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Abstract 
 

This paper presents a new disk I/O architecture 

composed of an array of a flash memory SSD (solid state 

disk) and a hard disk drive (HDD) that are intelligently 

coupled by a special algorithm. We call this architecture 

I-CASH: Intelligently Coupled Array of SSD and HDD.  

The SSD stores seldom-changed and mostly read 

reference data blocks whereas the HDD stores a log of 

deltas between currently accessed I/O blocks and their 

corresponding reference blocks in the SSD so that 

random writes are not performed in SSD during online 

I/O operations. High speed delta compression and 

similarity detection algorithms are developed to control 

the pair of SSD and HDD. The idea is to exploit the fast 

read performance of SSDs and the high speed 

computation of modern multi-core CPUs to replace and 

substitute, to a great extent, the mechanical operations of 

HDDs. At the same time, we avoid runtime SSD writes 

that are slow and wearing. An experimental prototype I-

CASH  has been implemented and is used to evaluate I-

CASH performance as compared to existing SSD/HDD 

I/O architectures. Numerical results on standard 

benchmarks show that I-CASH reduces the average I/O 

response time by an order of magnitude compared to 

existing disk I/O architectures such as RAID and 

SSD/HDD storage hierarchy,  and provides up to 2.8 

speedup over state-of-the-art pure SSD storage. 

Furthermore, I-CASH reduces random writes to SSD 

implying reduced wearing and prolonged life time of the 

SSD. 

1. Introduction 
While storage capacity and CPU processing power 

have experienced rapid growth in the past, improvement 

in data bandwidth and access times of disk I/O systems 

have not kept pace. As a result, there is an ever widening 

speed gap between CPUs and disk I/O systems. Disk 

arrays can improve overall I/O throughput [39] but 

random access latency is still very high because of 

mechanical operations involved. Large buffers and deep 

cache hierarchy can improve latency but the access time 

reduction they provide has been very limited because of 

poor data locality at the disk I/O level [22, 52, 54]. 

This paper presents a new disk I/O architecture that 

exploits the advancement of flash memory SSD (solid 

state disks) and multi-core processors. The new disk I/O 

architecture is referred to as I-CASH: Intelligently 

Coupled Array of SSD and HDD. The main idea of our I-

CASH architecture is very simple. Each storage element 

in the I-CASH consists of an SSD and an HDD that are 

coupled by an intelligent algorithm. The SSD stores 

seldom changed and mostly read data called reference 

blocks and the HDD stores a log of deltas (or patches) of 

data blocks of active I/Os with respect to reference data 

blocks stored in the SSD.  The intelligent algorithm 

performs similarity detection, delta derivations upon I/O 

writes, combining delta with reference blocks upon I/O 

reads, and other necessary functions for interfacing the 

storage to the host OS. I-CASH tries to take full 

advantages of three different technologies: 1) fast read 

performance of SSD, 2) high computing power of multi-

core processor, and 3) reliable/durable/sequential write 

performance of HDD. Because of strong regularity and 

content locality that exist in data blocks [19, 29, 50] , a 

hard disk block can contain  a log of potentially large 

number of small deltas with respect to reference blocks.  

As a result, one HDD operation accomplishes multiple 

I/Os and hence I-CASH improves disk I/O performance 

greatly by trading high speed computation of multi core 

CPUs for low access latency of HDD. In addition, 

random writes in flash SSD are minimized giving rise to 

longer life time of SSD.    

A preliminary prototype I-CASH has been built on the 

Linux operating system. Standard benchmarks have been 

run on the prototype to measure the disk I/O performance 

of I-CASH as compared to existing disk I/O architectures 

such as RAID0, Fusion-io [16], and LRU SSD cache on 

top of a disk. Numerical results show that I-CASH 

reduces the number of HDD operations drastically. The 

overall I/O speedups over RAID0 range from 1.2 to 7.5. 

Running our prototype on top of the state-of-the-art SSD 

storage, I-CASH provides up to 2.8 speedup for certain 

workloads while using one-tenth of SSD space. 

The rest of the paper is organized as follows. Next 

section gives the background and related work. Section 3 

describes the I-CASH architecture and design issues. We 

discuss our prototype implementation and evaluation 

methodology in Section 4 followed by numerical results 

and performance evaluations in Section 5. Section 6 

concludes the paper. 

2. Background and Motivations 

2.1 Flash Memory SSD Technology 
Recent developments of flash memory SSDs have 

been very promising with rapid increase in capacity and 
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decrease in cost [24, 40]. Because SSD is on a semi-

conductor chip, it provides great advantages in terms of 

high speed random reads, low power consumption, 

compact size, and shock resistance. Researchers in both 

academia and industry have been very enthusiastic in 

adopting this technology [1, 5, 14, 24, 30, 51]. However, 

most existing research in SSD focused on either using 

SSD in the similar way to hard disk drives (HDD) with 

various management algorithms at files system level [23] 

and device level [5] , or using SSD as an additional cache 

in the storage hierarchy [24, 30, 36, 40]. We believe that 

both approaches have limitations because of the physical 

properties of SSDs.  

