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Abstract— This paper examines several promising throughput 
enhancements to the Lempel-Ziv-Oberhumer (LZO) 1x-1-15 data 
compression algorithm.  Of many algorithm variants present in 
the current library version, 2.06, LZO 1x-1-15 is considered to be 
the fastest, geared toward speed rather than compression ratio.  
We present several algorithm modifications tailored to modern 
multi-core architectures in this paper that are intended to 
increase compression speed while minimizing any loss in 
compression ratio.  On average, the experimental results show 
that on a modern quad core system, a 3.9x speedup in 
compression time is achieved over the baseline algorithm with no 
loss to compression ratio.  Allowing for a 25% loss in 
compression ratio, up to a 5.4x speedup in compression time was 
observed. 

Keywords- Lossless Data Compression; Lempel-Ziv-Oberhumer 
(LZO); Real-Time Systems; Parallel Computing; Parallel 
Algorithms. 

I.  INTRODUCTION 

Real-time systems are more and more often being required 
to process an increasing amount of data.  Interface throughput 
and storage bottlenecks may be reached in such systems 
because of the amount of data involved.  Data compression can 
be used to help alleviate such problems by reducing the amount 
of data injected into a pipeline. For the purpose of this paper 
we will consider targeting a theoretical real-time system, 
requiring a lossless compression system to pass data between 
two interfaces.  Compression may be required in such a 
situation due to bandwidth limitations or space constraints on 
the destination interface.  We will assume a constant input 
stream of data is available to the compression device and that 
the final compressed output is able to be passed to the 
secondary interface with zero delay.  The target lossless 
compression algorithm for this system will be Lempel-Ziv-
Oberhumer (LZO) variant 1x-1-15. 

The LZO compression library is a collection of lossless 
dictionary based data compression algorithms that favor speed 
over compression ratio.  The LZO library was first released in 
1996 and has received periodic updates since.  The library has 
experienced widespread use, being implemented in a variety of 
technologies, including NASA's Mars Rovers [1] and Oracle 
Corporation's B-tree Linux file system.  A comparison of the 
LZO 1x-1 algorithm speed performance against common 
compression formats such as GZIP, can be found in [2].  Of the 
available LZO algorithms, 1x-1-15 is considered by the author, 

Oberhumer, to have the fastest compression speeds [1], 
exceeding that of LZO 1x-1 at the cost of compression ratio.  
This paper investigates possible enhancements to the 1x-1-15 
algorithm to improve data compression speeds for use in real-
time systems. 

Utilizing the special architectural features of modern multi-
core processors, we will examine the effects of optimizing 
LZO in the following ways:  parallelizing block compression, 
using Intel SSE (Streaming SIMD Extensions) vector 
instructions to perform data copy operations, modifying the 
search algorithm, enforcing cache-aligned reads, and 
calculating CRC-32 checksums via hardware.  All five 
enhancements have been implemented on the LZO open source 
code. Performance evaluation and comparison have been 
carried out using real world data sets. Experimental results 
have shown significant performance improvements in terms of 
compression time. For the same compression ratio, over a 
factor 3 speedup was observed.  If trading off a slightly lower 
compression ratio is allowed and all enhancements are 
combined, over a factor 5 speedup was observed. 

The remainder of this paper is organized as follows.  First, 
an analysis of the existing LZO 1x-1-15 algorithm is 
conducted, revealing the overall structure and identifying 
unique characteristics.  Next the proposed enhancements to the 
algorithm are discussed in detail.  After this, experimental data 
is given to compare against baseline performance.  Finally, 
conclusions regarding the obtained results are presented. 

II. ANALYSIS OF LZO 1X-1-15 

LZO 1x-1-15 is a variation of the Lempel-Ziv 1977 (LZ77) 
compression algorithm, which is described in [3].  LZ77 
achieves data compression via a sliding window mechanism:  
bytes from a look-ahead buffer are shifted one by one into a 
search buffer.  When matches are found between the look-
ahead buffer and locations in the search buffer, tokens are 
output on the compression stream rather than literals, resulting 
in compression.  Major differences in Oberhumer’s LZO 
variation include: the optimization of operations through the 
use of integer computer hardware, a quick hash lookup table 
for match data, and better optimized output tokens. 

