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Abstract— This paper examines several promising throughput
enhancements to the Lempel-Ziv-Oberhumer (LZO) 1x-415 data
compression algorithm. Of many algorithm variantspresent in
the current library version, 2.06, LZO 1x-1-15 is onsidered to be
the fastest, geared toward speed rather than compssion ratio.
We present several algorithm modifications tailoredto modern
multi-core architectures in this paper that are inended to
increase compression speed while minimizing any Bsin
compression ratio. On average, the experimental salts show
that on a modern quad core system, a 3.9x speedum i
compression time is achieved over the baseline atgbm with no
loss to compression ratio. Allowing for a 25% lossin
compression ratio, up to a 5.4x speedup in compresa time was
observed.
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. INTRODUCTION

Real-time systems are more and more often beingjresh
to process an increasing amount of data. Intetfa@ighput
and storage bottlenecks may be reached in suctensyst
because of the amount of data involved. Data cesswn can
be used to help alleviate such problems by redutie@mount
of data injected into a pipeline. For the purpoké¢hs paper
we will consider targeting a theoretical real-tinsgstem,
requiring a lossless compression system to pass l#tveen
two interfaces. Compression may be required inhsac
situation due to bandwidth limitations or spacest@ints on
the destination interface. We will assume a carisbaput
stream of data is available to the compressioncdeand that
the final compressed output is able to be passedhé¢o
secondary interface with zero delay. The targessl&ss
compression algorithm for this system will be Leirpie-
Oberhumer (LZO) variant 1x-1-15.

The LZO compression library is a collection of less
dictionary based data compression algorithms tnadrfspeed
over compression ratio. The LZO library was fisfeased in
1996 and has received periodic updates since. lidtaey has
experienced widespread use, being implementedrariaty of
technologies, including NASA's Mars Rovers [1] aDdacle
Corporation's B-tree Linux file system. A comparnisof the

Oberhumer, to have the fastest compression spegfls [
exceeding that of LZO 1x-1 at the cost of comp@ssatio.
This paper investigates possible enhancementsetdtkl-15
algorithm to improve data compression speeds ferinigeal-
time systems.

Utilizing the special architectural features of raodmulti-
core processors, we will examine the effects ofindging
LZO in the following ways: parallelizing block cqmession,
using Intel SSE (Streaming SIMD Extensions) vector
instructions to perform data copy operations, maag the
search algorithm, enforcing cache-aligned readsd an
calculating CRC-32 checksums via hardware. Allefiv
enhancements have been implemented on the LZOsmeoe
code. Performance evaluation and comparison hawn be
carried out using real world data sets. Experiniergaults
have shown significant performance improvementims of
compression time. For the same compression ratier a
factor 3 speedup was observed. If trading offigh#llyy lower
compression ratio is allowed and all enhancements a
combined, over a factor 5 speedup was observed.

The remainder of this paper is organized as followsst,
an analysis of the existing LZO 1x-1-15 algorithra i
conducted, revealing the overall structure and titlemg
unigue characteristics. Next the proposed enhaacento the
algorithm are discussed in detail. After this, ekmental data
is given to compare against baseline performanEally,
conclusions regarding the obtained results areepted.

Il.  ANALYSISOFLZO 1x-1-15

LZO 1x-1-15 is a variation of the Lempel-Ziv 1977Z{7)
compression algorithm, which is described in [3LZ77
achieves data compression via a sliding window raeism:
bytes from a look-ahead buffer are shifted one by mto a
search buffer. When matches are found betweerlotbie
ahead buffer and locations in the search buffekerie are
output on the compression stream rather than IEterasulting
in compression. Major differences in Oberhumer&ZOL
variation include: the optimization of operatiotsough the
use of integer computer hardware, a quick hashujpdkble
for match data, and better optimized output tokens.

