
1

Secure and Efficient Data Replay in Distributed eHealthcare

Information System

Ken Qing Yang, Fellow of IEEE

Dept. of Electrical, Computer, and Biomedical Engineering

University of Rhode Island, Kingston, RI, 02881, USA

Abstract---This paper presents a new distributed data

storage architecture that facilitates secure and efficient data

replay in eHelathcare information system. The new

architecture uses secured iSCSI protocol and records the

parity of every data change to the eHealthcare information

system performed by authorized health care providers. The

recording and transmission of encrypted parities are done in

background without requirement of explicit involvement of

users. Together with either backup data or real-time

production data, one can easily replay Electronic Health

Record (EHR) as it was at any point-in-time in the past using

simple reverse parity computations. Because parities are

substantially smaller than original data, the new system

provides much higher online performance and fast

encryption time. Experimental results on our prototype

system have shown the clear advantages of the new system.

I. Introduction

Rapid advances in computer technologies have

made eHealthcare information systems ubiquitous. In

such eHealthcare information systems, patient data are

stored in a distributed environment allowing healthcare

providers at different locations to share and access

easily a variety of electronic health records (EHR).

Such EHR will become essential source of information

for future healthcare providers and rapidly take over

the role of the paper-based medical records. Therefore,

a reliable, secure, and efficient data storage

infrastructure is critical to future healthcare systems.

However, there are several technical challenges

including reliability, security, and adequate online

performance that make the design and implementation

of such distributed data storage difficult.

The first technical challenge regarding data

reliability has to do with the importance of having

EHR data available to authorized healthcare providers

once they have been created and recorded for a patient.

Such EHR should not only be playable (viewable) in

real time as it is currently but also be re-playable

(reviewable) as it was at any point-in-time in the past

[1,2,3]. Replay/review of the history of patient data is

necessary because of situations of medical audit, law

suits, quality control and self-assessment. The

requirement of being able to replay EHR data makes

the design of the eHealthcare information system

challenging because of the fundamental differences

between paper records and electronic records. With

paper records, one can easily review the history by

following the “paper trails” of the records. With

electronic records, on the other hand, existing data

storage designs do not have the “paper trails”. Any

change to a piece of data in the data storage is

destructive because a data write operation will

overwrite/destroy previous data in the same file or

record. For example, any time when one saves or

writes a changed word document or a spreadsheet file,

the previous version of the file is overwritten and

replaced. Similarly, a database transaction will also

overwrite previous record of the same table. Even the

meta data that records the time of last change or last

access are also changed in a destructive way.

Realizing the importance of replaying history data,

there has been extensive research in data storage and

database systems in terms of data protection and

recovery [4], file versioning [5,6,7], and database

testing [8]. Data protection and recovery technologies

periodically make backups or snapshots of data so that

data can be recovered to a point-in-time in the past in

case of failures or disastrous events. The granularity of

backups/snapshots varies depending on the reliability

requirement and cost. Continuous data protection

(CDP) makes a copy of old data upon each write

operation. CDP provides the finest granularity for data

recovery at the cost of huge amount of data storage that

is several orders of magnitude larger than the amount

of normal real time data. File versioning systems keep

different versions of files when file changes occur. The

number of versions and the frequency of making file

versions can be specified by users. In addition to the

negative performance impacts, file versioning is file

system dependent and requires users to be familiar

with the file system. Database replays were originally

designed for the purpose of database testing of

production database systems that need upgrade or

changes. By storing real transactions happening in

production systems in a separate storage system,

database replay makes testing of new database

installation more realistic. Again, such database

replays require users to explicitly define when and for

how long to capture transactions in the production

system. The major issue is that it is practically

infeasible to enable SQL tracing on the entire database

system because of high overheads [8,9].

