
Compression Speed Enhancements to

LZO for Multi-Core Systems

Jason Kane, Student Member, IEEE, Qing Yang, Fellow, IEEE
Department of Electrical, Computer and Biomedical Engineering

University of Rhode Island
Kingston, RI, 02881, USA

E-mail: {jkane,qyang}@ele.uri.edu

Abstract— This paper examines several promising throughput
enhancements to the Lempel-Ziv-Oberhumer (LZO) 1x-1-15 data
compression algorithm. Of many algorithm variants present in
the current library version, 2.06, LZO 1x-1-15 is considered to be
the fastest, geared toward speed rather than compression ratio.
We present several algorithm modifications tailored to modern
multi-core architectures in this paper that are intended to
increase compression speed while minimizing any loss in
compression ratio. On average, the experimental results show
that on a modern quad core system, a 3.9x speedup in
compression time is achieved over the baseline algorithm with no
loss to compression ratio. Allowing for a 25% loss in
compression ratio, up to a 5.4x speedup in compression time was
observed.

Keywords- Lossless Data Compression; Lempel-Ziv-Oberhumer
(LZO); Real-Time Systems; Parallel Computing; Parallel
Algorithms.

I. INTRODUCTION

Real-time systems are more and more often being required
to process an increasing amount of data. Interface throughput
and storage bottlenecks may be reached in such systems
because of the amount of data involved. Data compression can
be used to help alleviate such problems by reducing the amount
of data injected into a pipeline. For the purpose of this paper
we will consider targeting a theoretical real-time system,
requiring a lossless compression system to pass data between
two interfaces. Compression may be required in such a
situation due to bandwidth limitations or space constraints on
the destination interface. We will assume a constant input
stream of data is available to the compression device and that
the final compressed output is able to be passed to the
secondary interface with zero delay. The target lossless
compression algorithm for this system will be Lempel-Ziv-
Oberhumer (LZO) variant 1x-1-15.

The LZO compression library is a collection of lossless
dictionary based data compression algorithms that favor speed
over compression ratio. The LZO library was first released in
1996 and has received periodic updates since. The library has
experienced widespread use, being implemented in a variety of
technologies, including NASA's Mars Rovers [1] and Oracle
Corporation's B-tree Linux file system. A comparison of the
LZO 1x-1 algorithm speed performance against common
compression formats such as GZIP, can be found in [2]. Of the
available LZO algorithms, 1x-1-15 is considered by the author,

Oberhumer, to have the fastest compression speeds [1],
exceeding that of LZO 1x-1 at the cost of compression ratio.
This paper investigates possible enhancements to the 1x-1-15
algorithm to improve data compression speeds for use in real-
time systems.

Utilizing the special architectural features of modern multi-
core processors, we will examine the effects of optimizing
LZO in the following ways: parallelizing block compression,
using Intel SSE (Streaming SIMD Extensions) vector
instructions to perform data copy operations, modifying the
search algorithm, enforcing cache-aligned reads, and
calculating CRC-32 checksums via hardware. All five
enhancements have been implemented on the LZO open source
code. Performance evaluation and comparison have been
carried out using real world data sets. Experimental results
have shown significant performance improvements in terms of
compression time. For the same compression ratio, over a
factor 3 speedup was observed. If trading off a slightly lower
compression ratio is allowed and all enhancements are
combined, over a factor 5 speedup was observed.

The remainder of this paper is organized as follows. First,
an analysis of the existing LZO 1x-1-15 algorithm is
conducted, revealing the overall structure and identifying
unique characteristics. Next the proposed enhancements to the
algorithm are discussed in detail. After this, experimental data
is given to compare against baseline performance. Finally,
conclusions regarding the obtained results are presented.

II. ANALYSIS OF LZO 1X-1-15

LZO 1x-1-15 is a variation of the Lempel-Ziv 1977 (LZ77)
compression algorithm, which is described in [3]. LZ77
achieves data compression via a sliding window mechanism:
bytes from a look-ahead buffer are shifted one by one into a
search buffer. When matches are found between the look-
ahead buffer and locations in the search buffer, tokens are
output on the compression stream rather than literals, resulting
in compression. Major differences in Oberhumer’s LZO
variation include: the optimization of operations through the
use of integer computer hardware, a quick hash lookup table
for match data, and better optimized output tokens.