The LZO 1x-1-15 algorithm is structured to take autage

LZO 1x-1 algorithm speed performance against commowf the fact that most computers are optimized ferfgyming

compression formats such as GZIP, can be foun2]inQf the
available LZO algorithms, 1x-1-15 is consideredtiy author,

integer operations.  Instruction latency/throughpables
illustrating this on Intel ATOM architecture CPUscbe found
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Figure 1. LZO 1x-1-15 Algorithm Flow

in [4]. Throughout the algorithm, no time-consumiffoating
point operations are used. The most complex icstm
performed is an integer-multiply operation, whichkes
roughly five or less CPU clock cycles on the latéstel
architecture processors [5]. When pipelining aottaj-order
execution operations are taken into account, théayde
introduced by this multiply instruction is made pvéess
significant.

Fetches to and from cache are also optimized.
algorithm is relatively small when compiled intanary format,
likely fitting within a modern level 1 instructiorcache.
Compiling for i386 target hardware was found toutesn
roughly 600 instructions, which occupied a totaespf roughly
1.84kB. This low instruction count is confirmed that of the
slightly larger, more complex cousin algorithm LZTx-1,
given in [6]. Since the algorithm operates on data block
manner, successive iterations do not require teguént re-
fetching of instructions from main memory. Datalvamisses
are also minimized, as a maximum of 48kB of data e is
compressed; regardless of the user-defined inptkbsize.
On a modern data cache of size 16kB or larger wiligesult
in few level 1 cache misses. A 48kB sub-blocknpiuit data to
be compressed should easily fit within level 2 eacifi not
most of level 1 cache. Intel processors in padicpredict
data fetch patterns and automatically pre-fetclusetipl data
from a detected input stream, resulting in furtherformance
gain during the block compression algorithm [4][7].

As seen in Fig. 1, the 1x-1-15 algorithm itself che
divided up into four major sections of code:

1. Search for a match

2. Write unmatched literal data

3. Determine match length
4. Write match tokens

When searching for match data, the algorithm exas82-
bits of data from the input stream and computessh lvalue
into a small 8192 (8k) entry dictionary of 16-bivipters to
recently found data. Initially all entries in thictionary are
initialized to point to the same first 32-bit dal@ment in the
input stream, which can result in misses for thst fseveral
iterations of the search loop, until the dictiondygcomes
sufficiently populated. The hash value into thetidnary is
completed quickly by first using an integer opematito
multiply the current 32-bit unsigned data with fireed value
0x1824429D. Pseudo-randomness, to reduce theeinegLof
hash table conflicts, is guaranteed based on ttietliat the
number being multiplied is a fairly large 32-biirpe number.
Next, integer shift operations perform a quick sion,
resulting in the final 13-bit hash index to be udedsimple
indexing into the dictionary. If a match is fourat,if the end
of the input stream is reached, the algorithm jutopsopying
any previously unmatched literal data to the outgieam.
Otherwise, the pointer to the next potential datatcim is
obtained from the input stream according to (1)erelp is the
pointer to the current search location in the irgitdam andli
is a pointer to the location immediately followirthe last
detected match in the input stream, or the begimih the
current 48kB sub-block of data in the instance ¢hatatch has
yet to be found.

ip+=1+((ip-ii)>> 5); @)
In (1), first the difference betweép andii is taken and the

intermediate result is then divided by 32. Finaily is

incremented by this value plus one. A differeneéMeenip

Thand ii indicates the number of missed matches that have

occurred. Larger differences have a greater eftectthe
equation. Fig. 2 illustrates the effect of missesthe input
data stream. As consecutive misses become mayeefngip,

jumps exponentially until either a match is foundte end of
the current 48kB sub-block is reached. The seafgbrithm
appears to make the assumption that data matche=lated
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Figure 2. LZO 1x-1-15 Input Stream Traversal (asisig no matches found)



by spatial locality. When a match is found, thearsk

different encodings exist. Each of the five enogdioffers a

algorithm assumes nearby matches will also occuty o unique variation of offset/length encoding. Afteitputting the
incrementing the search pointép, by one byte. As match match information, the algorithm returns to searghior the
detections repeatedly failp is increasingly incremented in an next 32-bit set of matching data.

exponential fashion.