The second technical challenge is data security

and privacy of EHR system. Because data in an EHR

2

are stored and transmitted in a distributed environment

over a network, data encryption and access

authentication are very important to protect privacy of

patient data. As it is well known, data encryption and

decryption are very time consuming process especially

for large amount of patient data. Supporting replay of

EHR data aggregates this problem even further because

the amount of data transmitted and stored to enable

data replay is several orders of magnitude larger than

production data due to repetitive overwrites [4]. As a

result, online performance of such EHR system will be

dragged down dramatically by storage systems

supporting data replay and data security.

To tackle the technical challenges discussed

above, we propose a new secured data storage

architecture supporting replay/review of EHR data as it

was at any point-in-time in the past by any authorized

healthcare provider. The new system is referred to as

REAPIT for Replay EHR at Any-Point-In-Time . The

main idea of REAPIT is to calculate and store parity as

result of any data change at block storage level. As a

data block is being changed, a log of parities are

computed and stored. When a replay is requested for a

specific point-in-time in the past, the corresponding

parities are retrieved. Using either current real-time

production data or a previous backup data, a simple

reverse parity computation will generate the exact data

as it was at the specified point-in-time. The clear

advantages of REAPIT are three folds. First of all, the

parity as a result of data change is substantially smaller

than the data itself being changed. Capturing these

parities can be done very efficiently. Transmission of

these parities over the distributed network can also be

done very quickly. Secondly, transmitting and storing

parity add another level of security because wire

tappers cannot easily interpret the meaning of parity

without original data. Furthermore, encrypting parity is

much faster than encrypting original data because of

much smaller size of parities than that of original data.

Finally, the new REAPIT system is user friendly

because parity capture and transfer are done in

background at storage level without requiring users’

explicit involvement. The easy to use user interface

allows a user to choose any point-in-time to replay

EHR data.

To show the advantages of the newly proposed

REAPIT system, we have carried out experiments on a

prototype REAPIT system using Secured iSCSI

protocol. Under the Microsoft Windows environment,

we measured the performance of REAPIT as compared

to traditional storage systems providing the same

functionality. Standard database and file system

benchmarks are used to drive the experimental system.

Numerical results show that REAPIT is very efficient

providing significant performance improvements

compared to traditional storage systems. The

executable program of the prototype REAPIT is

available online at www.ele.uri.edu/hpcl for general

public to repeat our experiments.

The paper is organized as follows. Next section

introduces REAPIIT architecture and its design.

Section 3 presents our experimental setup for

performance evaluations. Numerical results and

performance comparison are discussed in Section 4.

Section 5 concludes the paper.

II. REAPIT System Design

Consider a distributed EHR system as shown in

Figure 1. Multiple clients are connected to shared

storage servers through the IPSEC network. Each of

the clients represents an authorized healthcare provider

such as doctors, radiologists, cardiologist, pathologist,

dentists, dermatologist, neurologist, etc. Any client can

access, modify, add, or delete information in the shared

storages. Since IPSEC runs over the Internet, clients

and storage servers can be located in any geographical

location allowing true patient data sharing among

healthcare providers. As shown in Figure 1, providing

real time data sharing and data access is fairly

straightforward among multiple health providers. The

question is how to capture the history of data accesses

and data changes securely in such a distributed

information system.

REAPIT is a pair of software modules that are

inserted to each client and shared storages,

respectively. The software module inserted in a client

is called iSCSI initiator and the module inserted in a

shared storage system is called iSCSI target. Both

modules work at block device level beneath the file

Client

IPSEC Network

Client Client

Secured

iSCSI

Packets

Tape

Lib

File

Server
Database

server

Figure 1. A distributed information

system using iSCSI protocol.