The LZO 1x-1-15 algorithm is structured to take advantage
of the fact that most computers are optimized for performing
integer operations. Instruction latency/throughput tables
illustrating this on Intel ATOM architecture CPUs can be found

in [4]. Throughout the algorithm, no time-consuming floating
point operations are used. The most complex instruction
performed is an integer-multiply operation, which takes
roughly five or less CPU clock cycles on the latest Intel
architecture processors [5]. When pipelining and out-of-order
execution operations are taken into account, the delay
introduced by this multiply instruction is made even less
significant.

Fetches to and from cache are also optimized. The
algorithm is relatively small when compiled into binary format,
likely fitting within a modern level 1 instruction cache.
Compiling for i386 target hardware was found to result in
roughly 600 instructions, which occupied a total size of roughly
1.84kB. This low instruction count is confirmed by that of the
slightly larger, more complex cousin algorithm LZO 1x-1,
given in [6]. Since the algorithm operates on data in a block
manner, successive iterations do not require the frequent re-
fetching of instructions from main memory. Data cache misses
are also minimized, as a maximum of 48kB of data at a time is
compressed; regardless of the user-defined input block size.
On a modern data cache of size 16kB or larger, this will result
in few level 1 cache misses. A 48kB sub-block of input data to
be compressed should easily fit within level 2 cache, if not
most of level 1 cache. Intel processors in particular predict
data fetch patterns and automatically pre-fetch sequential data
from a detected input stream, resulting in further performance
gain during the block compression algorithm [4][7].

As seen in Fig. 1, the 1x-1-15 algorithm itself can be
divided up into four major sections of code:

 1. Search for a match

 2. Write unmatched literal data

 3. Determine match length

 4. Write match tokens

When searching for match data, the algorithm examines 32-
bits of data from the input stream and computes a hash value
into a small 8192 (8k) entry dictionary of 16-bit pointers to
recently found data. Initially all entries in this dictionary are
initialized to point to the same first 32-bit data element in the
input stream, which can result in misses for the first several
iterations of the search loop, until the dictionary becomes
sufficiently populated. The hash value into the dictionary is
completed quickly by first using an integer operation to
multiply the current 32-bit unsigned data with the fixed value
0x1824429D. Pseudo-randomness, to reduce the frequency of
hash table conflicts, is guaranteed based on the fact that the
number being multiplied is a fairly large 32-bit prime number.
Next, integer shift operations perform a quick division,
resulting in the final 13-bit hash index to be used for simple
indexing into the dictionary. If a match is found, or if the end
of the input stream is reached, the algorithm jumps to copying
any previously unmatched literal data to the output stream.
Otherwise, the pointer to the next potential data match is
obtained from the input stream according to (1); where ip is the
pointer to the current search location in the input stream and ii
is a pointer to the location immediately following the last
detected match in the input stream, or the beginning of the
current 48kB sub-block of data in the instance that a match has
yet to be found.

 ip += 1 + ((ip - ii) >> 5); (1)

In (1), first the difference between ip and ii is taken and the
intermediate result is then divided by 32. Finally ip is
incremented by this value plus one. A difference between ip
and ii indicates the number of missed matches that have
occurred. Larger differences have a greater effect on the
equation. Fig. 2 illustrates the effect of misses on the input
data stream. As consecutive misses become more frequent, ip,
jumps exponentially until either a match is found or the end of
the current 48kB sub-block is reached. The search algorithm
appears to make the assumption that data matches are related

Figure 2. LZO 1x-1-15 Input Stream Traversal (assuming no matches found)

Figure 1. LZO 1x-1-15 Algorithm Flow

by spatial locality. When a match is found, the search
algorithm assumes nearby matches will also occur, only
incrementing the search pointer, ip, by one byte. As match
detections repeatedly fail, ip is increasingly incremented in an
exponential fashion.