Consider the following simplified example: a 10@é
data set with 4-byte long matches located at byfsets

. ALGORITHM ENHANCEMENTS
The five enhancements that follow in this sectiamehbeen

30,34,38, and 84. Misses will occur at offseterdtigh 29 and  applied to the existing LZO 1x-1-15 algorithm tdetenine the
the search pointeip will be incremented by one byte offset impact on compression performance.

each time. Keep in mind that every time a missurx;cthe
dictionary is still populated. Then three conseeutnatches

will occur, with ip being updated to the next unmatched

location for successive search iterations. Froffsets 42
through 73ip is incremented by one byte. From offsets
through 82, the difference between the last maictand the
search pointer has grown beyond a distance ofr82aa such

a byte offset of 2 is added tp upon each detected miss. At

byte offset 84 a match is found once again. Asntfagéch is
only 4 bytes in length, the search will resume e ffset 88
where a miss will occur. Since a match was deteédtevas

A. Paralldization of Block Compression
The original LZO algorithm is serial in nature. tBds

74compressed on a block by block basis, but therm isxplicit

support for multiple CPU hardware cores. By impbating a
divide and conquer approach to individually compresd
reassemble blocks of data in the input stream,rfonpeance
gain should be attained. This performance gairulshbe
directly proportional to the amount of CPU corefagtd.

To investigate this improvement, a thread-basedhtian

updated and the difference betweprandii is once again less of the 1x-1-15 algorithm has been constructed hews. As
than 32. This results ip being incremented by one byte onceseen in Fig. 3, three main types of threads amtede control,

again rather than two. Miss detections and siraffset
increments will continue to the end of the dataset.

An interesting aspect of the code used by the @hgorto
perform the searches is that it involves only ietegperations
and no comparison instructions. The effect of thithat the
compiled code will produce no conditional branchtinctions
to calculate the exponential behavior. Consequend part of
the CPU pipeline will need to be reserved for bhepiediction
to determine how far to advance into the input diteam on
the next iteration. This results in overall fastede.

The second major portion of the LZO 1x-1-15 aldorit
performs the copying of unmatched literal datahe output
stream. First, the number of bytes of uncomprebtedl data
is written in an encoded manner to the output stredhis is
followed by the literal data. The algorithm asssnae32-bit
data bus, and, when possible, copies data to ttpeitostream
in groups of 32-bits in an attempt to optimize amyites
performed. After copying the literal data, if thed of the data
stream was reached, a special block marker isenritb the
output stream. Otherwise, the match length isutatied.

The algorithm calculates match length by perforn8@epit
XOR operations on sequential sets of data pointedyt the
input stream and the dictionary. If a 32-bit matcmparison
is successful, the result of the XOR operation w#l zero.
When the comparison fails for the first time, 8-lhyte
comparisons are performed to determine if any Veftgartial-
word singular bytes in the stream matched. Thioslas to the
literal copy operation, the algorithm assumes thhé
computer's hardware will be optimally used if maghare
primarily performed on a 32-bit integer basis.

Following the match length calculation, the aldunit
encodes the following tokens on the output streamarker
denoting the type of match that occurred, the offsethe
location of the data that matched the currentaset,the length
of the match. To minimize the number of bytes usedtore
this information and improve the compression ratfiwe

compression, and reconstruction. Communicatiowéet the
three types of threads is accomplished through ube of
semaphore-protected shared memory. The main thisead
created to control the flow of input data, managemuory
utilization, and initiate compression threads. $emdefined
threads are created to perform the actual compressi input
data blocks when commanded.
operate independently from one another, each \iighr bwn
set of temporary resources. The software and tipgrsystem
ensure the compression threads are load-distribtdedll
available processor cores in the system. The rairtrol
thread will initiate a compression thread when fibéowing
conditions are determined: available input datdstex
temporary output compression buffers exist, and idie
compression thread exists. Finally, a reconswacthread is
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Figure 3. Multi-Threaded Implementation
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created to accept the output LZO-compressed blatk filom
the individual compression threads. It is the job the

reconstruction thread to ensure that the resutiatgtut stream
is created in-order. Since data is being compcegsparallel
on separate CPUSs, there is no guarantee as toavparticular
block of data will finish compression, i.e., Indiock 1 could
be compressed first, followed by Block 3, followeyBlock 2.