To understand why simple adoption of SSD has 

limitations, let us take a close look at the physical 

properties of a NAND-gate flash memory that is widely 

used in SSDs. A typical NAND-gate array flash memory 

chip consists of a number of blocks each of which 

contains a number of pages. Block with size ranging from 

tens of KB to MB is the smallest erasable units whereas 

pages with size ranging from 512B to 16KB are the 

smallest programmable units. When a write operation is 

performed, it needs to first find a free page to write. If 

there is no free page available, an erase operation is 

necessary to make free pages. Read and write operations 

usually take tens of microseconds, whereas an erase 

operation takes 1.5 to 3 milliseconds. Besides 

performance consideration, the lifetime of the flash 

memory is limited by the number of erase operations 

performed on a block. Typically, a block can be erased 

for only 10k times (for multi level cell: MLC) or 100k 

times (for single level cell: SLC). After that, the block 

becomes bad [25]. To make the lifetime of a flash 

memory longer, wear leveling is typically done by 

distributing erase operations evenly across all blocks. 

Recent studies have shown that manufacturers’ 

specifications about SSD lifetime are conservative [6, 18, 

34], but reliablity is still one of the major concerns when 

using SSD as a high data throughput storage device.  

To tackle the write issues in SSD, researchers have 

recently proposed techniques such as hiding erasure 

latencies and wear leveling at file system level [23], using 

a log disk as a disk cache to cache data blocks to be 

written [46], and leveraging phase change random access 

memory (PRAM) to  implement log region [47]. 

However, none of the existing works on SSD has made 

attempt to exploit the content locality that exists in disk 

I/O accesses as discussed next. 

2.2 Content Locality 
Researchers in computer systems have long observed 

the strong regularity and content locality that exist in 

memory pages. Memory pages contain data structures, 

numbers, pointers, and programs that process data in a 

predefined way. Such strong regularity and content-

locality have been successfully exploited for in-memory 

data compression [15, 48].  Large files and collections of 

files also show strong content locality with large amount 

of data redundancy that can be eliminated by efficient 

compression algorithms [29, 41]. Data deduplication 

reduces storage space and disk accesses by keeping a 

single copy for identical blocks [11, 13, 26, 28, 49, 55]. 

Researchers have recently proposed efficient methods of 

identifying duplicate data during backup process. One 

example is the technique based on RAM prefetching and 

bloom-filter [55] with close to 99% hit ratio for index 

lookups. Another example is ChunkStash [13] that uses 

flash memory to store chunk metadata to further improve 

backup throughput. Content locality also been exploited 

in processor designs for instruction reuse and value 

prediction [9, 17, 21, 32, 44-45].  

Besides duplications or identical blocks that exist in 

data storage, there are many data blocks that are very 

similar among each other. Delta encoding has been 

successfully used to eliminate redundancy of one object 

relative to another [2, 8] , suggesting that many data 

blocks can be represented as small patches/deltas with 

respect to reference blocks. Furthermore, recent research 

literature has reported strong content locality in many 

data intensive applications with only 5% to 20% of bits 

inside a data block being actually changed on a typical 

block write operation [35, 53]. Effectively exploring such 

content locality of both identical and similar blocks can 

maximize disk I/O performance. 

In addition to the strong regularity and content locality 

inherent in block data, virtual machines provide us with 

additional opportunities for content locality. The 

emerging cloud computing requires hundreds, even 

thousands, of virtual machines running on servers and 

clients [31, 42].  Such widespread use of virtual machines 

creates a problem of virtual machine image sprawl [42] 

where each virtual machine needs to store the entire stack 

of software and data as a disk image. These disk images 

contain a large amount of redundant data as observed 

previously by researchers [37-38, 43]. Gupta et al have 

recently presented a powerful Difference Engine [19] that 

has successfully exploited such content locality to 

perform memory page compression with substantial 

performance gains. This strong content locality suggests 

again the possibility of organizing data differently in data 

storage to obtain optimal performance.   

3. I-CASH Architecture 
Motivated by the developments of SSDs and multi-

core CPUs, coupled with regularity and content locality 

of disk I/Os, we come up with the I-CASH architecture 

constructed using a pair of SSD and HDD intelligently 

coupled by a special algorithm as shown in Figure 1. The 

idea is turning the traditional thinking by 90
o
. Instead of 

having a vertical storage hierarchy with an SSD on top of 

an HDD, I-CASH arranges SSD and HDD horizontally to 

store different types of data blocks. The SSD stores 
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mostly read data called reference blocks and the HDD 

stores a log of deltas called delta blocks. A delta in a delta 

block is derived at run time representing the difference 

between the data block of an active disk I/O operation 

and its corresponding reference block stored in the SSD. 

