation among 

network entities [26]. Various trust models have been developed 

to quantify trust in authorization and access control, electronics 

commerce, peer-to-peer networks, ad hoc and sensor networks, 

electronic communities, and pervasive computing. However, the 

concept of trust is rarely used in biomedical systems.  

There has been extensive research in using GPUs for general 

purpose computing (GPGPU) to obtain exceptional computation 

performance for many data parallel applications [21, 27-31]. A 

good summary of GPGPU can be found in  [27, 29]. Our prior 

study made the first attempt to use GPU in EMG-controlled 

artificial legs and other medical applications [7]. Our results on 

individual computation components on EMG signal pattern 

recognition showed good speedups of GPU over CPU for various 

window sizes. The focus of the work reported in [7] was on 

parallel implementations of individual algorithms on GPU 

whereas this paper makes the first attempt to integrate the entire 

system for neural-machine interfacing (i.e. a CPS system) for real 

time control of artificial legs. Our prior works [7] report offline 

analysis, while the work presented in this paper implements online 

decoding method for real-time testing.  To the best knowledge of 

the authors, there has been no existing study on implementing the 

entire training algorithm on GPU for different numbers of 

windows and integrating the training algorithm together with real 

time testing on the same subject.  

6. Conclusions 
A new EMG-based neural-machine interface (NMI) for artificial 

legs was developed and implemented on an embedded system for 

real time operation. In such a cyber-physical system, the cyber and 

the physical system were tightly integrated to achieve high 

accuracy, reliability, and real-time operation. This cyber-physical 

system consists of  (1) an EMG pattern classifier for decoding the 

user‟s intended lower limb movements and (2) a trust 

management mechanism for handling unexpected sensor failures 

and signal disturbances. The software was then embedded in a 

newly designed hardware platform based on an embedded 

microcontroller and a GPU to form a complete NMI for real time 

testing. To prove our design concepts, we conducted preliminary 

experiments on an able-bodied human subject to identify his 

intent for sitting and standing. The result showed high system 

accuracy and reasonable time response for real time operation. 

Our NMI design concept has a great potential to allow the leg 

amputees to intuitively and efficiently control the prosthetic legs, 

which in turn will improve the function of prosthetic legs and the 

quality of life of patients with leg amputations. Our future work 

includes the consideration of other movement tasks such as 

walking on different terrains and test of the designed system on 

patients with transfemoral amputations.  
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