Thus, without the reconstruction thread, there wobé no
mechanism to correctly reconstruct the compressgulbdata
in-order. Unless special headers were added tatifgethe

out-of-order data, existing LZO decompression regiwould
be incompatible with the produced output format.

B. Optimize Copying of Literal Data

In the current LZO algorithm, uncompressed litetala is
copied to the output stream on a 32-bit long waadid The
copying of this data is one of the more time inkems
operations. Instead of copying on a 32-bit integesis, data
can be copied faster using available vector instrms. On
current generation Intel processors, this allowsujp to 128
bits of data to be copied at a time. This shoutemptially
quadruple performance when this portion of the cdsle
executed. To investigate this optimization, IntSISE
(Streaming SIMD (Single Instruction Multiple Data)
Extensions) vectorized memory copy related souotke ¢drom
Agner Fog's freely available asmlib library [8] watilized.

C. Searchfor Matches Every 32-Bits

LZO 1x-1-15 shifts data from a look-ahead buffaoithe
search buffer by one byte, similar to LZ77. Thigoathm
variant has been created to advance the inpunstoga32-bits
(one integer) each time a match detection faifsthis manner,
the input stream will be traversed faster, althowgth the
extra side effect that the dictionary will be Igssquently
populated. A compression ratio loss is expecteziptagnitude
of which will need to be determined experimentally.

D. Force Cache-Line-Aligned Reads

Most current generation Intel processors sufferenafty
when reading data that exists between cache linedawies
[7]. Figure 4 illustrates this issue. The segpoition of the
1x-1-15 algorithm has the potential of suffering thost from
this observation. In the worst case, successive matches
could continually be found on cache line boundaiiesurring
a performance penalty each time. By modifying search
equation and match length detection to operateebyntin a 32-
bit basis, all accesses to memory can be ensurbd ttache-
line-aligned.

Cache line A | CachelineB | CachelineC

\ A \ A J
| | | |

Cache
Boundary
Resd Penalty

Read Read Read

Figure 4. Cache-Line Boundary Read Penalty

Assuming the cache line boundaries in a systerorii@n
address location that is divisible by 4 bytes, Bndwing that
up to 4 bytes of data can be read from memorytahe, the
following replacement search equation was constdudb
ensure that a boundary would never be crossed:

ip+=4+ (((ip-ii) >> 5) & OXFFFFFFFC); (2

Four bytes are added to the current input poimstead of
one byte to ensure that the input data is alwayarazkd by 32
bits. The exponential portion of the equation iswise
ANDed to ensure that the result of that mathemlatiparation
is 32-bit aligned as well.

Match length calculation was also required to belifrex
to ensure that reads from the input stream renmaicache line
boundaries. Since the existing algorithm allowed rhatch
lengths to be determined on a byte basis, thisatian was
altered to only perform matches on a 32-bit bagisranteeing
inter-cache line boundary locations will not bedr¢he next
time the search equation is executed.

This maodification is in essence an extension of the
previously described 32-bit search variation. ddigon to
searching every 32-bits for a match, the searcnt@oiis
verified to lie on a 4-byte boundary and the lesgihmatching
datasets are terminated early to ensure they riesoiultiples
of 32-bits.  Similar to the 32-bit search algorithma
compression ratio loss is expected. The compnessiio loss
will likely be greater due to the fact that matched#l be
shorter. A speed enhancement may result due tcaittee line
read penalty being avoided.