Upon an I/O write, I-CASH identifies its corresponding 

reference block in the SSD and computes the delta with 

respect to the reference block as shown in Figure 1b. 

Upon an I/O read, the data block is returned by 

combining the delta with its corresponding reference 

block as shown in Figure 1c.  Since deltas are small due 

to data blocks’ regularity and content locality, we store 

them in a compact form so that one HDD operation yields 

many I/Os. The goal here is to convert the majority of 

I/Os from the traditional seek-rotation-transfer I/O 

operations on HDD to I/O operations involving mainly 

SSD reads and computations. The former takes tens of 

milliseconds whereas the latter takes tens of 

microseconds. As a result, the SSD in I-CASH is not 

another level of storage cache but an integral part of the I-

CASH architecture. Because of 1) high speed read 

performance of reference blocks stored in SSDs, 2) 

potentially large number of small deltas packed in one 

delta block stored in HDD and cached in the RAM, and 3) 

high performance CPU coupling the two, I-CASH is 

expected to improve disk I/O performance greatly. In the 

following subsections, we will discuss the key design 

issues of I-CASH. 
 

 

Figure 1. Block diagram of the I-CASH architecture. 

3.1 Delta Packing and Unpacking 
One critical issue to the success of the I-CASH 

architecture is whether or not we are able to pack and 

unpack a batch of deltas in a short time frame so that one 

HDD operation generates many deltas that can be 

combined with reference blocks in SSD to satisfy the 

host’s I/O requests. Let LBAi, LBAi+1 … LBAj, (j>i) be a 

set of addresses of a sequence of write I/Os from the host 

in a predefined window. Suppose we derived deltas of 

these I/Os with respect to their corresponding reference 

blocks in SSD and packed them in a delta block stored in 

HDD. The question is:  when an I/O request with one of 

the addresses in the above window, LBAk (i <= k <= j), 

appears in subsequent IOs, can we find a set of I/O 

requests immediately following LBAk with address LBAh 

(i <= h <= j)?  If we can, how many such I/Os can we 

find and what is the time frame length containing these 

I/Os? The number of LBAh’s appeared in the time frame 

implies potential number of I/Os served by one HDD 

access. For a given number of such LBAh’s, the length of 

the time frame containing them determines how long 

these data blocks need to stay in the DRAM buffer of the 

I-CASH controller. Therefore, these parameters are very 

important in our design of the I-CASH architecture. The 

following examples show how such I/O patterns exist in 

real applications. 

The first case is that all I/O operations that can take 

advantage of parallel disk arrays can take advantages of I-

CASH. RAID was designed to boost I/O performance 

through parallelism in addition to fault tolerance. To 

achieve high throughput in RAID system, disk IOs form 

data stripes across parallel disks with each disk storing 

one chunk of data in a stripe.  With I-CASH, subsequent 

changes to these data chunks in a stripe can be 

compressed using the original data of the stripe as 

reference blocks stored in SSD. The deltas representing 

such changes on the stripe can be packed together in one 

delta block. For example, I-CASH can pack deltas of all 

sequential I/Os into one delta block. Upon read 

operations of these sequential data blocks, one HDD 

operation serves all the I/O requests in the sequence. 

After the HDD operation that is the most time consuming 

part (in the order of milliseconds), what is left is only 

operations on semiconductors. The high speed 

decompression algorithm takes only a few to tens of 

microseconds to combine the deltas with their 

corresponding reference blocks that are read from the 

SSD to satisfy these I/Os.  

The second case is the widespread use of virtual 

machines. As virtual machines are being created, disk 

images for the virtual machines are made to store 

software stack and data. The difference between data 

blocks of a virtual machine image and the data blocks of 

the native machine are very small and therefore it makes 

sense to store only the difference/delta between the two 

instead of storing the entire image. The pairing between a 

delta and its reference block is clear and should be the 

data block of the native machine and its exact image of 

the virtual machine. At the time when virtual machines 

are created, I-CASH compares each data block of a 

virtual machine image with the corresponding block of 

the native machine, derives deltas representing the 

differences of the image blocks from the native machine 

blocks, and packs the deltas into delta blocks to be stored 

in HDD. Future I/Os are served by combining deltas with 

their corresponding reference blocks in SSD, which 

mainly involves SSD reads and computations with 

minimal HDD operations.  

The third case is the temporal locality and partial 

determinism behavior of general non sequential IOs 

observed by prior researchers [4]. Prior experiments have 

shown that strong temporal locality exists in disk I/Os 

and besides sequential accesses to a portion of files, 

fragments of block access sequence repeat frequently. In 
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many applications such as office, developer workstations, 

version control servers, and web servers, there are a large 

number of read IOs that occur repeatedly and only 4.5-

22.3% of the file system data were accessed over a week. 