Consider the following simplified example: a 100-byte
data set with 4-byte long matches located at byte offsets
30,34,38, and 84. Misses will occur at offsets 0 through 29 and
the search pointer ip will be incremented by one byte offset
each time. Keep in mind that every time a miss occurs, the
dictionary is still populated. Then three consecutive matches
will occur, with ip being updated to the next unmatched
location for successive search iterations. From offsets 42
through 73 ip is incremented by one byte. From offsets 74
through 82, the difference between the last match, ii, and the
search pointer has grown beyond a distance of 32, and as such
a byte offset of 2 is added to ip upon each detected miss. At
byte offset 84 a match is found once again. As the match is
only 4 bytes in length, the search will resume at byte offset 88
where a miss will occur. Since a match was detected, ii was
updated and the difference between ip and ii is once again less
than 32. This results in ip being incremented by one byte once
again rather than two. Miss detections and single offset
increments will continue to the end of the dataset.

An interesting aspect of the code used by the algorithm to
perform the searches is that it involves only integer operations
and no comparison instructions. The effect of this is that the
compiled code will produce no conditional branch instructions
to calculate the exponential behavior. Consequently, no part of
the CPU pipeline will need to be reserved for branch prediction
to determine how far to advance into the input data stream on
the next iteration. This results in overall faster code.

The second major portion of the LZO 1x-1-15 algorithm
performs the copying of unmatched literal data to the output
stream. First, the number of bytes of uncompressed literal data
is written in an encoded manner to the output stream. This is
followed by the literal data. The algorithm assumes a 32-bit
data bus, and, when possible, copies data to the output stream
in groups of 32-bits in an attempt to optimize any writes
performed. After copying the literal data, if the end of the data
stream was reached, a special block marker is written to the
output stream. Otherwise, the match length is calculated.

The algorithm calculates match length by performing 32-bit
XOR operations on sequential sets of data pointed to by the
input stream and the dictionary. If a 32-bit match comparison
is successful, the result of the XOR operation will be zero.
When the comparison fails for the first time, 8-bit byte
comparisons are performed to determine if any leftover partial-
word singular bytes in the stream matched. Thus, similar to the
literal copy operation, the algorithm assumes that the
computer's hardware will be optimally used if matches are
primarily performed on a 32-bit integer basis.

Following the match length calculation, the algorithm
encodes the following tokens on the output stream: a marker
denoting the type of match that occurred, the offset to the
location of the data that matched the current set, and the length
of the match. To minimize the number of bytes used to store
this information and improve the compression ratio, five

different encodings exist. Each of the five encodings offers a
unique variation of offset/length encoding. After outputting the
match information, the algorithm returns to searching for the
next 32-bit set of matching data.

III. ALGORITHM ENHANCEMENTS

The five enhancements that follow in this section have been
applied to the existing LZO 1x-1-15 algorithm to determine the
impact on compression performance.

A. Parallelization of Block Compression

The original LZO algorithm is serial in nature. Data is
compressed on a block by block basis, but there is no explicit
support for multiple CPU hardware cores. By implementing a
divide and conquer approach to individually compress and
reassemble blocks of data in the input stream, a performance
gain should be attained. This performance gain should be
directly proportional to the amount of CPU cores utilized.

To investigate this improvement, a thread-based variation
of the 1x-1-15 algorithm has been constructed as follows. As
seen in Fig. 3, three main types of threads are created: control,
compression, and reconstruction. Communication between the
three types of threads is accomplished through the use of
semaphore-protected shared memory. The main thread is
created to control the flow of input data, manage memory
utilization, and initiate compression threads. N user-defined
threads are created to perform the actual compression on input
data blocks when commanded. The compression threads
operate independently from one another, each with their own
set of temporary resources. The software and operating system
ensure the compression threads are load-distributed to all
available processor cores in the system. The main control
thread will initiate a compression thread when the following
conditions are determined: available input data exists,
temporary output compression buffers exist, and an idle
compression thread exists. Finally, a reconstruction thread is

Figure 3. Multi-Threaded Implementation

created to accept the output LZO-compressed block data from
the individual compression threads. It is the job of the
reconstruction thread to ensure that the resultant output stream
is created in-order. Since data is being compressed in parallel
on separate CPUs, there is no guarantee as to when a particular
block of data will finish compression, i.e., Input Block 1 could
be compressed first, followed by Block 3, followed by Block 2.
Thus, without the reconstruction thread, there would be no
mechanism to correctly reconstruct the compressed output data
in-order. Unless special headers were added to identify the
out-of-order data, existing LZO decompression routines would
be incompatible with the produced output format.