E. Utilize Hardware CRC-32 Instruction

The existing LZO library incorporates a CRC-32
calculation routine derived from the freely avaitablib library
[9]. This variation implements a tabular methodngsthe
0x4C11DB7 polynomial. This method requires a ctersible
amount of processor utilization to generate cheutssu The
particular approach taken for this paper was toeofss the
performance of the relatively new Intel SSE 4.2eatdy
instruction “CRC32”.

It should be noted that the improved CRC-32 library
function is not explicitly utilized by the LZO 1x15
algorithm, or any other of the provided LZO libradgorithms
for that matter. The function is provided by Ohenter to the
end-user so that CRC’s may be calculated on a haed as
determined by the writer of the final produced coasgion
executable. In this manner the end-user is abladjost the
balance between speed and error-checking capabilitpe
author of the LZO library has written and maintainthe
executable "lzop". The current version of lzop03l.
incorporates a small subset of the LZO library fits
compression, including the 1x-1, 1x-1-15, and 12-99
algorithms. This executable calls the CRC-32 hpfainction
twice for every block of input data compressed; eorio
determine the CRC for the original uncompressea thédck
and once to determine the CRC for the comprességuibu
block. By default, the application sets the ussfirgdd input
block size to 256kB.



Table I. Dataset Information

Compression Item File Type / Description File
Size
(GB)

images_en.nqg Text (Dump of Wikipedia Thumbnail 1.2
Links)

e-coli HDF RAW Binary 30.0
(E-Coli C227 Strain Information)

gb-1gram-(n).csv Text, where n=010 9. 0.95
(From Google Books 1-gram corpus)

ERRO007772_(n).fastq FASTQ Text-Based, where n=1,2. 5.6
(Mouse Genome Sequence Data)

xtf_Files.tar XTIFF Images (NY Hudson River Side 15
scan SONAR images)

enwiki.xml Text (Wikipedia dump of articles, 37.9
templates, media/file descriptions, and
primary meta pages)

ERR007772_1.fastq.gz = Compressed GZIP 2.4
(Compressed ERR007772_1 fastq)

enwiki.xml.bz2 Compressed BZIP2 8.6
(Compressed enwiki.xml)

IV. PERFORMANCEANALYSIS

To determine compression performance, first a datab
sample files to be compressed was constructed. pahular
set was chosen to demonstrate performance overigtyvaf
file types that could represent potential dataash®in a real-
time system. A brief description of the files usmth be seen
in Table I.

Text files such as the Wikipedia backups and thedBo
Books 1-gram corpus were chosen to demonstraterpgfce
on highly redundant data. Since LZO is a dictigHzaised
method, it was expected that the compression tintk ratio
should vyield fairly good results for these filesThe files
already containing various degrees of compresse (&ZIP
and BZIP2) were chosen to show compression perfcena
when file expansion has a high potential of occwree An
uncompressed tarball compilation of extended THr&ge data
was picked to demonstrate image compression clesistits
of the algorithm. A rather large uncompressed ahrb
compilation of HDF biological E-coli data was choge show
performance against binary data. Finally, genorata dn
FASTQ format was chosen, as it is considered tuedstrd for
storing the output of high throughput sequencirgjriments.
Thus, the FASTQ data should provide a somewhatstieal
real-time data stream.

As stated in Section I, performance analysis wasueted
in regards to a theoretical real-time compressigatesn
consisting of two interfaces: a constant inpuéatn and an
output stream that can be written to with zero ylelaA
software command-line executable was created tallatm
such a system and facilitate batch compressionheffiles
identified in Table I. The executable loads inplata and
compresses it in memory to reduce the impact af ile /O
subsystems. Time spent reading data from the diakdis not
counted against compression time. This servesptwposes;
first, the algorithms can be more fairly evaluabedependent
of hardware overhead limitations, and second, tipeiti data
stream is simulated as a continuous stream, asedelsy the
real-time system simulation. Parameters were pagsehe

executable dictating which algorithm to utilize amow many
iterations of compression to perform on a per bidsis. After
testing a particular algorithm’s performance orileffom the
dataset, the program outputs the average throughhet
average compression time, the average compressienper
input data block, the compression ratio, and thealfi
compressed file size.