The LZO 1x-1-15 algorithm is structured to take advantage 
of the fact that most computers are optimized for performing 
integer operations.  Instruction latency/throughput tables 
illustrating this on Intel ATOM architecture CPUs can be found 



in [4].  Throughout the algorithm, no time-consuming floating 
point operations are used.  The most complex instruction 
performed is an integer-multiply operation, which takes 
roughly five or less CPU clock cycles on the latest Intel 
architecture processors [5].  When pipelining and out-of-order 
execution operations are taken into account, the delay 
introduced by this multiply instruction is made even less 
significant. 

Fetches to and from cache are also optimized.  The 
algorithm is relatively small when compiled into binary format, 
likely fitting within a modern level 1 instruction cache.  
Compiling for i386 target hardware was found to result in 
roughly 600 instructions, which occupied a total size of roughly 
1.84kB.  This low instruction count is confirmed by that of the 
slightly larger, more complex cousin algorithm LZO 1x-1, 
given in [6].  Since the algorithm operates on data in a block 
manner, successive iterations do not require the frequent re-
fetching of instructions from main memory.  Data cache misses 
are also minimized, as a maximum of 48kB of data at a time is 
compressed; regardless of the user-defined input block size.  
On a modern data cache of size 16kB or larger, this will result 
in few level 1 cache misses.  A 48kB sub-block of input data to 
be compressed should easily fit within level 2 cache, if not 
most of level 1 cache.  Intel processors in particular predict 
data fetch patterns and automatically pre-fetch sequential data 
from a detected input stream, resulting in further performance 
gain during the block compression algorithm [4][7]. 

As seen in Fig. 1, the 1x-1-15 algorithm itself can be 
divided up into four major sections of code: 

 1.  Search for a match 

 2. Write unmatched literal data 

 3.  Determine match length 

 4.  Write match tokens 

When searching for match data, the algorithm examines 32-
bits of data from the input stream and computes a hash value 
into a small 8192 (8k) entry dictionary of 16-bit pointers to 
recently found data.  Initially all entries in this dictionary are 
initialized to point to the same first 32-bit data element in the 
input stream, which can result in misses for the first several 
iterations of the search loop, until the dictionary becomes 
sufficiently populated.  The hash value into the dictionary is 
completed quickly by first using an integer operation to 
multiply the current 32-bit unsigned data with the fixed value 
0x1824429D.  Pseudo-randomness, to reduce the frequency of 
hash table conflicts, is guaranteed based on the fact that the 
number being multiplied is a fairly large 32-bit prime number.  
Next, integer shift operations perform a quick division, 
resulting in the final 13-bit hash index to be used for simple 
indexing into the dictionary.  If a match is found, or if the end 
of the input stream is reached, the algorithm jumps to copying 
any previously unmatched literal data to the output stream.  
Otherwise, the pointer to the next potential data match is 
obtained from the input stream according to (1); where ip is the 
pointer to the current search location in the input stream and ii 
is a pointer to the location immediately following the last 
detected match in the input stream, or the beginning of the 
current 48kB sub-block of data in the instance that a match has 
yet to be found. 

 ip += 1 + ((ip - ii) >> 5); (1) 

In (1), first the difference between ip and ii is taken and the 
intermediate result is then divided by 32.  Finally ip is 
incremented by this value plus one.  A difference between ip 
and ii indicates the number of missed matches that have 
occurred.  Larger differences have a greater effect on the 
equation.  Fig. 2 illustrates the effect of misses on the input 
data stream.  As consecutive misses become more frequent, ip, 
jumps exponentially until either a match is found or the end of 
the current 48kB sub-block is reached.  The search algorithm 
appears to make the assumption that data matches are related 

 
Figure 2.  LZO 1x-1-15 Input Stream Traversal (assuming no matches found) 

 

 
Figure 1.  LZO 1x-1-15 Algorithm Flow 

 



by spatial locality.  When a match is found, the search 
algorithm assumes nearby matches will also occur, only 
incrementing the search pointer, ip, by one byte.  As match 
detections repeatedly fail, ip is increasingly incremented in an 
exponential fashion. 