B. Optimize Copying of Literal Data

In the current LZO algorithm, uncompressed literal data is
copied to the output stream on a 32-bit long word basis. The
copying of this data is one of the more time intensive
operations. Instead of copying on a 32-bit integer basis, data
can be copied faster using available vector instructions. On
current generation Intel processors, this allows for up to 128
bits of data to be copied at a time. This should potentially
quadruple performance when this portion of the code is
executed. To investigate this optimization, Intel SSE
(Streaming SIMD (Single Instruction Multiple Data)
Extensions) vectorized memory copy related source code from
Agner Fog’s freely available asmlib library [8] was utilized.

C. Search for Matches Every 32-Bits

LZO 1x-1-15 shifts data from a look-ahead buffer into the
search buffer by one byte, similar to LZ77. This algorithm
variant has been created to advance the input stream by 32-bits
(one integer) each time a match detection fails. In this manner,
the input stream will be traversed faster, although with the
extra side effect that the dictionary will be less frequently
populated. A compression ratio loss is expected, the magnitude
of which will need to be determined experimentally.

D. Force Cache-Line-Aligned Reads

Most current generation Intel processors suffer a penalty
when reading data that exists between cache line boundaries
[7]. Figure 4 illustrates this issue. The search portion of the
1x-1-15 algorithm has the potential of suffering the most from
this observation. In the worst case, successive new matches
could continually be found on cache line boundaries, incurring
a performance penalty each time. By modifying the search
equation and match length detection to operate entirely on a 32-
bit basis, all accesses to memory can be ensured to be cache-
line-aligned.

Assuming the cache line boundaries in a system lie on an
address location that is divisible by 4 bytes, and knowing that
up to 4 bytes of data can be read from memory at a time, the
following replacement search equation was constructed to
ensure that a boundary would never be crossed:

 ip += 4 + (((ip - ii) >> 5) & 0xFFFFFFFC); (2)

Four bytes are added to the current input pointer instead of
one byte to ensure that the input data is always advanced by 32
bits. The exponential portion of the equation is bit-wise
ANDed to ensure that the result of that mathematical operation
is 32-bit aligned as well.

Match length calculation was also required to be modified
to ensure that reads from the input stream remain on cache line
boundaries. Since the existing algorithm allowed for match
lengths to be determined on a byte basis, this variation was
altered to only perform matches on a 32-bit basis, guaranteeing
inter-cache line boundary locations will not be read the next
time the search equation is executed.

This modification is in essence an extension of the
previously described 32-bit search variation. In addition to
searching every 32-bits for a match, the search pointer is
verified to lie on a 4-byte boundary and the lengths of matching
datasets are terminated early to ensure they result in multiples
of 32-bits. Similar to the 32-bit search algorithm, a
compression ratio loss is expected. The compression ratio loss
will likely be greater due to the fact that matches will be
shorter. A speed enhancement may result due to the cache line
read penalty being avoided.

E. Utilize Hardware CRC-32 Instruction

The existing LZO library incorporates a CRC-32
calculation routine derived from the freely available zlib library
[9]. This variation implements a tabular method using the
0x4C11DB7 polynomial. This method requires a considerable
amount of processor utilization to generate checksums. The
particular approach taken for this paper was to observe the
performance of the relatively new Intel SSE 4.2 assembly
instruction “CRC32”.

It should be noted that the improved CRC-32 library
function is not explicitly utilized by the LZO 1x-1-15
algorithm, or any other of the provided LZO library algorithms
for that matter. The function is provided by Oberhumer to the
end-user so that CRC’s may be calculated on a need basis as
determined by the writer of the final produced compression
executable. In this manner the end-user is able to adjust the
balance between speed and error-checking capability. The
author of the LZO library has written and maintained the
executable "lzop". The current version of lzop, 1.03,
incorporates a small subset of the LZO library for its
compression, including the 1x-1, 1x-1-15, and 1x-999
algorithms. This executable calls the CRC-32 library function
twice for every block of input data compressed; once to
determine the CRC for the original uncompressed data block
and once to determine the CRC for the compressed output
block. By default, the application sets the user-defined input
block size to 256kB.