Such repetitive and determinism behavior can be 

exploited to take full advantages of I-CASH architecture. 

3.2 Possible Implementations of I-CASH 
I-CASH can be implemented in several different ways. 

The first and the most efficient implementation is to 

embed the I-CASH architecture inside the controller 

board of an HDD or an HBA card (host bus adaptor). The 

controller board will have added NAND-gate flash SSD, 

an embedded processor, and a small DRAM buffer in 

addition to the existing disk control hardware and 

interface. Figure 2(a) shows the block diagram for the 

implementation of the I-CASH inside the controller. Host 

system is connected to the controller using a standard 

interface such as PCIe, SCSI, SATA, SAS, PATA, iSCSI, 

FC, and etc. An SSD in form of flash memory chip or 

SSD drive is used to store reference blocks. The 

embedded processing element performs the I-CASH logic 

such as delta derivation, similarity detection, combining 

delta with reference blocks, managing reference blocks, 

managing metadata, etc. The RAM cache stores 

temporarily deltas and data blocks for active I/O 

operations. The controller is connected to an HDD in any 

of the conventional interfaces.  
 

 
Figure 2. I-CASH implementations. 

 

While the above hardware implementations inside a 

disk controller or HBA card can provide great 

performance benefits, they require purpose-built 

hardware. Another possible implementation is a software 

approach using commodity hardware. Figure 2(b) shows 

the block diagram of one software implementation of I-

CASH in which a software module at the block device 

level controls standard off-the-shelf SSD and HDD.  The 

software is running entirely on the host CPU with a part 

of the system RAM as a cache to temporarily buffer delta 

and data blocks. The software solution is easy to 

implement without requiring changes on the hardware but 

it consumes system resources such as CPU, RAM, and 

system bus for the necessary functionality of I-CASH. In 

addition, software implementation is OS dependent and 

requires different designs and implementations for 

different operating systems. However, with the rapid 

advances in multi core chip multiprocessors (CMP), 

computation power in today’s servers and workstations is 

abundant. Trading such high performance and low cost 

computation for better I/O performance is a cost-effective 

and attractive solution to many applications.  

3.3 Data Reliability and Recovery 
I-CASH uses a DRAM buffer to store temporarily 

data blocks and delta blocks that are accessed by host I/O 

requests. In addition, data and changes are stored 

separately and a sector contains many deltas. As a result, 

data reliability and recovery become a concern. This issue 

can be addressed in two ways besides depending on lower 

level redundancy. First, dirty delta and metadata are 

flushed to disk periodically. There is a tradeoff here. For 

reliability purposes, we would like to perform write to 

HDD as soon as possible whereas for performance 

purposes we would like to pack as many deltas in one 

block as possible. The flush interval is a tunable 

parameter based on the number of dirty delta blocks in 

the system. The second approach is to employ a simple 

log structure similar to prior researches [4, 20, 46]. For 

data recovery after a failure, I-CASH can recover data by 

combining reference blocks with deltas unrolled from the 

delta logs in the HDD. 

4. Prototype and Evaluation 
Methodology 

4.1 Prototype Implementation 
We have developed a proof-of-concept prototype of I-

CASH using Kernel Virtual Machine (KVM). The 

prototype represents the realization of our I-CASH design 

using a software module and off-the-shelf hardware 

components. The functions that the prototype has 

implemented include identifying reference blocks, 

deriving deltas for write I/Os, serving read I/Os by 

combining deltas with reference blocks, and managing 

interactions between SSD and HDD.  The current 

prototype carries out the necessary computations using 

the host CPU and uses a part of system RAM as the 

DRAM buffer of the I-CASH (The program is available 

at ele.uri.edu/hpcl).   
 

 
Figure 3. Prototype implementation of I-CASH. 

 

The software module is implemented in the virtual 

machine monitor as shown in Figure 3. The I/O function 
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of the KVM depends on QEMU [3] that is able to 

emulate many virtual devices including virtual disk drive. 

The QEMU driver in a guest virtual machine captures 

disk I/O requests and passes them to the KVM kernel 

module. The KVM kernel module then forwards the 

requests to QEMU application and returns the results to 

the virtual machine after the requests are complete. The 

I/O requests captured by the QEMU driver are block-

level requests of the guest virtual machine. Each of these 

requests contains the virtual disk address and data length. 

I-CASH is implemented within the QEMU application 

module and is therefore able to catch the virtual disk 

address and the length of an I/O request. The most 

significant byte of the 64-bit virtual disk address is used 

as the identifier of the virtual machine so that the requests 

from different virtual machines can be managed in one 

queue.  

