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Abstract---This paper presents a new distributed data 

storage architecture that facilitates secure and efficient data 

replay in eHelathcare information system. The new 

architecture uses secured iSCSI protocol and records the 

parity of every data change to the eHealthcare information 

system performed by authorized health care providers. The 

recording and transmission of encrypted parities are done in 

background without requirement of explicit involvement of 

users. Together with either backup data or real-time 

production data, one can easily replay Electronic Health 

Record (EHR) as it was at any point-in-time in the past using 

simple reverse parity computations. Because parities are 

substantially smaller than original data, the new system 

provides much higher online performance and fast 

encryption time. Experimental results on our prototype 

system have shown the clear advantages of the new system. 

 

I. Introduction 

Rapid advances in computer technologies have 

made eHealthcare information systems ubiquitous. In 

such eHealthcare information systems, patient data are 

stored in a distributed environment allowing healthcare 

providers at different locations to share and access 

easily a variety of electronic health records (EHR). 

Such EHR will become essential source of information 

for future healthcare providers and rapidly take over 

the role of the paper-based medical records. Therefore, 

a reliable, secure, and efficient data storage 

infrastructure is critical to future healthcare systems. 

However, there are several technical challenges 

including reliability, security, and adequate online 

performance that make the design and implementation 

of such distributed data storage difficult. 

The first technical challenge regarding data 

reliability has to do with the importance of having 

EHR data available to authorized healthcare providers 

once they have been created and recorded for a patient. 

Such EHR should not only be playable (viewable) in 

real time as it is currently but also be re-playable 

(reviewable) as it was at any point-in-time in the past 

[1,2,3]. Replay/review of the history of patient data is 

necessary because of situations of medical audit, law 

suits, quality control and self-assessment. The 

requirement of being able to replay EHR data makes 

the design of the eHealthcare information system 

challenging because of the fundamental differences 

between paper records and electronic records. With 

paper records, one can easily review the history by 

following the “paper trails” of the records. With 

electronic records, on the other hand, existing data 

storage designs do not have the “paper trails”. Any 

change to a piece of data in the data storage is 

destructive because a data write operation will 

overwrite/destroy previous data in the same file or 

record. For example, any time when one saves or 

writes a changed word document or a spreadsheet file, 

the previous version of the file is overwritten and 

replaced. Similarly, a database transaction will also 

overwrite previous record of the same table. Even the 

meta data that records the time of last change or last 

access are also changed in a destructive way. 

Realizing the importance of replaying history data, 

there has been extensive research in data storage and 

database systems in terms of data protection and 

recovery [4], file versioning [5,6,7], and database 

testing [8]. Data protection and recovery technologies 

periodically make backups or snapshots of data so that 

data can be recovered to a point-in-time in the past in 

case of failures or disastrous events. The granularity of 

backups/snapshots varies depending on the reliability 

requirement and cost. Continuous data protection 

(CDP) makes a copy of old data upon each write 

operation. CDP provides the finest granularity for data 

recovery at the cost of huge amount of data storage that 

is several orders of magnitude larger than the amount 

of normal real time data. File versioning systems keep 

different versions of files when file changes occur. The 

number of versions and the frequency of  making file 

versions can be specified by users. In addition to the 

negative performance impacts, file versioning is file 

system dependent and requires users to be familiar 

with the file system. Database replays were originally 

designed for the purpose of database testing of 

production database systems that need upgrade or 

changes. By storing real transactions happening in 

production systems in a separate storage system, 

database replay makes testing of new database 

installation more realistic. Again, such database 

replays require users to explicitly define when and for 

how long to capture transactions in the production 

system. The major issue is that it is practically 

infeasible to enable SQL tracing on the entire database 

system because of high overheads [8,9]. 

The second technical challenge is data security 

and privacy of EHR system. Because data in an EHR 
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are stored and transmitted in a distributed environment 

over a network, data encryption and access 

authentication are very important to protect privacy of 

patient data. As it is well known, data encryption and 

decryption are very time consuming process especially 

for large amount of patient data. Supporting replay of 

EHR data aggregates this problem even further because 

the amount of data transmitted and stored to enable 

data replay is several orders of magnitude larger than 

production data due to repetitive overwrites [4]. As a 

result, online performance of such EHR system will be 

dragged down dramatically by storage systems 

supporting data replay and data security.  