Consider the following simplified example:  a 100-byte 
data set with 4-byte long matches located at byte offsets 
30,34,38, and 84.  Misses will occur at offsets 0 through 29 and 
the search pointer ip will be incremented by one byte offset 
each time.  Keep in mind that every time a miss occurs, the 
dictionary is still populated.  Then three consecutive matches 
will occur, with ip being updated to the next unmatched 
location for successive search iterations.  From offsets 42 
through 73 ip is incremented by one byte.  From offsets 74 
through 82, the difference between the last match, ii, and the 
search pointer has grown beyond a distance of 32, and as such 
a byte offset of 2 is added to ip upon each detected miss.  At 
byte offset 84 a match is found once again.  As the match is 
only 4 bytes in length, the search will resume at byte offset 88 
where a miss will occur.  Since a match was detected, ii was 
updated and the difference between ip and ii is once again less 
than 32.  This results in ip being incremented by one byte once 
again rather than two.  Miss detections and single offset 
increments will continue to the end of the dataset. 

An interesting aspect of the code used by the algorithm to 
perform the searches is that it involves only integer operations 
and no comparison instructions.  The effect of this is that the 
compiled code will produce no conditional branch instructions 
to calculate the exponential behavior.  Consequently, no part of 
the CPU pipeline will need to be reserved for branch prediction 
to determine how far to advance into the input data stream on 
the next iteration.  This results in overall faster code. 

The second major portion of the LZO 1x-1-15 algorithm 
performs the copying of unmatched literal data to the output 
stream.  First, the number of bytes of uncompressed literal data 
is written in an encoded manner to the output stream.  This is 
followed by the literal data.  The algorithm assumes a 32-bit 
data bus, and, when possible, copies data to the output stream 
in groups of 32-bits in an attempt to optimize any writes 
performed.  After copying the literal data, if the end of the data 
stream was reached, a special block marker is written to the 
output stream.  Otherwise, the match length is calculated. 

The algorithm calculates match length by performing 32-bit 
XOR operations on sequential sets of data pointed to by the 
input stream and the dictionary.  If a 32-bit match comparison 
is successful, the result of the XOR operation will be zero.  
When the comparison fails for the first time, 8-bit byte 
comparisons are performed to determine if any leftover partial-
word singular bytes in the stream matched.  Thus, similar to the 
literal copy operation, the algorithm assumes that the 
computer's hardware will be optimally used if matches are 
primarily performed on a 32-bit integer basis. 

Following the match length calculation, the algorithm 
encodes the following tokens on the output stream:  a marker 
denoting the type of match that occurred, the offset to the 
location of the data that matched the current set, and the length 
of the match.  To minimize the number of bytes used to store 
this information and improve the compression ratio, five 

different encodings exist.  Each of the five encodings offers a 
unique variation of offset/length encoding.  After outputting the 
match information, the algorithm returns to searching for the 
next 32-bit set of matching data. 

III.  ALGORITHM ENHANCEMENTS 

The five enhancements that follow in this section have been 
applied to the existing LZO 1x-1-15 algorithm to determine the 
impact on compression performance. 

A. Parallelization of Block Compression 

The original LZO algorithm is serial in nature.  Data is 
compressed on a block by block basis, but there is no explicit 
support for multiple CPU hardware cores.  By implementing a 
divide and conquer approach to individually compress and 
reassemble blocks of data in the input stream, a performance 
gain should be attained.  This performance gain should be 
directly proportional to the amount of CPU cores utilized. 