4.2 Program Structure and Data Layouts 
In order to select reference blocks, we need to 

determine and keep track of both access frequency and 

content signature of a data block. For this purpose, each  

block is divided into S sub-blocks. A sub-signature is 

calculated for each of the S sub-blocks. A special two 

dimensional array, called Heatmap, is maintained in our 

design. The Heatmap has S rows and Vs columns, where 

Vs is the total number of possible signature values for a 

sub-block. For example, if the sub-signature is 8 bits, Vs 

= 256. Each entry in the Heatmap keeps a popularity 

value that is defined as the number of accesses of the sub-

block matching the corresponding signature value. As an 

example, consider Figure 4 that shows the 8×256 

Heatmap. In this example, each data block is divided into 

8 sub-blocks and has 8 corresponding signature values.  

When a block is accessed with sub-block signatures being 

55, 00, and so on as shown in Figure 4, the popularity 

value corresponding to column number 55 of the 1
st
 row 

is incremented. Similarly, column number 0 of second 

row is also incremented. In this way, Heatmap keeps 

popularity values of all sub-signatures of sub-blocks.  
 

 
Figure 4.Sub-signatures and the Heatmap. 

 

To illustrate how Heatmap is organized and 

maintained as I/O requests are issued, consider a simple 

example where each cache block is divided into 2 sub-

blocks and each sub-signature has only four possible 

values,  i.e. Vs = 4. The Heatmap of this example is 

shown in Table 1 for a sequence of I/O requests accessing 

data blocks at addresses LBA1, LBA2, LBA3, and LBA4, 

respectively. Assume that all possible contents of sub-

blocks are A, B, C, and D and their corresponding 

signatures are a, b, c, and d, respectively. The Heatmap in 

this case contains 2 rows corresponding to 2 sub-blocks 

of each data block and 4 columns corresponding to 4 

possible signature values. As shown in this table, all 

entries of the Heatmap are initialized to {(0, 0, 0, 0), (0, 0, 

0, 0)}. Whenever a block is accessed, the popularities of 

corresponding sub-signatures in the Heatmap are 

incremented.  For instance, the first block has logical 

block address (LBA) of LBA1 with content (A, B) and 

signatures (a, b). As a result of the I/O request, two 

popularity values in the Heatmap are incremented 

corresponding to the two sub-signatures, and the Heatmap 

becomes {(1, 0, 0, 0), (0, 1, 0, 0)} as shown in Table 1.  

After 4 requests, the Heatmap becomes {(2, 1, 1, 0), (0, 1, 

0, 3)}.    
 
Table 1. The buildup of heatmap. Each block has 2 sub-blocks 

represented by 2 sub-signatures each having 4 possible values Vs=4. 
I/O 

sequence 

Content Signature Heatmap[0] 

a  b  c  d 

Heatmap[1] 

a  b  c  d 

  Initialized 0  0  0  0 0  0  0  0 

LBA1 A B a b 1  0  0  0 0  1  0  0 

LBA2 C D c d 1  0  1  0 0  1  0  1 

LBA3 A D a d 2  0  1  0 0  1  0  2 

LBA4 B D b d 2  1  1  0 0  1  0  3 
 

In our current design, the size of a cache block is fixed 

at 4 KB. Each 4KB block is divided into 8 512-bytes sub-

blocks resulting in 8 sub-signatures to represent the 

content of a block. Unlike many existing content 

addressable storage systems, each sub-signature is 1 byte 

representing the sum of 4 bytes in a sub-block at offsets 0, 

16, 32, and 64, respectively. In this way, the computation 

overhead is substantially reduced compared with hash 

value computation of the whole sub-block. What is more 

important is that our objective is to find the similarity 

rather than identical blocks. Hashing is efficient to detect 

identical blocks, but it also lowers the chance of finding 

similarity because a single byte change results in a totally 

different hash value. Therefore, additional computation of 

hashing does not help in finding more similarities.  

With 4KB blocks, 512B sub-blocks, and 8 bits sub-

signature for each sub-block, we have Heatmap with 8 

rows corresponding to 8 sub-blocks and 256 columns to 

hold all possible signatures that a sub-block can have. 

Each time a block is read or written, its 8 1-byte sub-

signatures are retrieved and the 8 popularity values of 

corresponding entries in the Heatmap are increased by 

one. This frequency spectrum of contents is the key to 

identify reference blocks. It is able to capture both the 

temporal locality and the content locality. If a block is 

accessed twice, the increase of corresponding popularity 

value in the Heatmap reflects the temporal locality. On 

the other hand, if two similar blocks with different 

addresses are accessed once each, the Heatmap can catch 
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the content locality since the popularity values are 

incremented at entries that have matched signatures.  

Similarity detection to identify reference blocks is 

done in two separate cases in the prototype 

implementation. The first case is when a block is first 

loaded, I-CASH searches for the same virtual address 

among the existing blocks in the cache. The second case 

is periodical scanning after every 2,000 I/Os. At each 

scanning phase, I-CASH checks the 4,000 blocks from 

the beginning of an LRU queue to find the blocks with 

the most frequently accessed signatures as references. 