Figure 4. Cache-Line Boundary Read Penalty

IV. PERFORMANCE ANALYSIS

To determine compression performance, first a dataset of
sample files to be compressed was constructed. The particular
set was chosen to demonstrate performance over a variety of
file types that could represent potential data streams in a real-
time system. A brief description of the files used can be seen
in Table I.

Text files such as the Wikipedia backups and the Google
Books 1-gram corpus were chosen to demonstrate performance
on highly redundant data. Since LZO is a dictionary-based
method, it was expected that the compression time and ratio
should yield fairly good results for these files. The files
already containing various degrees of compressed data (GZIP
and BZIP2) were chosen to show compression performance
when file expansion has a high potential of occurrence. An
uncompressed tarball compilation of extended TIFF image data
was picked to demonstrate image compression characteristics
of the algorithm. A rather large uncompressed tarball
compilation of HDF biological E-coli data was chosen to show
performance against binary data. Finally, genome data in
FASTQ format was chosen, as it is considered the standard for
storing the output of high throughput sequencing instruments.
Thus, the FASTQ data should provide a somewhat realistic
real-time data stream.

As stated in Section I, performance analysis was evaluated
in regards to a theoretical real-time compression system
consisting of two interfaces: a constant input stream and an
output stream that can be written to with zero delay. A
software command-line executable was created to simulate
such a system and facilitate batch compression of the files
identified in Table I. The executable loads input data and
compresses it in memory to reduce the impact of slow file I/O
subsystems. Time spent reading data from the hard disk is not
counted against compression time. This serves two purposes;
first, the algorithms can be more fairly evaluated independent
of hardware overhead limitations, and second, the input data
stream is simulated as a continuous stream, as desired by the
real-time system simulation. Parameters were passed to the

executable dictating which algorithm to utilize and how many
iterations of compression to perform on a per file basis. After
testing a particular algorithm’s performance on a file from the
dataset, the program outputs the average throughput, the
average compression time, the average compression time per
input data block, the compression ratio, and the final
compressed file size.

A. Test Setup

A Dell Optiplex 790 computer running Microsoft Windows
7 Professional 64-bit was utilized to determine the impact of
the algorithm modifications. The system was configured with

Figure 5. Compression Ratio at Various Input Block Sizes

Figure 6. Compression Time at Various Input Block Sizes

Figure 7. Compression Time per Block at

4k, 8k, 16k, 32k Input Block Sizes

Table I. Dataset Information

Compression Item File Type / Description File
Size
(GB)

images_en.nq Text (Dump of Wikipedia Thumbnail
Links)

1.2

e-coli HDF RAW Binary
(E-Coli C227 Strain Information)

30.0

gb-1gram-(n).csv Text, where n= 0 to 9.
(From Google Books 1-gram corpus)

0.95

ERR007772_(n).fastq FASTQ Text-Based, where n= 1,2.
(Mouse Genome Sequence Data)

5.6

xtf_Files.tar XTIFF Images (NY Hudson River Side-
scan SONAR images)

1.5

enwiki.xml Text (Wikipedia dump of articles,
templates, media/file descriptions, and
primary meta pages)

37.9

ERR007772_1.fastq.gz Compressed GZIP
(Compressed ERR007772_1.fastq)

2.4

enwiki.xml.bz2 Compressed BZIP2
(Compressed enwiki.xml)

8.6

an Intel 3.4GHz i7-2600 Sandy Bridge Quad Core Processor (4
physical cores, 8 logical cores), 8 GBytes of Dual Channel
1333MHz DDR3 RAM, and a 500GB 7200RPM hard disk
drive.