To investigate this improvement, a thread-based variation 
of the 1x-1-15 algorithm has been constructed as follows.  As 
seen in Fig. 3, three main types of threads are created:  control, 
compression, and reconstruction.  Communication between the 
three types of threads is accomplished through the use of 
semaphore-protected shared memory.  The main thread is 
created to control the flow of input data, manage memory 
utilization, and initiate compression threads.  N user-defined 
threads are created to perform the actual compression on input 
data blocks when commanded.  The compression threads 
operate independently from one another, each with their own 
set of temporary resources.  The software and operating system 
ensure the compression threads are load-distributed to all 
available processor cores in the system.  The main control 
thread will initiate a compression thread when the following 
conditions are determined:  available input data exists, 
temporary output compression buffers exist, and an idle 
compression thread exists.  Finally, a reconstruction thread is 

 
 

Figure 3.  Multi-Threaded Implementation 
 



created to accept the output LZO-compressed block data from 
the individual compression threads.  It is the job of the 
reconstruction thread to ensure that the resultant output stream 
is created in-order.  Since data is being compressed in parallel 
on separate CPUs, there is no guarantee as to when a particular 
block of data will finish compression, i.e., Input Block 1 could 
be compressed first, followed by Block 3, followed by Block 2.  
Thus, without the reconstruction thread, there would be no 
mechanism to correctly reconstruct the compressed output data 
in-order.  Unless special headers were added to identify the 
out-of-order data, existing LZO decompression routines would 
be incompatible with the produced output format. 

B. Optimize Copying of Literal Data 

In the current LZO algorithm, uncompressed literal data is 
copied to the output stream on a 32-bit long word basis.  The 
copying of this data is one of the more time intensive 
operations.  Instead of copying on a 32-bit integer basis, data 
can be copied faster using available vector instructions.  On 
current generation Intel processors, this allows for up to 128 
bits of data to be copied at a time.  This should potentially 
quadruple performance when this portion of the code is 
executed.  To investigate this optimization, Intel SSE 
(Streaming SIMD (Single Instruction Multiple Data) 
Extensions) vectorized memory copy related source code from 
Agner Fog’s freely available asmlib library [8] was utilized. 

C. Search for Matches Every 32-Bits 

LZO 1x-1-15 shifts data from a look-ahead buffer into the 
search buffer by one byte, similar to LZ77.  This algorithm 
variant has been created to advance the input stream by 32-bits 
(one integer) each time a match detection fails.  In this manner, 
the input stream will be traversed faster, although with the 
extra side effect that the dictionary will be less frequently 
populated.  A compression ratio loss is expected, the magnitude 
of which will need to be determined experimentally. 

D. Force Cache-Line-Aligned Reads 

Most current generation Intel processors suffer a penalty 
when reading data that exists between cache line boundaries 
[7].  Figure 4 illustrates this issue.  The search portion of the 
1x-1-15 algorithm has the potential of suffering the most from 
this observation.  In the worst case, successive new matches 
could continually be found on cache line boundaries, incurring 
a performance penalty each time.  By modifying the search 
equation and match length detection to operate entirely on a 32-
bit basis, all accesses to memory can be ensured to be cache-
line-aligned. 

Assuming the cache line boundaries in a system lie on an 
address location that is divisible by 4 bytes, and knowing that 
up to 4 bytes of data can be read from memory at a time, the 
following replacement search equation was constructed to 
ensure that a boundary would never be crossed: 

 ip += 4 + (((ip - ii) >> 5) & 0xFFFFFFFC); (2) 

Four bytes are added to the current input pointer instead of 
one byte to ensure that the input data is always advanced by 32 
bits.  The exponential portion of the equation is bit-wise 
ANDed to ensure that the result of that mathematical operation 
is 32-bit aligned as well. 

Match length calculation was also required to be modified 
to ensure that reads from the input stream remain on cache line 
boundaries.  Since the existing algorithm allowed for match 
lengths to be determined on a byte basis, this variation was 
altered to only perform matches on a 32-bit basis, guaranteeing 
inter-cache line boundary locations will not be read the next 
time the search equation is executed. 