A. Test Setup

A Dell Optiplex 790 computer running Microsoft Winds
7 Professional 64-bit was utilized to determine itinpact of
the algorithm modifications. The system was camig with
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an Intel 3.4GHz i7-2600 Sandy Bridge Quad Core &ssar (4
physical cores, 8 logical cores), 8 GBytes of DGalannel

underutilized. A modified version of the compressi
benchmark program was created to iterate on tee5t2 MB

1333MHz DDR3 RAM, and a 500GB 7200RPM hard diskof file data in memory. This software was ablei@rcise all

drive.

Prior to the start of testing, an optimal parameters
determined for the input block size. The first GleoBook 1-
gram dataset was run with several input block siasseen in
Fig. 5 through Fig 7. Compression ratio and corsgom
timing performance noticeably increased from abbkB to
16kB. From 48kB onward, performance seemed tol leffe
and remain relatively constant. Compression tirae lgock
was found to be on the order of milliseconds. hibidd be
noted that the time to compress one block of datértually
the same for the baseline and multi-threaded imgieations,
as the multi-threaded compression routine is idahti The
multi-threaded implementation gains its speed duéhé fact
that it is processing multiple compression
simultaneously. For testing purposes, an inputlblsize of
256kB was chosen, as it is the default used by iQimeer's
Izop executable and demonstrated no obvious disdalye in
the preliminary tests.

For those algorithms utilizing multiple CPU cords,
addition to the input block size parameter, thénopin number
of compression threads was determined empiricaligr go
testing. Some results of this testing can be deehig. 8.
Performance with one thread in the multi-core erf LZO
was found to be slightly worse than the baselimbis is most
likely due to the overhead involved in coordinatihg multi-
core algorithm. Performance for both multi-threhde
implementations increased up to a maximum valudoaf
compression threads. It was originally expectedt th
performance would increase up to eight maximumaitiseas
the system under test has eight logical cores.théutesting
showed that due to the specific software implentemtathe
CPU cores never reached maximum utilization of eadjht
cores simultaneously. In order to accommodates|filg sizes,
only 64 MBytes at a time were read to physical mgnimm
disk and compressed in a loop. The stall time nepafrom
performing the disk reads was accounted for andracted
from the total compression time. However, the afeg
system, due to the frequency of the stalls, appedce
determine that delegating work to the logical coness not
necessary, as the physical cores remained
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™ w

40 60 80 100 140

Time (Seconds)

Enhancement Combination MMultiCore M Baseline LZO 1x-1-15 (1 Thread)

Figure 8. Average Compression Time for Various Masn Thread Settings
(Control and Reconstruction Threads Not Countetbitals)

blocks

eight cores, showing the expected performance Homstone
to eight threads.

For the purposes of this testing it was decidedaiatinue
utilizing the original version of software with theaximum
thread parameter set to 4 or greater. The memugy-0
software variation would result in inaccurate coegsion ratio
measurements, as larger file streams would notbke ta fit
within available memory space.

B. Benchmark Test Results

Testing was conducted in the following manner.stHihe
performance of the existing LZO 1x-1-15 algorithmasw
determined. Then each of the four new performance
enhancements to 1x-1-15 was tested separatelyergion of
the compression algorithm that combined all of the
enhancements was tested and the results recoFdedlly, the
CRC-32 library modification was tested against Haseline
library function using the unmodified LZO 1x-1-1fgarithm
with a 256kB input block size. The CRC-32 functicalls
were constructed similar to those used in Izoplincplthe
function twice per each processed input data block.