Storage

Server

http://www.ele.uri.edu/hpcl

3

system or databases. Users do not need to know the

existence of these modules. All IO operations

generated at the upper application layer go through file

system or database down to the block level device and

become data block reads or writes. The iSCSI initiator

representing client applications communicates directly

with the corresponding iSCSI target through secured IP

network by exchanging data blocks for real time

operations. In order to support replay of history data in

addition to real time data accesses, all data access and

data changes need to be recorded. For example, if a

64KB (typical data block size) data block is changed,

both the newly changed block and the original block

before the change should be kept in order to replay

data in the future. As data changes occur, the amount

of data that need to be stored and transmitted over the

network keeps increasing dramatically.

The idea of our new REAPIT is very simple.

Instead of keeping all versions of a data block as it is

being changed by write operations, we keep a log of

parities as a result of each write on the block. Every

time when a write operation happens, the iSCSI

initiator calculates the parity and transmits the parity to

the iSCSI target that store parities in a log structure.

The parity logs are accessible to all clients for replay

purpose. During a replay, the iSCSI initiator makes a

replay request to the target with a specified time point.

The target then finds the corresponding parity in the

parity logs to compute back the data as it was at the

specified time point. Since all parties of write

operations are stored, our approach can replay EHR as

it was at any point-in-time by parity computation.

Figure 2 shows the basic design of the REAPIT

architecture in a typical RAID storage system. Suppose

that at time point i, the client writes into a data block

with logic block address as that belongs to a data stripe

a=(a1, a2 … as, … an). The RAID controller performs

the following operation to update its parity disk:

Pi(a)=Fi(as) Fi-1(as) Pi-1(a), (1)

where Pi(a) is the new parity for the corresponding

stripe, Fi(as) is the new data for data block as, Fi-1(αs)

is the old data of data block αs, and Pi-1(α) is the old

parity of the stripe. Leveraging this computation,

REAPIT appends the first part of the above equation,

i.e. Pi
’
(α) = Fi(αs) Fi-1(αs), to the parity log stored in

the REAPIT disk after a simple encoding box, as

shown in Figure 2. Parity computation can also be

done easily for non RAID storage systems as discussed

in our prior research [4].

Consider the parity log corresponding to a data

block, α, after a series of write operations, the log

contains (P’1(α), P’2(α) ……, P’i-1(α), P’i(α),……)
with time points 1,2, …,i-1, and i associated with the

parities. Suppose that we only have the data image at

time point r (1≤r≤i) and all parities, and we would like

to replay data backward or forward. To do a forward

replay to time point s (s>r), for example, we perform

the following computation for each data block α:

 Fs(α)=Fr(α) P’r+1(α)… P’s-1(α) P’s(α),
(2)

where Fs(α) denotes the data value of block α at time

point s and Fr(α) denotes the data value of α at time

point r. Note that

P’l(α) Fl-1(α)=Fl(α) Fl-1(α) Fl-1(α)=Fl(α), (3)

for all l=1,2, … i. Therefore, Equation (2) gives Fs(α)

correctly assuming that the data value, Fr(α), exists.

The above process represents a typical redo replay

process while earlier data is available. A backward

process is also possible with the parity log if the

newest data is available by doing the following

computation instead of Equation (2):

Fs(α)= Fr(α) P’r(α) P’r-1(α)… P’s+1(α),
(4)

where s<r. This is a typical undo process by using the

newest data that is available. In order to replay data in

either direction, only one reference image is needed

along time dimension because of the commutative

property of XOR computation. This reference image

could be original data image in a backup, real-time

fresh data image, or any data image in the middle.

Besides being able to replay data in two directions,

the important feature of REAPIT is its space efficiency.

Our extensive experiments have demonstrated a very

strong content locality that exists in real world

applications and have shown that only 5% to 20% of

bits inside a data block actually change on a write

operation. The parity, Pi
’
(α), reflects the exact changes

at bit level of the new write operation on the existing

block. As a result, this parity block contains mostly

zeros with a very small portion of bit stream that is

nonzero. Therefore, it can be easily encoded to a small

F
i-1

(a
1
)

F
i
 (a

s
)

Encode

... ...

Append
P’n P’0 Header...