To tackle the technical challenges discussed 

above, we propose a new secured data storage 

architecture supporting replay/review of EHR data as it 

was at any point-in-time in the past by any authorized 

healthcare provider. The new system is referred to as 

REAPIT for Replay EHR at Any-Point-In-Time . The 

main idea of REAPIT is to calculate and store parity as 

result of any data change at block storage level. As a 

data block is being changed, a log of parities are 

computed and stored. When a replay is requested for a 

specific point-in-time in the past, the corresponding 

parities are retrieved. Using either current real-time 

production data or a previous backup data, a simple 

reverse parity computation will generate the exact data 

as it was at the specified point-in-time. The clear 

advantages of REAPIT are three folds. First of all, the 

parity as a result of data change is substantially smaller 

than the data itself being changed. Capturing these 

parities can be done very efficiently. Transmission of 

these parities over the distributed network can also be 

done very quickly. Secondly, transmitting and storing 

parity add another level of security because wire 

tappers cannot easily interpret the meaning of parity 

without original data. Furthermore, encrypting parity is 

much faster than encrypting original data because of 

much smaller size of parities than that of original data. 

Finally, the new REAPIT system is user friendly 

because parity capture and transfer are done in 

background at storage level without requiring users’ 

explicit involvement. The easy to use user interface 

allows a user to choose any point-in-time to replay 

EHR data.  

To show the advantages of the newly proposed 

REAPIT system, we have carried out experiments on a 

prototype REAPIT system using Secured iSCSI 

protocol. Under the Microsoft Windows environment, 

we measured the performance of REAPIT as compared 

to traditional storage systems providing the same 

functionality. Standard database and file system 

benchmarks are used to drive the experimental system. 

Numerical results show that REAPIT is very efficient 

providing significant performance improvements 

compared to traditional storage systems. The 

executable program of the prototype REAPIT is 

available online at www.ele.uri.edu/hpcl for general 

public to repeat our experiments. 

The paper is organized as follows. Next section 

introduces REAPIIT architecture and its design. 

Section 3 presents our experimental setup for 

performance evaluations. Numerical results and 

performance comparison are discussed in Section 4. 

Section 5 concludes the paper.  

 

II. REAPIT System Design 
 
Consider a distributed EHR system as shown in 

Figure 1.  Multiple clients are connected to shared 

storage servers through the IPSEC network. Each of 

the clients represents an authorized healthcare provider 

such as doctors, radiologists, cardiologist, pathologist, 

dentists, dermatologist, neurologist, etc. Any client can 

access, modify, add, or delete information in the shared 

storages. Since IPSEC runs over the Internet, clients 

and storage servers can be located in any geographical 

location allowing true patient data sharing among 

healthcare providers. As shown in Figure 1, providing 

real time data sharing and data access is fairly 

straightforward among multiple health providers. The 

question is how to capture the history of data accesses 

and data changes securely in such a distributed 

information system. 

  

 

REAPIT is a pair of software modules that are 

inserted to each client and shared storages, 

respectively. The software module inserted in a client 

is called iSCSI initiator and the module inserted in a 

shared storage system is called iSCSI target. Both 

modules work at block device level beneath the file 
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Figure 1. A distributed information 

system using iSCSI protocol. 
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system or databases. Users do not need to know the 

existence of these modules. All IO operations 

generated at the upper application layer go through file 

system or database down to the block level device and  

become data block reads or writes. The iSCSI initiator 

representing client applications communicates directly 

with the corresponding iSCSI target through secured IP 

network by exchanging data blocks for real time 

operations. In order to support replay of history data in 

addition to real time data accesses, all data access and 

data changes need to be recorded. For example, if a 

64KB (typical data block size) data block is changed, 

both the newly changed block and the original block 

before the change should be kept in order to replay 

data in the future. As data changes occur, the amount 

of data that need to be stored and transmitted over the 

network keeps increasing dramatically.  