The other blocks of these 4,000 blocks are compared with 

references. The association between newly found 

reference blocks and their respective delta blocks is 

reorganized at the end of each scanning phase. 
 

Table 2. Selection of a reference block. The popularities of all blocks 
are calculated according to the Heatmap of Table 1. 

LBAs Block Popularity LRU Reference 

    A B C D A D B D 

LBA1 A B 2+1 = 3 A B A B A B _ B A B 
LBA2 C D 1+3 = 4 C D C D C D C _ C _ 
LBA3 A D 2+3 = 5 A D _ D A _ A D A _ 
LBA4 B D 1+3 = 4 B D B D B _ B _ B D 
  Cache space 4 3.5 3 2.5 3 

 

Table 2 shows the calculation of popularity values and 

the cache space consumption using different choices of 

reference block for the example of Table 1. The 

popularity value of a data block is the sum of all its sub-

block popularity values in the Heatmap. As shown in the 

table, the most popular block here is the data block at 

address LBA3 with content (A, D) and its popularity value 

is 5. Therefore, block (A, D) should be chosen as the 

reference block. Once the reference block is selected, 

delta-coding is used to eliminate data redundancy. The 

result shows that using the most popular block (A, D) as 

the reference, cache space usage is minimum, about 2.5 

cache blocks assuming perfect delta encoding. Without 

considering content locality, a simple LRU would need 4 

cache blocks to keep the same hit ratio. The saved space 

can be used to cache more data. Figure 5 shows the data 

layout after selecting block (A, D) as the reference block.  

4.3 Data Management 
I-CASH uses an LRU list of virtual blocks to manage 

data. Each virtual block contains the LBA address, the 

signature, the pointer to the reference block, the pointer to 

data block, and the pointer to delta blocks. A virtual block 

can be one of three different types: reference block, 

associate block, or independent block. An associate block 

is a virtual block that is associated with a reference block 

together with a delta that is the difference between the 

content of the associate block and the reference block. An 

independent block is a virtual block that has no associated 

reference block in the cache. Delta blocks are managed 

using a linked list of 64-bytes segments. A virtual block 

can have one or more delta blocks due to (i) this virtual 

block refers to a reference block; (ii) this virtual block is 

a reference block and has been written since it was 

selected as a reference.  

When a disk block is accessed the first time and 

brought into the cache, a virtual block and a data block 

are allocated to cache it. Before this virtual block is 

selected as a reference block or associate block, it is an 

independent block so that data is read from or written to 

its data block. Its signature is updated upon every write 

request. Once it is selected as a reference block or 

associate block, one or more delta blocks are allocated for 

this virtual block. A write request to a virtual block that is 

an associate block needs to read its reference block first, 

calculate the difference using delta-coding, and write the 

difference to the delta block. Read request to an associate 

block combines its delta and the reference block to obtain 

its data. As a result, a reference block is always ahead of 

its associate blocks in the LRU queue because accesses to 

its associate blocks also need to access the reference 

block. Similarly, write requests to a reference block need 

update its delta blocks. But the signature of the block 

does not change since its data is being referred. Read 

requests to the changed reference block need combine 

with its delta block. 

 
Figure 5. The data layout of I-CASH buffer cache. 

 

To manage cached data blocks described above, we 

need to consider 3 kinds of replacements. The first is 

virtual block replacement when there is no available 

virtual block. I-CASH searches from the end of the LRU 

queue and replaces the first non-reference block. The 

second is data block replacement. I-CASH searches from 

the end of LRU queue and replaces the first data block. 

The data block of a reference block can also be evicted 

indicating that the reference block and its associate blocks 

have not been accessed for a long time. The third is delta 

replacement which leads to virtual block replacement. I-

CASH searches from the end of the LRU queue, replaces 

the first virtual block that has delta and is not a reference. 

The data block, if exists, of the replaced virtual block is 

released because its content is invalid without delta 

blocks. 

4.4 Experimental Setup and Workload 
Characteristics 

The prototype I-CASH is installed on KVM running 

on a PC server that is a Dell PowerEdge T410 with 
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1.8GHz Xeon CPU, 8GB RAM, and 160G Seagate 

SATA drive. This PC server acts as the primary server. A 

Fusion-io ioDrive 80G SLC SSD is installed on the 

primary server. Another Dell Precision 690 with 1.6GHz 

Xeon CPU, 2GB RAM, and 400G Seagate SATA drive is 

used as the workload generator. The two servers are 

interconnected using a gigabit Ethernet switch. The 

operating system on both the primary server and the 

workload generator is Ubuntu 9.10 64bit. Multiple virtual 

machines, including Ubuntu 8.10, Ubuntu10.04, and 

Windows 2003, are built to execute a variety of 

benchmarks. The virtual machine RAM size used ranges 

from 128MB to 512MB depending on benchmarks as 

shown in the last column of Table 4. 