Prior to the start of testing, an optimal parameter was
determined for the input block size. The first Google Book 1-
gram dataset was run with several input block sizes, as seen in
Fig. 5 through Fig 7. Compression ratio and compression
timing performance noticeably increased from about 1kB to
16kB. From 48kB onward, performance seemed to level off
and remain relatively constant. Compression time per block
was found to be on the order of milliseconds. It should be
noted that the time to compress one block of data is virtually
the same for the baseline and multi-threaded implementations,
as the multi-threaded compression routine is identical. The
multi-threaded implementation gains its speed due to the fact
that it is processing multiple compression blocks
simultaneously. For testing purposes, an input block size of
256kB was chosen, as it is the default used by Oberhumer’s
lzop executable and demonstrated no obvious disadvantage in
the preliminary tests.

For those algorithms utilizing multiple CPU cores, in
addition to the input block size parameter, the optimum number
of compression threads was determined empirically prior to
testing. Some results of this testing can be seen in Fig. 8.
Performance with one thread in the multi-core version of LZO
was found to be slightly worse than the baseline. This is most
likely due to the overhead involved in coordinating the multi-
core algorithm. Performance for both multi-threaded
implementations increased up to a maximum value of four
compression threads. It was originally expected that
performance would increase up to eight maximum threads as
the system under test has eight logical cores. Further testing
showed that due to the specific software implementation, the
CPU cores never reached maximum utilization of all eight
cores simultaneously. In order to accommodate large file sizes,
only 64 MBytes at a time were read to physical memory from
disk and compressed in a loop. The stall time imparted from
performing the disk reads was accounted for and subtracted
from the total compression time. However, the operating
system, due to the frequency of the stalls, appeared to
determine that delegating work to the logical cores was not
necessary, as the physical cores remained slightly

underutilized. A modified version of the compression
benchmark program was created to iterate on the first 512 MB
of file data in memory. This software was able to exercise all
eight cores, showing the expected performance boost from one
to eight threads.

For the purposes of this testing it was decided to continue
utilizing the original version of software with the maximum
thread parameter set to 4 or greater. The memory-only
software variation would result in inaccurate compression ratio
measurements, as larger file streams would not be able to fit
within available memory space.

B. Benchmark Test Results

Testing was conducted in the following manner. First the
performance of the existing LZO 1x-1-15 algorithm was
determined. Then each of the four new performance
enhancements to 1x-1-15 was tested separately. A version of
the compression algorithm that combined all of the
enhancements was tested and the results recorded. Finally, the
CRC-32 library modification was tested against the baseline
library function using the unmodified LZO 1x-1-15 algorithm
with a 256kB input block size. The CRC-32 function calls
were constructed similar to those used in lzop, calling the
function twice per each processed input data block.

Results of testing the LZO 1x-1-15 variants on the dataset
can be found in Fig. 9 through Fig. 11. In terms of
compression ratio, in all cases, the baseline, optimal memory
copy, and multi-core implementations yielded the best results.
This was expected, as the three of these algorithms did not
deviate from the original algorithm in a manner that would
affect file traversal behavior. The remaining three algorithms
employed modifications to the search portion of the algorithm
to enhance compression speed. Compared to the baseline
algorithm, the 32-bit search, cache aligned read, and
combination implementations experienced losses in
compression ratio. The 32-bit search algorithm resulted in files
up to 1.3 times larger than the baseline, whereas the cache
aligned read and combination variants created files up to 2.3
times in size.

In terms of compression time, the baseline algorithm
proved the slowest for most files. In all cases, the optimized
vector memory copy algorithm outperformed the baseline
speed-wise by roughly 5 percent. The multi-core and
combination algorithms consistently completed file
compression within 25 and 20 percent respectively of the time
taken by the baseline algorithm. On average, for the files
tested, the speedup gained was 3.9x for multi-core and 5.4x for
the combination algorithm. The 32-bit search algorithm
resulted in a 10 percent speed increase for text files and a 25 to
50 percent increase for binary/image files. The cache-line-
aligned read algorithm, with one exception, proved to be
slightly faster than the 32-bit search modification.