RAID4/5 TRAP Disk

Figure 3. Block Diagram of TRAP Design

F
i-1

(a
s
) P

i-1
(a)

P’
i
(a)

P
i
(a)

Figure 2. Block diagram of REAPIT Design.

REAPIT Disk

4

size parity block to be appended to the parity log

reducing the parity transmission time and the amount

of storage space required to keep track of the history of

writes.

III. Experimental Settings

In order to see how REAPIT performs in a real

distributed eHealthcare information system, we have

set up a cluster of four PCs connected through an

Ethernet switch in our lab. Two Windows based PCs

act as clients, one PC acts as an application server, and

the 4
th

 PC acts as a storage server. Our iSCSI initiator

module based on the Windows standard iSCSI initiator

is installed on the client PCs and application server PC

while the iSCSI target module is installed on the

storage server. The iSCSI initiators communicate with

the iSCSI target on the storage server using IPSEC

protocol. All encoded parities are stored at the iSCSI

target in a log format with time stamps to allow replay

of history data by any authorized client. Table 1 shows

the hardware and software settings in our evaluation

experiments.

PC 1-3 P4 2.8GHz/256M RAM/80G+10G Hard Disks

PC 4 P4 2.4GHz/2GB RAM/200G+10G Hard Disks

OS

Windows XP Professional SP2

Fedora 4 (Linux Kernel 2.6.9)

Databases

Oracle 10g for Microsoft Windows (32-bit)

MySQL 5.0 for Microsoft Windows

iSCSI

UNH iSCSI Initiator/Target 1.6

Microsoft iSCSI Initiator 2.0

Benchmarks

TPC-C for Oracle (Hammerora)

TPC-W Java Implementation

File system micro-benchmarks

Network

Intel NetStructure 470T Switch

Intel PRO/1000 XT Server Adapter (NIC)

Table 1. Hardware/Software settings of ouw experiemtns.

Because of privacy requirement of real patient

data, we are not able to obtain realistic patient data for

our experiments. In order to make our performance

evaluation close to realistic situations, we have chosen

a set of standard database benchmarks as well as real

file system benchmarks.

The benchmarks we selected for database

evaluations include TPC-C and TPC-W. TPC-C is a

well-known benchmark used to model the operational

end of real-time transactions [10]. TPC-C simulates the

execution of a set of distributed and on-line

transactions (OLTP) for a period of between two and

eight hours. TPC-C incorporates five types of

transactions with different complexity for online and

deferred execution on a database system. These

transactions perform the basic operations on databases

such as inserts, deletes, updates and so on. At the block

storage level, these transactions will generate reads and

writes that will change data blocks on disks. For Oracle

Database, we use one of the TPC-C implementations

developed by Hammerora Project [11]. We build 5 data

tables with 25 users issuing transactional workloads to

the Oracle database following the TPC-C specification.

The installation of the database including all tables

takes totally 3GB storage.

TPC-W is a transactional web benchmark

developed by Transaction Processing Performance

Council that models an on-line bookstore [12]. The

benchmark comprises a set of operations on a web

server and a backend database system. It simulates a

typical on-line/E-commerce application environment.

Typical operations include web browsing, shopping,

and order processing. Tomcat 4.1 is used as an

application server and MySQL 5.0 as a backend

database. The configured workload includes 30

emulated browsers and 10,000 items in the ITEM

TABLE.
Benchmark Brief Description

tar Run 5 times randomly on ext2

gcc Compile Postgres 7.1.2 source code on ext2

zip Compress an image directory on ext2

Latex Make DVI and PDF files with latex source files on

ext2

cp/rm/mv Execute basic file operations (cp, rm and mv) on

ext2

Linux

Install

Install Redhat 8.0 on VMWare 5.0 virtual machine

XP Install Install Windows XP system on VMWare 5.0 virtual

machine

App Install MS Office2000 and VC++ on Windows

VC++ 6.0 Compile our REAPIT implementation codes

Table 2. File system benchmarks.