This modification is in essence an extension of the 
previously described 32-bit search variation.  In addition to 
searching every 32-bits for a match, the search pointer is 
verified to lie on a 4-byte boundary and the lengths of matching 
datasets are terminated early to ensure they result in multiples 
of 32-bits.  Similar to the 32-bit search algorithm, a 
compression ratio loss is expected.  The compression ratio loss 
will likely be greater due to the fact that matches will be 
shorter.  A speed enhancement may result due to the cache line 
read penalty being avoided. 

E. Utilize Hardware CRC-32 Instruction 

The existing LZO library incorporates a CRC-32 
calculation routine derived from the freely available zlib library 
[9].  This variation implements a tabular method using the 
0x4C11DB7 polynomial.  This method requires a considerable 
amount of processor utilization to generate checksums.  The 
particular approach taken for this paper was to observe the 
performance of the relatively new Intel SSE 4.2 assembly 
instruction “CRC32”. 

It should be noted that the improved CRC-32 library 
function is not explicitly utilized by the LZO 1x-1-15 
algorithm, or any other of the provided LZO library algorithms 
for that matter.  The function is provided by Oberhumer to the 
end-user so that CRC’s may be calculated on a need basis as 
determined by the writer of the final produced compression 
executable.  In this manner the end-user is able to adjust the 
balance between speed and error-checking capability.  The 
author of the LZO library has written and maintained the 
executable "lzop".  The current version of lzop, 1.03, 
incorporates a small subset of the LZO library for its 
compression, including the 1x-1, 1x-1-15, and 1x-999 
algorithms.  This executable calls the CRC-32 library function 
twice for every block of input data compressed; once to 
determine the CRC for the original uncompressed data block 
and once to determine the CRC for the compressed output 
block.  By default, the application sets the user-defined input 
block size to 256kB. 

 
Figure 4.  Cache-Line Boundary Read Penalty 



IV.  PERFORMANCE ANALYSIS 

To determine compression performance, first a dataset of 
sample files to be compressed was constructed.  The particular 
set was chosen to demonstrate performance over a variety of 
file types that could represent potential data streams in a real-
time system.  A brief description of the files used can be seen 
in Table I. 

Text files such as the Wikipedia backups and the Google 
Books 1-gram corpus were chosen to demonstrate performance 
on highly redundant data.  Since LZO is a dictionary-based 
method, it was expected that the compression time and ratio 
should yield fairly good results for these files.  The files 
already containing various degrees of compressed data (GZIP 
and BZIP2) were chosen to show compression performance 
when file expansion has a high potential of occurrence.  An 
uncompressed tarball compilation of extended TIFF image data 
was picked to demonstrate image compression characteristics 
of the algorithm.  A rather large uncompressed tarball 
compilation of HDF biological E-coli data was chosen to show 
performance against binary data.  Finally, genome data in 
FASTQ format was chosen, as it is considered the standard for 
storing the output of high throughput sequencing instruments.  
Thus, the FASTQ data should provide a somewhat realistic 
real-time data stream. 

As stated in Section I, performance analysis was evaluated 
in regards to a theoretical real-time compression system 
consisting of two interfaces:  a constant input stream and an 
output stream that can be written to with zero delay.  A 
software command-line executable was created to simulate 
such a system and facilitate batch compression of the files 
identified in Table I.  The executable loads input data and 
compresses it in memory to reduce the impact of slow file I/O 
subsystems.  Time spent reading data from the hard disk is not 
counted against compression time.  This serves two purposes; 
first, the algorithms can be more fairly evaluated independent 
of hardware overhead limitations, and second, the input data 
stream is simulated as a continuous stream, as desired by the 
real-time system simulation.  Parameters were passed to the 

executable dictating which algorithm to utilize and how many 
iterations of compression to perform on a per file basis.  After 
testing a particular algorithm’s performance on a file from the 
dataset, the program outputs the average throughput, the 
average compression time, the average compression time per 
input data block, the compression ratio, and the final 
compressed file size. 