The one exception to this trend occurred with the file
“image_en.nq”. This is a text file composed of Wikipedia
thumbnail hyperlinks. A brief examination of the file shows
that the contents appears to be highly redundant, as it consists
of many very similar hypertext Uniform Resource Locator
(URL) ASCII text strings, all beginning with “<http://”. The

Figure 8. Average Compression Time for Various Maximum Thread Settings

(Control and Reconstruction Threads Not Counted in Totals)

baseline algorithm confirms that this is the most redundant of
the files tested, as it achieved the greatest compression on this
file in Fig. 9. It was expected that the compression ratio would
be the worst for the cache-line-aligned version, as this version
not only searches every 32-bits for a match and ignores
matches less than 32-bits in size, but also moves the search
pointer forward if it is not currently on a 32-bit boundary. The
extent of the speed degradation, however, was not anticipated.

To determine why the cache-line-aligned modification may
experience issues with highly redundant data, a special version
of the compression software was created to gather more in-
depth timing information. This version of software recorded
execution time spent in the four main sections of the
compression code, described in Section II. Compression of the
file “image_en.nq” was re-run using the 32-bit search and
cache-line-aligned algorithms. The results can be found in
Table II.

It was found that the cache-line-aligned algorithm overall
executed roughly 1.28 times the number of loop iterations,
resulting in a total compression time of 1.40 times longer than
that of the 32-bit search variation. Supplemental testing on an
Intel Core2 Duo system (not shown), which according to [7]
should benefit more from the aligned reads than the i7
processor used for benchmarking, showed that the algorithm
still performed 1.30 times slower than the 32-bit search
variation. Examining Table II, fewer match length
determination loops were executed, implying that fewer
dictionary matches were found. This makes sense, as during
dictionary searches the 32-bit alignment of the input pointer
may skip up to three consecutive bytes, leading to a more
sparsely populated dictionary. Those matches found would
also have been shorter in length due to the imposed 32-bit
boundary restriction. This led to more execution time in the
rather expensive search and uncompressed literal copy code
segments. The ability of the search function to exponentially
skip through a 48kB sub-block is also hindered by the high
level of data redundancy: the algorithm periodically finds short
matches, resulting in an inability to skip forward to the end of a
sub-block, as it would with data of lower redundancy. These
combined factors appear to have attributed to the poor speed
performance for highly redundant data.

Compression timing performance for highly non-redundant
data can be seen in Fig. 12. Once again, the multi-threaded
algorithms experienced considerable speed boosts compared
with the others. Results indicated that file expansion only
achieved an excess growth of 0.4 percent of the original file
size for all tested algorithm variants.

CRC-32 testing was conducted on one of the Google Book
1-gram data files. Testing showed that on average an extra
1.47 msec per block was added to compression time when
using the tabular method, and an extra 0.23 msec per block was
added when using the hardware method. As expected, the

Figure 9. Compression Ratio

Figure 10. Compression Time (small streams)

Figure 11. Compression Time (large streams)

Table II. Cache-Line-Aligned vs. 32-Bit Search Performance
(Higher Ratios Indicate Worse Performance for Cache-Line-Aligned Alg.)

Code
Portion

% Total
Compression

Time

32-Bit
Search Alg.

%Total
Compression

Time

Cache – Line
Alg.

Ratio of
Loop

Iterations

Ratio of
Compression

Time

(Cache-Line Alg. :
32-Bit Search Alg.)

Search 27.0% 31.9% 1.35 1.65
Literal
Copy

14.8% 16.3% 2.15 1.55

Match
Length

41.7% 32.3% 0.95 1.08

Token 16.5% 19.5% 1.70 1.66
Overall 100% 100% 1.28 1.40

hardware implementation demonstrates a considerable
performance increase of about six times that of the baseline
CRC-32 function.

V. CONCLUSIONS

This paper examined several methods in which the
compression speed of LZO 1x-1-15 can be improved. Slight
adjustments to the code were made to increase parallelization,
improve the copying of literal data, speed up input stream
traversal, optimize cache accesses, and perform hardware
CRC-32 calculations. The multi-core and optimized memory
copy algorithms both demonstrated their ability to speed
compression without affecting compression ratio. Combining
these two mutually exclusive operations should likely achieve a
more robust implementation of LZO 1x-1-15. Hardware CRC-
32 calculations were seen to add verification to the output
stream with minimal impact on total compression time. Of the
algorithm variants tested, the multi-core algorithm displayed
the greatest speed enhancement without degradation to
compression ratio - an improvement of 3.9x over that of the
baseline. In instances where compression ratio is not of
primary importance, the combined optimization algorithm
demonstrated the ability to increase compression speed
performance by 5.4x.