Results of testing the LZO 1x-1-15 variants on diagaset
can be found in Fig. 9 through Fig. 11. In termk o
compression ratio, in all cases, the baselinem@tmemory
copy, and multi-core implementations yielded thetbyesults.
This was expected, as the three of these algoritthichanot
deviate from the original algorithm in a mannerttiauld
affect file traversal behavior. The remaining ghigorithms
employed modifications to the search portion of dhgorithm
to enhance compression speed. Compared to thdinkease
algorithm, the 32-bit search, cache aligned readd a
combination  implementations  experienced losses
compression ratio. The 32-bit search algorithnalted in files
up to 1.3 times larger than the baseline, wherbasctiche
aligned read and combination variants created filggo 2.3
times in size.

in

In terms of compression time, the baseline algarith
proved the slowest for most files. In all caség, optimized

slightlyector memory copy algorithm outperformed the basel

speed-wise by roughly 5 percent. The multi-cored an
combination  algorithms  consistently = completed file
compression within 25 and 20 percent respectivéyhe time
taken by the baseline algorithm. On average, ler files
tested, the speedup gained was 3.9x for multi-ance5.4x for
the combination algorithm. The 32-bit search atbor
resulted in a 10 percent speed increase for et éind a 25 to
50 percent increase for binary/image files. Thehedine-
aligned read algorithm, with one exception, provwedbe
slightly faster than the 32-bit search modification

The one exception to this trend occurred with the f
“image_en.nq". This is a text file composed of Wédia
thumbnail hyperlinks. A brief examination of thiee fshows
that the contents appears to be highly redundarnit, @nsists
of many very similar hypertext Uniform Resource atm
(URL) ASCII text strings, all beginning with “<hti{f’. The
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Figure 11. Compression Time (large streams)

baseline algorithm confirms that this is the mestundant of
the files tested, as it achieved the greatest cessfn on this
file in Fig. 9. It was expected that the compressatio would
be the worst for the cache-line-aligned versionthés version
not only searches every 32-bits for a match andrim
matches less than 32-bits in size, but also molessearch
pointer forward if it is not currently on a 32-libundary. The
extent of the speed degradation, however, wasntiizated.

Table 1l. Cache-Line-Aligned vs. 32-Bit SearchfBenance
(Higher Ratios Indicate Worse Performance for Cédhe-Aligned Alg.)

% Total %Total Ratio of Ratio of
Compression | Compression Loop Compression
Code Time Time Iterations Time
Portion 32-Bit Cache — Line .
Search Alg. Alg. (Cache-Line Alg. :
32-Bit Searct Alg.)
Search 27.0% 31.9% 1.35 1.65
Literal 14.8% 16.3% 2.15 1.55
Copy
Match 41.7% 32.3% 0.95 1.08
Length
Token 16.5% 19.5% 1.70 1.66
Overall 100% 100% 1.28 1.40

To determine why the cache-line-aligned modificatay
experience issues with highly redundant data, aialpeersion
of the compression software was created to gathee rim-
depth timing information. This version of softwanecorded
execution time spent in the four main sections bé t
compression code, described in Section Il. Conspyaf the
file “image_en.ng” was re-run using the 32-bit skaand
cache-line-aligned algorithms. The results canfdagnd in
Table II.

It was found that the cache-line-aligned algoritbwerall
executed roughly 1.28 times the number of loopattens,
resulting in a total compression time of 1.40 tirtwgyer than
that of the 32-bit search variation. Supplemetgsiing on an
Intel Core2 Duo system (not shown), which accordimg7]
should benefit more from the aligned reads than ithe
processor used for benchmarking, showed that theritim
still performed 1.30 times slower than the 32-b#arsh
variation. Examining Table 1l, fewer match length
determination loops were executed, implying thatvelie
dictionary matches were found. This makes serseluang
dictionary searches the 32-bit alignment of theuinpointer
may skip up to three consecutive bytes, leading tmore
sparsely populated dictionary. Those matches fowndld
also have been shorter in length due to the imp@bit
boundary restriction. This led to more executionetin the
rather expensive search and uncompressed litemt code
segments. The ability of the search function tpomentially
skip through a 48kB sub-block is also hindered g high
level of data redundancy: the algorithm periodyctihds short
matches, resulting in an inability to skip forwaocthe end of a
sub-block, as it would with data of lower redundancrhese
combined factors appear to have attributed to thar gpeed
performance for highly redundant data.