In all experiments, the I-CASH software module runs 

on the host CPU with a partition of the system RAM to 

store delta blocks.  The SSD in the I-CASH is the Fusion-

io ioDrive 80G SLC and the HDD is the 160GB Seagate 

SATA drive. For performance comparison purpose, four 

baseline systems are setup on the same hardware 

environment: 

1) Fusion-io: The first baseline system is using the 

Fusion-io ioDrive 80G SLC as the pure data storage 

with no HDD involved. All applications run on this 

SSD that stores the entire data set. 

2) RAID0: The second baseline is RAID0 with data 

striping on 4 SATA disks. Linux MD is used as the 

RAID controller. 

3) DeDup: The third baseline is data deduplication that 

saves only one copy of data in SSD for identical 

blocks.  

4) LRU: The fourth case is using SSD as an LRU cache 

on top of the SATA disk drive.  

Except for the first baseline, Fusion-io, that allocates 

enough SSD to store all application data, DeDup and 

LRU use exactly the same amount of SSD space as I-

CASH which is typically about 10% of the size of data 

set for each benchmark. 

Right workloads are important for performance 

evaluations. It should be noted that evaluating the 

performance of I-CASH is unique in the sense that I/O 

address traces are not sufficient because deltas are content 

dependent. That is, the workload should have data 

contents in addition to addresses. We have collected 6 

standard I/O benchmarks available to the research 

community as shown in Table 3.  Table 4 summarizes the 

characteristics of these benchmarks. 

The first benchmark, SysBench, is a multi-threaded 

benchmark tool for evaluating the capability of a system 

to run a database under intensive load [27]. SysBench 

runs against MySQL database with a table of size 

4,000,000, max requests of 100,000, and 16 threads.  

Hadoop is currently one of the most important 

frameworks for large scale data processing [7]. Two 

Ubuntu 10.04 virtual machines are built to form a two-

node Hadoop environment with default settings. The two 

virtual machines share one storage system. We measure 

the execution time of the MapReduce job, WordCount, to 

process the access log of our university website. 

TPC-C is a benchmark modeling the operations of 

real-time transactions [12]. It simulates the execution of a 

set of distributed and on-line transactions (OLTP) on a 

number of warehouses. These transactions perform the 

basic database operations such as inserts, deletes, updates 

and so on. TPCC-UVA [33] is used on the Postgres 

database with 5 warehouses, 10 clients for each 

warehouse, and 30 minutes running time. 

LoadSim2003 is a load simulator for Microsoft 

Exchange Server 2003 [56]. Multiple clients send 

messages to Exchange Server to simulate an email 

workload. In our test, the client computer simulates 100 

clients of heavy user type and stress mode to access the 

Exchanger Server 2003 which is installed on Windows 

Server 2003.  The duration of the simulation is 1 hour. 

SPECsfs, is used to evaluate the performance of an 

NFS or CIFS file server. Typical file server workloads 

such as LOOKUP, READ, WRITE, CREATE, and 

REMOVE, etc are simulated. The benchmark results 

summarize the server’s capability in terms of the number 

of operations that can be processed per second and the 

I/O response time. The client computer generates 100 

LOADs on an Ubuntu8.10 NFS server. 

RUBiS is a prototype that simulates an e-commerce 

server performing auction operations such as selling, 

browsing, and bidding similar to eBay [10]. To run this 

benchmark, each virtual machine on the server has 

installed Apache, MySQL, PHP, and RUBiS client. The 

database is initialized using the sample database provided 

by RUBiS. RUBiS runs with 300 clients and 15 minutes 

running time.  
 

Table 3. Benchmarks used in performance evaluation. 
Name Description 

SysBench OLTP benchmark 

MapReduce Word Counter Hadoop example job 

TPC-C Database server workload 

LoadSim2003 Exchange mail server benchmark 

SPEC sfs NFS file server 
RUBiS e-Commerce web server workload 

 

Table 4. Characteristics of benchmarks. 
 # of 

Read 
# of 
Write 

Avg.  
Read Len 

Avg.  
Write Len 

Data 
Size  

VM 
RAM  

SysBench 619K 236K 6656B 7680B 960MB 256MB 

Hadoop 241K 62K 20992B 101376B 4.4GB 512MB 

TPC-C 339K 156K 13312B 10752B 1.2GB 256MB 

LoadSim 4329K 704K 12288B 11776B 17.5GB 512MB 

SPEC-sfs 64K 715K 6144B 17408B 10GB 512MB 

RUBiS 799K 7K 4608B 20480B 1.8GB 256MB 

TPC-C 
5VMs 

256K 153K 23552B 23040B 5.2GB 256MB 

RUBiS 
5VMs 

3396K 52K 5632B 25088B 10GB 256MB 
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5. Numerical Results and Evaluations 

5.1 Performance 
Our first experiment is on SysBench. Figure 6(a) 

shows the transaction rate results of SysBench running on 

the 5 different storage architectures. We allocated 128MB 

SSD space for I-CASH, LRU, and Dedup and the rest is 

stored in the HDD. It is interesting to observe from 

Figure 6(a) that I-CASH is able to finish more 

transactions per second than Fusion-io even though 

Fusion-io stores the entire data set in the SSD. Both LRU 

and DeDup provide better performance than RAID0 

because of data locality that exists in this benchmark. 