A. Test Setup 

A Dell Optiplex 790 computer running Microsoft Windows 
7 Professional 64-bit was utilized to determine the impact of 
the algorithm modifications.  The system was configured with 

 
Figure 5.  Compression Ratio at Various Input Block Sizes 

 

 
Figure 6.  Compression Time at Various Input Block Sizes 

 

 
Figure 7.  Compression Time per Block at  

4k, 8k, 16k, 32k Input Block Sizes 

Table I.  Dataset Information 
 

Compression Item File Type / Description File 
Size 
(GB) 

images_en.nq Text (Dump of Wikipedia Thumbnail 
Links) 

1.2 

e-coli HDF RAW Binary 
(E-Coli C227 Strain Information) 

30.0 

gb-1gram-(n).csv Text, where n= 0 to 9. 
(From Google Books 1-gram corpus) 

0.95 

ERR007772_(n).fastq FASTQ Text-Based, where n= 1,2. 
(Mouse Genome Sequence Data) 

5.6 

xtf_Files.tar XTIFF Images (NY Hudson River Side-
scan SONAR images) 

1.5 

enwiki.xml Text (Wikipedia dump of articles, 
templates, media/file descriptions, and 
primary meta pages) 

37.9 

ERR007772_1.fastq.gz Compressed GZIP 
(Compressed ERR007772_1.fastq) 

2.4 

enwiki.xml.bz2 Compressed BZIP2 
(Compressed enwiki.xml) 

8.6 

 



an Intel 3.4GHz i7-2600 Sandy Bridge Quad Core Processor (4 
physical cores, 8 logical cores), 8 GBytes of Dual Channel 
1333MHz DDR3 RAM, and a 500GB 7200RPM hard disk 
drive. 

Prior to the start of testing, an optimal parameter was 
determined for the input block size.  The first Google Book 1-
gram dataset was run with several input block sizes, as seen in 
Fig. 5 through Fig 7.  Compression ratio and compression 
timing performance noticeably increased from about 1kB to 
16kB.  From 48kB onward, performance seemed to level off 
and remain relatively constant.  Compression time per block 
was found to be on the order of milliseconds.  It should be 
noted that the time to compress one block of data is virtually 
the same for the baseline and multi-threaded implementations, 
as the multi-threaded compression routine is identical.  The 
multi-threaded implementation gains its speed due to the fact 
that it is processing multiple compression blocks 
simultaneously.  For testing purposes, an input block size of 
256kB was chosen, as it is the default used by Oberhumer’s 
lzop executable and demonstrated no obvious disadvantage in 
the preliminary tests. 

For those algorithms utilizing multiple CPU cores, in 
addition to the input block size parameter, the optimum number 
of compression threads was determined empirically prior to 
testing.  Some results of this testing can be seen in Fig. 8.  
Performance with one thread in the multi-core version of LZO 
was found to be slightly worse than the baseline.  This is most 
likely due to the overhead involved in coordinating the multi-
core algorithm.  Performance for both multi-threaded 
implementations increased up to a maximum value of four 
compression threads.  It was originally expected that 
performance would increase up to eight maximum threads as 
the system under test has eight logical cores.  Further testing 
showed that due to the specific software implementation, the 
CPU cores never reached maximum utilization of all eight 
cores simultaneously.  In order to accommodate large file sizes, 
only 64 MBytes at a time were read to physical memory from 
disk and compressed in a loop.  The stall time imparted from 
performing the disk reads was accounted for and subtracted 
from the total compression time.  However, the operating 
system, due to the frequency of the stalls, appeared to 
determine that delegating work to the logical cores was not 
necessary, as the physical cores remained slightly 

underutilized.  A modified version of the compression 
benchmark program was created to iterate on the first 512 MB 
of file data in memory.  This software was able to exercise all 
eight cores, showing the expected performance boost from one 
to eight threads.   

For the purposes of this testing it was decided to continue 
utilizing the original version of software with the maximum 
thread parameter set to 4 or greater.  The memory-only 
software variation would result in inaccurate compression ratio 
measurements, as larger file streams would not be able to fit 
within available memory space. 