Besides benchmarks operating on databases, we

have also formulated file system micro-benchmarks as

listed in Table 2. The first micro-benchmark, tar,

chooses five directories randomly on ext2 file system

and creates an archive file using tar command. We run

the tar command five times. Each time before the tar

command is run, files in the directories are randomly

selected and randomly changed. Similarly, we run zip,

latex, and basic file operations cp/rm/mv on five

directories randomly chosen for 5 times with random

file changes and operations on the directories. The

actions in these commands and the file changes

generate block level write requests. Two compiler

applications, gcc and VC++6.0, compile Postgress

source code and our REAPIT implementation codes,

respectively. Linux Install, XP Install, and App Install

are actual software installations on VMWare

Workstation that allows multiple OSs to run

simultaneously on a single PC. The installations

include Redhat 8.0, Windows XP, Office 2000, and

5

Visual C++ for Windows.

IV. Experimental Results

Based on the experimental settings discussed

above, we measured total execution time needed to

encrypt and transmit history data (EHR) to storage

servers. Our intent is to compare the performance of

REAPIT with the traditional storage system that

supports replay of patient data at any point-in-time. As

discussed previously, REAPIT captures the parity of

data change while the traditional storage keeps both

old copy and new copy of the data block upon a write

operation to the block.

Our first experiment is running TPC-C benchmark

on Oracle database. Continuous database transactions

are performed for 1 hour period following the TPC-C

specification. As results of these transactions, many

data blocks are changed at storage level. The changed

data are then encrypted and transmitted to the storage

servers. Figure 3 shows the measured total execution

time of data encryptions and transmissions over the

IPSEC network to the shared storages. Five execution

times are shown for 5 different data block sizes from

4KB to 64KB. Recall that the block is the basic data

unit based on which data transmissions are performed

at storage level (Windows default block size is 64KB).

The execution times shown in the figure are extra

overheads in order to support data replay for any point-

in-time of patient history data. As shown in Figure 3,

the traditional storage system takes prohibitively long

time to support data replay with overheads ranging

from about 177 seconds to 581 seconds for one hour’s

database transactions. Our REAPIT system, on the

other hand, takes well under 20 seconds extra time to

encrypt and transmit parities for 1 hour of intensive

database transactions. In other words, REAPIT can

support replay of patient data as it was at any point-in-

time with no noticeable performance slowdown from

users point of view.

Our next experiment is to measure the total

execution time of TPC-W on Microsoft SQL

databases. A fixed number of transactions are

performed on the SQL database using both traditional

storage system and REAPIT storage system by varying

block size from 4KB to 64KB. The measured results

are shown in Figure 4. Similar to TPC-C, we observed

again an order of magnitude performance improvement

of REAPIT system over the traditional storage system

to support data replay of patient history data.

In addition to database applications, many

eHealthcare information systems use file systems. In

order to see how REAPIT performs on file systems, we

carried out experiment on file system benchmarks as

described in the previous section. We run these file

system micro benchmarks and measure the extra

execution time needed to encrypt and transmit history

data. Figure 5 plots the measured results for different

benchmarks. As shown in this figure, REAPIT

substantially reduces the execution time. For all

benchmarks considered, we observed 2 orders of

magnitude performance improvement indicating the

effectiveness of using parity logs to capture history

data as opposed to keeping data themselves.

0

100

200

300

400

500

600

700

4KB 8KB 16KB 32KB 64KB

Exe Time of Traditional
System

Block
Sizes

Figure 3. Comparison of total execution times for encryption

and transmission of history data of 2 hours TPC-C transactions

on Oracle databases in terms of seconds.

0
5

10
15
20
25
30
35
40
45

4KB 8KB 16KB 32KB 64KB

Exe Time of Traditional System

Exe Time of REAPIT System

Block
Sizes

Figure 4. Comparison of total execution times for encryption

and transmission of history data of 3,000 TPC-W transactions

on Microsoft SQL databases in terms of seconds.