In general, the results suggest that LZO and other token-
based block compression algorithms similar to it can benefit
from recent CPU hardware optimizations. Increased processor
bus widths allow for larger block memory copies when storing
uncompressed literal data. The introduction of multiple cores
allow for multiple blocks to be simultaneously and
independently compressed. These optimizations should port to
embedded multi-core architectures containing data buses
greater than 32-bits.

Future work may be explored by investigating potential
optimizations from the Intel AVX (Advanced Vector
Extensions) and AVX2 vector instruction sets [10]. These
instruction sets extend upon SSE, allowing for SIMD
instructions to run on 256-bit data types. Further vector
optimizations may be possible in hash calculation, literal
copying, and match length determination. Preliminary
prototypes of the software under test showed that utilizing
existing x86 SSE 128-bit vector operations for these purposes
often resulted in performance loss due to operand alignment

related setup costs. Operands typically become unaligned due
to the byte-oriented searching nature of the LZO algorithm.
Performing enough vector calculations in parallel may
outweigh the setup disadvantage. It should be noted that these
costs are entirely architecture dependent. Migrating to another
processor family may prove to have better or worse
performance when executing similar instructions.

Another area of future work may be to implement an
adaptive version of the algorithm similar to that described in
[11]. Such a system would attempt to maintain a minimum
compression ratio, switching back and forth between the
different algorithms for speed gains as need allows.

ACKNOWLEDGMENT

This research was sponsored in part by the Department of
the Navy (Naval Undersea Warfare Center, Newport, Rhode
Island), and NSF CCF-1017177. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. The authors are very
grateful to the anonymous reviewers for providing detailed
comments that have improved the quality of the paper greatly.

REFERENCES
[1] Oberhumer, M.F.X.J., 2011. LZO real-time data compression library.

[Online]. Available: http://www.oberhumer.com/opensource/lzo/. [20
June 2012]

[2] L. Yang, R.P. Dick, Haris Lekatsas, and Srimat Chakradhar, “Online
memory compression for embedded systems”, ACM Transactions on
Embedded Computer Systems. vol 9, issue 3, no. 27, February 2010.

[3] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337-343, 1977.

[4] Intel Corporation. (2012, April). “Intel® 64 and IA-32 Architectures
Optimization Reference Manual” [online]. Available:
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-
optimization-manual.pdf [20 June 2012]

[5] Agner Fog. (8 June 2011). “Instruction tables. Lists of instruction
latencies, throughputs and micro-operation breakdowns for Intel, AMD,
and VIA Cpus” [online]. Available:
http://www.agner.org/optimize/instruction_tables.pdf [20 June 2012].

[6] C.M. Sadler and M. Maronosi, “Data Compression Algorithms for
energy-constrained devices in delay tolerant networks”, Proc. Of IEEE
SenSys ‘06, pp. 265-278, Nov 2006.

[7] Agner Fog. (8 June 2011). “The microarchitecture of Intel, AMD and
VIA CPUs” [online]. Available:
http://www.agner.org/optimize/microarchitecture.pdf [20 June 2012]

[8] Agner Fog. (21 August 2011). “Instructions for asmlib. A multi-
platform library of highly optimized functions for C and C++” [online].
Available: http://www.agner.org/optimize/asmlib-instructions.pdf [20
June 2012]

[9] Mark Adler, 2012. zlib Home Site. [Online]. Available:
http://www.zlib.net. [20 June 2012]

[10] Intel Corporation. (2011, April). “Intel® 64 and IA-32 Software
Developer’s Manuals” [online]. Available:
http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html [20 June 2012]

[11] Chandra Krintz and Sezgin Sucu, “Adaptive On-the-Fly Compression”,
Transactions on Parallel and Distributed Systems, January 2006, Vol. 17
No. 1

Figure 12. Average Compression Time for Non-Redundant Data