B. Benchmark Test Results 

Testing was conducted in the following manner.  First the 
performance of the existing LZO 1x-1-15 algorithm was 
determined.  Then each of the four new performance 
enhancements to 1x-1-15 was tested separately.  A version of 
the compression algorithm that combined all of the 
enhancements was tested and the results recorded.  Finally, the 
CRC-32 library modification was tested against the baseline 
library function using the unmodified LZO 1x-1-15 algorithm 
with a 256kB input block size.  The CRC-32 function calls 
were constructed similar to those used in lzop, calling the 
function twice per each processed input data block. 

Results of testing the LZO 1x-1-15 variants on the dataset 
can be found in Fig. 9 through Fig. 11.  In terms of 
compression ratio, in all cases, the baseline, optimal memory 
copy, and multi-core implementations yielded the best results.  
This was expected, as the three of these algorithms did not 
deviate from the original algorithm in a manner that would 
affect file traversal behavior.  The remaining three algorithms 
employed modifications to the search portion of the algorithm 
to enhance compression speed.  Compared to the baseline 
algorithm, the 32-bit search, cache aligned read, and 
combination implementations experienced losses in 
compression ratio.  The 32-bit search algorithm resulted in files 
up to 1.3 times larger than the baseline, whereas the cache 
aligned read and combination variants created files up to 2.3 
times in size. 

In terms of compression time, the baseline algorithm 
proved the slowest for most files.  In all cases, the optimized 
vector memory copy algorithm outperformed the baseline 
speed-wise by roughly 5 percent.  The multi-core and 
combination algorithms consistently completed file 
compression within 25 and 20 percent respectively of the time 
taken by the baseline algorithm.  On average, for the files 
tested, the speedup gained was 3.9x for multi-core and 5.4x for 
the combination algorithm.  The 32-bit search algorithm 
resulted in a 10 percent speed increase for text files and a 25 to 
50 percent increase for binary/image files.  The cache-line-
aligned read algorithm, with one exception, proved to be 
slightly faster than the 32-bit search modification. 

The one exception to this trend occurred with the file 
“image_en.nq”.  This is a text file composed of Wikipedia 
thumbnail hyperlinks.  A brief examination of the file shows 
that the contents appears to be highly redundant, as it consists 
of many very similar hypertext Uniform Resource Locator 
(URL) ASCII text strings, all beginning with “<http://”.  The 

 
Figure 8.  Average Compression Time for Various Maximum Thread Settings 

(Control and Reconstruction Threads Not Counted in Totals) 
 



baseline algorithm confirms that this is the most redundant of 
the files tested, as it achieved the greatest compression on this 
file in Fig. 9.  It was expected that the compression ratio would 
be the worst for the cache-line-aligned version, as this version 
not only searches every 32-bits for a match and ignores 
matches less than 32-bits in size, but also moves the search 
pointer forward if it is not currently on a 32-bit boundary.  The 
extent of the speed degradation, however, was not anticipated. 

To determine why the cache-line-aligned modification may 
experience issues with highly redundant data, a special version 
of the compression software was created to gather more in-
depth timing information.  This version of software recorded 
execution time spent in the four main sections of the 
compression code, described in Section II.  Compression of the 
file “image_en.nq” was re-run using the 32-bit search and 
cache-line-aligned algorithms.  The results can be found in 
Table II. 

It was found that the cache-line-aligned algorithm overall 
executed roughly 1.28 times the number of loop iterations, 
resulting in a total compression time of 1.40 times longer than 
that of the 32-bit search variation.  Supplemental testing on an 
Intel Core2 Duo system (not shown), which according to [7] 
should benefit more from the aligned reads than the i7 
processor used for benchmarking, showed that the algorithm 
still performed 1.30 times slower than the 32-bit search 
variation.  Examining Table II, fewer match length 
determination loops were executed, implying that fewer 
dictionary matches were found.  This makes sense, as during 
dictionary searches the 32-bit alignment of the input pointer 
may skip up to three consecutive bytes, leading to a more 
sparsely populated dictionary.  Those matches found would 
also have been shorter in length due to the imposed 32-bit 
boundary restriction.  This led to more execution time in the 
rather expensive search and uncompressed literal copy code 
segments.  The ability of the search function to exponentially 
skip through a 48kB sub-block is also hindered by the high 
level of data redundancy:  the algorithm periodically finds short 
matches, resulting in an inability to skip forward to the end of a 
sub-block, as it would with data of lower redundancy.  These 
combined factors appear to have attributed to the poor speed 
performance for highly redundant data. 