6

V. Conclusions

This paper presents a new data storage architecture

supporting data Replay of EHR (Electronic Health

Records) as it was at Any Point In Time of patient

history data, referred to as REAPIT. By capturing

parities resulting from data changes, REAPIT allows a

user to replay patient data using simple parity

computations. Storing and transmitting parities provide

additional security and efficiency compared to data

itself. Experimental results have shown orders of

magnitude improvements over traditional storages.

Acknowledgements

The author thanks Mr. Jin Ren and Dr. Weijun

Xiao for their help in prototype implementation and

evaluation experiments. This research is supported in

part by National Science Foundation under Grants

CPS-0931820 and CCF-0811333. It is also partly

supported by Natural Science Foundation of China

under grant NSFC-60736013. Any opinions, findings,

and conclusions or recommendations expressed in this

material are those of the author(s) and do not

necessarily reflect the views of the National Science

Foundation.

References

[1] A. R. Bakker, Access to EHR and access control at a

moment in the past: a discussion of the need and an

exploration of the consequences, Int J Med Inform 73

(2004).: 267-270.

[2] A. R. Bakker, “The need to know the history of the use of

digital patient data, in particular the EHR,” Int’ Journal

of Medical Informatics 76 (2007), pp. 438-441.

[3] Kudawashe Dube, “The Motion Picture Paradigm:

Record, Play and Re-play in Data/Information,” SEAT,

Massey University, available online at:

http://www.massey.ac.nz/~kdube/main/wp-

content/uploads/2009/11/mpp-problem-massey1.pdf

[4] Weijun Xiao and Qing Yang, "A Case for Continuous

Data Protection at Block Level in Disk Array Storages"

IEEE Transactions on Parallel and Distributed

Systems, Volume 20, Issue 6 (June 2009), Pages 898-

911.

[5] K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and

E. Zadok, “A versatile and user-oriented versioning file

system,” In Proc. of the 3rd USENIX Conference on

File and Storage Technologies, San Francisco, CA,

2004.

[6] Z. Peterson and R. C. Burns, “Ext3cow: A Time-

Shifting File System for Regulatory Compliance”, ACM

Transactions on Storage, Vol.1, No.2, pp. 190-212,

2005.

[7] S. Quinlan and S. Dorward, “Venti: a new approach to

archival storage,” In Proc of the 2002 Conference on

File and Storage Technologies, Monterey, CA, Jan.

2002, pp. 89-101.

[8] Wang, Y., Buranawatanachoke, S., Colle, R., Dias, K.,

Galanis, L., Papadomanolakis, S., and Shaft, U. 2009.

Real application testing with database replay. In

Proceedings of the Second international Workshop on

Testing Database Systems (Providence, Rhode Island,

June 29 - 29, 2009). 1-6.

[9] SQL server profiler, RDBMS documentation,

available online: msdn.microsoft.com.

[10] Transaction Processing Performance Council, “TPC

BenchmarkTM C Standard Specification,” 2005,

http://tpc.org/tpcc.

[11] S.Shaw, “Hammerora: Load Testing Oracle Databases

with Open Source Tools,” 2004,

http://hammerora.sourceforge.net.

[12] H.W. Cain, R. Rajwar, M. Marden and M.H. Lipasti,

“An Architectural Evaluation of Java TPC-W,” HPCA

2001, Nuevo Leone, Mexico, Jan. 2001.

0
100
200
300
400
500
600
700
800
900

1,000
Exe Time of Traditional System

Exe Time of REAPIT System

Figure 5. Comparison of total execution times for encryption

and transmission of history data of file system micro benchmarks

in terms of seconds.

http://www.ele.uri.edu/Research/hpcl/2009/Case.pdf
http://www.ele.uri.edu/Research/hpcl/2009/Case.pdf