The idea of our new REAPIT is very simple. 

Instead of keeping all versions of a data block as it is 

being changed by write operations, we keep a log of 

parities as a result of each write on the block. Every 

time when a write operation happens, the iSCSI 

initiator calculates the parity and transmits the parity to 

the iSCSI target that store parities in a log structure. 

The parity logs are accessible to all clients for replay 

purpose. During a replay, the iSCSI initiator makes a 

replay request to the target with a specified time point. 

The target then finds the corresponding parity in the 

parity logs to compute back the data as it was at the 

specified time point.  Since all parties of write 

operations are stored, our approach can replay EHR as 

it was at any point-in-time by parity computation. 

Figure 2 shows the basic design of the REAPIT 

architecture in a typical RAID storage system. Suppose 

that at time point i, the client writes into a data block 

with logic block address as that belongs to a data stripe 

a=(a1, a2 … as,  … an). The RAID controller performs 

the following operation to update its parity disk: 

 

Pi(a)=Fi(as) Fi-1(as) Pi-1(a),                    (1) 
 

where Pi(a) is the new parity for the corresponding 

stripe, Fi(as)  is the new data for data block as,  Fi-1(αs) 

is the old data of data block αs,  and Pi-1(α)  is the old 

parity of the stripe. Leveraging this computation, 

REAPIT appends the first part of the above equation, 

i.e. Pi
’
(α) = Fi(αs) Fi-1(αs), to the parity log stored in 

the REAPIT disk after a simple encoding box, as 

shown in Figure 2. Parity computation can also be 

done easily for non RAID storage systems as discussed 

in our prior research [4]. 

Consider the parity log corresponding to a data 

block, α, after a series of write operations, the log 

contains (P’1(α), P’2(α) ……, P’i-1(α),  P’i(α),……) 
with time points 1,2, …,i-1, and i associated with the 

parities. Suppose that we only have the data image at 

time point r (1≤r≤i) and all parities, and we would like 

to replay data backward or forward. To do a forward 

replay to time point s (s>r), for example, we perform 

the following computation for each data block α: 
 

 Fs(α)=Fr(α) P’r+1(α)… P’s-1(α) P’s(α),      
(2) 

 

where Fs(α) denotes the data value of block α at time  

point s and Fr(α) denotes the data value of α at time 

point r. Note that   

 

P’l(α) Fl-1(α)=Fl(α) Fl-1(α) Fl-1(α)=Fl(α),   (3) 
 

for all l=1,2, … i. Therefore, Equation (2) gives Fs(α) 

correctly assuming that the data value, Fr(α), exists. 

The above process represents a typical redo replay 

process while earlier data is available. A backward 

process is also possible with the parity log if the 

newest data is available by doing the following 

computation instead of Equation (2): 

 
Fs(α)= Fr(α)  P’r(α) P’r-1(α)… P’s+1(α),   
(4) 
 
where s<r. This is a typical undo process by using the 

newest data that is available. In order to replay data in 

either direction, only one reference image is needed 

along time dimension because of the commutative 

property of XOR computation. This reference image 

could be original data image in a backup, real-time 

fresh data image, or any data image in the middle. 

Besides being able to replay data in two directions, 

the important feature of REAPIT is its space efficiency. 

Our extensive experiments have demonstrated a very 

strong content locality that exists in real world 

applications and have shown that only 5% to 20% of 

bits inside a data block actually change on a write 

operation. The parity, Pi
’
(α), reflects the exact changes 

at bit level of the new write operation on the existing 

block. As a result, this parity block contains mostly 

zeros with a very small portion of bit stream that is 

nonzero. Therefore, it can be easily encoded to a small 
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size parity block to be appended to the parity log 

reducing the parity transmission time and the amount 

of storage space required to keep track of the history of 

writes. 