Compression timing performance for highly non-redundant 
data can be seen in Fig. 12.  Once again, the multi-threaded 
algorithms experienced considerable speed boosts compared 
with the others.  Results indicated that file expansion only 
achieved an excess growth of 0.4 percent of the original file 
size for all tested algorithm variants. 

CRC-32 testing was conducted on one of the Google Book 
1-gram data files.  Testing showed that on average an extra 
1.47 msec per block was added to compression time when 
using the tabular method, and an extra 0.23 msec per block was 
added when using the hardware method.  As expected, the 

 
Figure 9.  Compression Ratio 

 

 
Figure 10.  Compression Time (small streams) 

 

 
Figure 11.  Compression Time (large streams) 

Table II.  Cache-Line-Aligned vs. 32-Bit Search Performance 
(Higher Ratios Indicate Worse Performance for Cache-Line-Aligned Alg.) 
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32-Bit Search Alg.) 

Search 27.0% 31.9% 1.35 1.65 
Literal 
Copy 

14.8% 16.3% 2.15 1.55 

Match 
Length 

41.7% 32.3% 0.95 1.08 

Token 16.5% 19.5% 1.70 1.66 
Overall 100% 100% 1.28 1.40 

 



hardware implementation demonstrates a considerable 
performance increase of about six times that of the baseline 
CRC-32 function. 

V. CONCLUSIONS 

This paper examined several methods in which the 
compression speed of LZO 1x-1-15 can be improved.  Slight 
adjustments to the code were made to increase parallelization, 
improve the copying of literal data, speed up input stream 
traversal, optimize cache accesses, and perform hardware 
CRC-32 calculations.  The multi-core and optimized memory 
copy algorithms both demonstrated their ability to speed 
compression without affecting compression ratio.  Combining 
these two mutually exclusive operations should likely achieve a 
more robust implementation of LZO 1x-1-15.  Hardware CRC-
32 calculations were seen to add verification to the output 
stream with minimal impact on total compression time.  Of the 
algorithm variants tested, the multi-core algorithm displayed 
the greatest speed enhancement without degradation to 
compression ratio - an improvement of 3.9x over that of the 
baseline.  In instances where compression ratio is not of 
primary importance, the combined optimization algorithm 
demonstrated the ability to increase compression speed 
performance by 5.4x. 

In general, the results suggest that LZO and other token-
based block compression algorithms similar to it can benefit 
from recent CPU hardware optimizations.  Increased processor 
bus widths allow for larger block memory copies when storing 
uncompressed literal data.  The introduction of multiple cores 
allow for multiple blocks to be simultaneously and 
independently compressed.  These optimizations should port to 
embedded multi-core architectures containing data buses 
greater than 32-bits. 

Future work may be explored by investigating potential 
optimizations from the Intel AVX (Advanced Vector 
Extensions) and AVX2 vector instruction sets [10].  These 
instruction sets extend upon SSE, allowing for SIMD 
instructions to run on 256-bit data types.  Further vector 
optimizations may be possible in hash calculation, literal 
copying, and match length determination.  Preliminary 
prototypes of the software under test showed that utilizing 
existing x86 SSE 128-bit vector operations for these purposes 
often resulted in performance loss due to operand alignment 

related setup costs.  Operands typically become unaligned due 
to the byte-oriented searching nature of the LZO algorithm.  
Performing enough vector calculations in parallel may 
outweigh the setup disadvantage.  It should be noted that these 
costs are entirely architecture dependent.  Migrating to another 
processor family may prove to have better or worse 
performance when executing similar instructions. 

Another area of future work may be to implement an 
adaptive version of the algorithm similar to that described in 
[11].  Such a system would attempt to maintain a minimum 
compression ratio, switching back and forth between the 
different algorithms for speed gains as need allows.  
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