Compression timing performance for highly non-redtumt
data can be seen in Fig. 12. Once again, the -thoétaded
algorithms experienced considerable speed boostpaed
with the others. Results indicated that file exgiam only
achieved an excess growth of 0.4 percent of thginali file
size for all tested algorithm variants.

CRC-32 testing was conducted on one of the GooglekB
1-gram data files. Testing showed that on avermgextra
1.47 msec per block was added to compression titnenw
using the tabular method, and an extra 0.23 mseblpek was
added when using the hardware method. As expethted,



Time [Seconds)

’ related setup costs. Operands typically becomégmea due

to the byte-oriented searching nature of the LZ@o@hm.
Performing enough vector calculations in parallelaym

: outweigh the setup disadvantage. It should bednibiat these

. costs are entirely architecture dependent. Miggatd another
processor family may prove to have better or worse
performance when executing similar instructions.

Another area of future work may be to implement an
1 adaptive version of the algorithm similar to tha&sdribed in
[11]. Such a system would attempt to maintain aimmiim
compression ratio, switching back and forth betwdba
different algorithms for speed gains as need allows

Baseline LZO 1x- FastMemcpy 32-bitSearch Cache Aligned MultiCore Enhancement

1-15 Combinaticn

Wenwiki-20120601-pages-articles.xml.bz2  WERR007772_1 fastq.gz

hardware
performance increase of about six times that of bhseline
CRC-32 function.
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Figure 12. Average Compression Time for Non-Rednnfata

implementation demonstrates a

V. CONCLUSIONS

This paper examined several methods in which th%
compression speed of LZO 1x-1-15 can be improv8tight
adjustments to the code were made to increaselglaation,
improve the copying of literal data, speed up inptream
traversal, optimize cache accesses, and perforrdwhae
CRC-32 calculations. The multi-core and optimizedmory
copy algorithms both demonstrated their ability g¢peed
compression without affecting compression raticomBining
these two mutually exclusive operations shouldyileehieve a
more robust implementation of LZO 1x-1-15. Hardev&RC-
32 calculations were seen to add verification te tutput
stream with minimal impact on total compressionetinOf the
algorithm variants tested, the multi-core algorithisplayed
the greatest speed enhancement without degraddtion
compression ratio - an improvement of 3.9x ovet tfathe
baseline. In instances where compression ratimos of
primary importance, the combined optimization aittyon
demonstrated the ability to increase compressioredp
performance by 5.4x.

(1]
(2]
(3]

(4]

5]

In general, the results suggest that LZO and otibiezn- 6]
based block compression algorithms similar to it benefit
from recent CPU hardware optimizations. Incregzedessor
bus widths allow for larger block memory copies wistoring
uncompressed literal data. The introduction oftiple cores
allow for multiple blocks to be simultaneously andig)
independently compressed. These optimizationsldpmut to
embedded multi-core architectures containing datesed®
greater than 32-bits.

(7]

[9]
Future work may be explored by investigating pagtnt
optimizations from the Intel AVX (Advanced Vector [10]
Extensions) and AVX2 vector instruction sets [10These
instruction sets extend upon SSE, allowing for SIMD
instructions to run on 256-bit data types. Furthector
optimizations may be possible in hash calculatitteral
copying, and match length determination. Prelimjina
prototypes of the software under test showed thiizing
existing x86 SSE 128-bit vector operations for éhparposes
often resulted in performance loss due to operdigthraent

[11]

rateful to the anonymous reviewers for providingtaded
omments that have improved the quality of the pgpeatly.
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