 

III. Experimental Settings 
 
In order to see how REAPIT performs in a real 

distributed eHealthcare information system, we have 

set up a cluster of four PCs connected through an 

Ethernet switch in our lab. Two Windows based PCs 

act as clients, one PC acts as an application server, and 

the 4
th

 PC acts as a storage server. Our iSCSI initiator 

module based on the Windows standard iSCSI initiator 

is installed on the client PCs and application server PC 

while the iSCSI target module is installed on the 

storage server. The iSCSI initiators communicate with 

the iSCSI target on the storage server using IPSEC 

protocol. All encoded parities are stored at the iSCSI 

target in a log format with time stamps to allow replay 

of history data by any authorized client. Table 1 shows 

the hardware and software settings in our evaluation 

experiments.  

PC 1-3 P4 2.8GHz/256M RAM/80G+10G Hard Disks 

PC 4 P4 2.4GHz/2GB RAM/200G+10G Hard Disks 

OS 

 

Windows XP Professional SP2 

Fedora 4 (Linux Kernel 2.6.9) 

Databases 

 

 

Oracle 10g for Microsoft Windows (32-bit) 

MySQL 5.0 for Microsoft Windows 

iSCSI 

 

UNH iSCSI Initiator/Target 1.6 

Microsoft iSCSI Initiator 2.0 

Benchmarks 

 

 

TPC-C for Oracle (Hammerora) 

TPC-W Java Implementation 

File system micro-benchmarks 

Network 

 

Intel NetStructure 470T Switch 

Intel PRO/1000 XT Server Adapter (NIC) 

Table 1. Hardware/Software settings of ouw experiemtns. 

 

Because of privacy requirement of real patient 

data, we are not able to obtain realistic patient data for 

our experiments. In order to make our performance 

evaluation close to realistic situations, we have chosen 

a set of standard database benchmarks as well as real 

file system benchmarks.  

The benchmarks we selected for database 

evaluations include TPC-C and TPC-W. TPC-C is a 

well-known benchmark used to model the operational 

end of real-time transactions [10]. TPC-C simulates the 

execution of a set of distributed and on-line 

transactions (OLTP) for a period of between two and 

eight hours. TPC-C incorporates five types of 

transactions with different complexity for online and 

deferred execution on a database system. These 

transactions perform the basic operations on databases 

such as inserts, deletes, updates and so on. At the block 

storage level, these transactions will generate reads and 

writes that will change data blocks on disks. For Oracle 

Database, we use one of the TPC-C implementations 

developed by Hammerora Project [11]. We build 5 data 

tables with 25 users issuing transactional workloads to 

the Oracle database following the TPC-C specification. 

The installation of the database including all tables 

takes totally 3GB storage.  

TPC-W is a transactional web benchmark 

developed by Transaction Processing Performance 

Council that models an on-line bookstore [12]. The 

benchmark comprises a set of operations on a web 

server and a backend database system. It simulates a 

typical on-line/E-commerce application environment. 

Typical operations include web browsing, shopping, 

and order processing. Tomcat 4.1 is used as an 

application server and MySQL 5.0 as a backend 

database. The configured workload includes 30 

emulated browsers and 10,000 items in the ITEM 

TABLE. 
Benchmark Brief Description 

tar Run 5 times randomly on ext2 

gcc Compile Postgres 7.1.2 source code on ext2 

zip Compress an image directory on ext2 

Latex Make DVI and PDF files with latex source files on 

ext2 

cp/rm/mv Execute basic file operations (cp, rm and mv) on 

ext2 

Linux 

Install 

Install Redhat 8.0 on VMWare 5.0 virtual machine  

XP Install Install Windows XP system on VMWare 5.0 virtual 

machine 

App Install MS Office2000 and VC++ on Windows 

VC++ 6.0 Compile our REAPIT implementation codes 

Table 2. File system benchmarks. 

 

Besides benchmarks operating on databases, we 

have also formulated file system micro-benchmarks as 

listed in Table 2. The first micro-benchmark, tar, 

chooses five directories randomly on ext2 file system 

and creates an archive file using tar command. We run 

the tar command five times. Each time before the tar 

command is run, files in the directories are randomly 

selected and randomly changed. Similarly, we run zip, 

latex, and basic file operations cp/rm/mv on five 

directories randomly chosen for 5 times with random 

file changes and operations on the directories. The 

actions in these commands and the file changes 

generate block level write requests. Two compiler 

applications, gcc and VC++6.0, compile Postgress 

source code and our REAPIT implementation codes, 

respectively. Linux Install, XP Install, and App Install 

are actual software installations on VMWare 

Workstation that allows multiple OSs to run 

simultaneously on a single PC. The installations 

include Redhat 8.0, Windows XP, Office 2000, and 
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Visual C++ for Windows. 

 

IV. Experimental Results 
 

Based on the experimental settings discussed 

above, we measured total execution time needed to 

encrypt and transmit history data (EHR) to storage 

servers. Our intent is to compare the performance of 

REAPIT with the traditional storage system that 

supports replay of patient data at any point-in-time. As 

discussed previously, REAPIT captures the parity of 

data change while the traditional storage keeps both 

old copy and new copy of the data block upon a write 

operation to the block.  

Our first experiment is running TPC-C benchmark 

on Oracle database. Continuous database transactions 

are performed for 1 hour period following the TPC-C 

specification. As results of these transactions, many 

data blocks are changed at storage level. The changed 

data are then encrypted and transmitted to the storage 

servers.   Figure 3 shows the measured total execution 

time of data encryptions and transmissions over the 

IPSEC network to the shared storages. Five execution 

times are shown for 5 different data block sizes from 

4KB to 64KB. Recall that the block is the basic data 

unit based on which data transmissions are performed 

at storage level (Windows default block size is 64KB). 

The execution times shown in the figure are extra 

overheads in order to support data replay for any point-

in-time of patient history data. As shown in Figure 3, 

the traditional storage system takes prohibitively long 

time to support data replay with overheads ranging 

from about 177 seconds to 581 seconds for one hour’s 

database transactions.  Our REAPIT system, on the 

other hand, takes well under 20 seconds extra time to 

encrypt and transmit parities for 1 hour of intensive 

database transactions. In other words, REAPIT can 

support replay of patient data as it was at any point-in-

time with no noticeable performance slowdown from 

users point of view.  

Our next experiment is to measure the total 

execution time of TPC-W on Microsoft SQL 

databases. A fixed number of transactions are 

performed on the SQL database using both traditional 

storage system and REAPIT storage system by varying 

block size from 4KB to 64KB.  The measured results 

are shown in Figure 4. Similar to TPC-C, we observed 

again an order of magnitude performance improvement 

of REAPIT system over the traditional storage system 

to support data replay of patient history data.  

 

 
 

In addition to database applications, many 

eHealthcare information systems use file systems. In 

order to see how REAPIT performs on file systems, we 

carried out experiment on file system benchmarks as 

described in the previous section. We run these file 

system micro benchmarks and measure the extra 

execution time needed to encrypt and transmit history 

data. Figure 5 plots the measured results for different 

benchmarks. As shown in this figure, REAPIT 

substantially reduces the execution time. For all 

benchmarks considered, we observed 2 orders of 

magnitude performance improvement indicating the 

effectiveness of using parity logs to capture history 

data as opposed to keeping data themselves.  
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Figure 3.  Comparison of total execution times for  encryption 

and transmission of history data of 2 hours TPC-C transactions 

on  Oracle databases in terms of seconds.
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Figure 4.  Comparison of total execution times for  encryption 

and transmission of history data of  3,000 TPC-W transactions 

on  Microsoft SQL databases in terms of seconds.
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V. Conclusions 
 
This paper presents a new data storage architecture 

supporting data Replay of EHR (Electronic Health 

Records) as it was at Any Point In Time of patient 

history data, referred to as REAPIT. By capturing 

parities resulting from data changes, REAPIT allows a 

user to replay patient data using simple parity 

computations. Storing and transmitting parities provide 

additional security and efficiency compared to data 

itself. Experimental results have shown orders of 

magnitude improvements over traditional storages.   
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