Among all these storage architectures, I-CASH performs 

the best showing 2.24x faster than RAID0, 9% better than 

LRU, and 18% faster than DeDup.  
 

 
(a)                                         (b) 

Figure 6. SysBench transaction rate and CPU utilization. 
 

 
Figure 7. Response time of SysBench. 

 

To better understand why I-CASH performs better 

than Fusion-io that stores the entire dataset in the SSD, 

we took a close look at how the two systems work by 

collecting more I/O statistics. Experiments showed that 

the percentages of reference blocks, delta blocks, and 

independent blocks are 1%, 85%, and 14%, respectively. 

That is, I-CASH is able to find 85% of data blocks that 

are similar in contents to 1% of reference blocks stored in 

the SSD and is able to cache all delta blocks within 

32MB RAM. In addition, write operations to SSD are 

inevitable in Fusion-io whereas I-CASH seldom performs 

online writes to SSD because reference blocks stored in 

the SSD are relatively stable.  

In order to further investigate the I/O behaviors of the 

systems, we measured the average response times for 

read I/Os and write I/Os while running the SysBench on 

the 5 different architectures as shown in Figure 7.  

Intuitively, the I/O response times of I-CASH should be 

longer than the first baseline system because of the 

additional computation time for compression/ 

decompression. However, Figure 7 shows that the 

average read time of I-CASH is half of that of Fusion-io 

and the average write time of I-CASH is more than 10 

times faster than that of Fusion-io. Although such 

speedups are counter intuitive, careful analysis of the two 

systems makes it easily understandable. First of all, recall 

that only 1% of data blocks are reference blocks that are 

stored in SSD in I-CASH system. This means I-CASH 

accesses only 10MB SSD very frequently with mostly 

read I/Os while Fusion-io needs to access 1GB SSD with 

both read and write I/Os. Secondly, the most time 

consuming part of processing a write request is 

compression which can be done in parallel with I/O 

processing. It is observed that the time difference of 

accessing 4KB block between randomly accessing a 

10MB file and randomly accessing 1GB file on Fusion-io 

is about 15μs. By keeping Fusion-io working at its peak 

speed, I-CASH is able to get average read response time 

of 18μs including 10μs decompression time. We further 

measured the average I/O times of Fusion-io with 

asynchronous writes and the results are similar to Figure 

7 although write time is smaller but read time is larger. 

Most performance gains of the I-CACH come from 

substituting disk I/Os by high speed computations. One 

obvious question is how much computation overhead that 

I-CASH incurs during I/O operations. Such computation 

overheads compete with normal applications that run on 

the same host CPU. We measured the CPU utilizations of 

the 5 storage systems while running the benchmarks. 

These CPU utilizations are shown in Figure 6(b). It was 

observed that the additional CPU busy time due to I-

CASH algorithm is manageable. The CPU utilizations of 

all 5 systems are about the same with the difference less 

than 4%.  
 

 
(a)                                       (b) 

Figure 8. Hadoop performance and CPU utilization. 

 

 
Figure 9. Response time of Hadoop. 

 

The measured Hadoop execution times are shown in 

Figure 8(a) for the five different storage systems. It is 

clear from this figure that I-CASH out-performed all 

other baseline systems with speedups ranging from 1.3 to 

1.8. For an I/O bound application, I-CASH clearly 
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showed superb performance advantages over the baseline 

systems. In this experiment, I-CASH uses 512MB SSD, 

which is about one-tenth of the total data set.  The 

memory footprint to cache deltas is 256MB which is less 

than the memory requirement of Fusion-io driver. This 

required RAM cache size is expected to become smaller 

with further optimization of the delta compression 

algorithm. Figure 9 shows the detailed read and write 

response times measured at block I/O level. I-CASH has 

much shorter response time than other systems. The 

baseline system writes many modified data blocks to SSD, 

giving rise to large write response time due to slow SSD 

writes and possible erasure operations. Similar to 

previous experiments, the additional computation 

overhead of I-CASH is within a few percents as shown in 

Figure 8(b) except for RAID system that uses much less 

CPU resources than other systems.  

Measured TPC-C results of the 5 different storage 

systems are shown in Figures 10(a) and 11 in terms of 

transaction rate and average application level response 

time, respectively. In this benchmark, clients commit 

small transactions frequently generating a large amount 

of write requests. As a result, I-CASH is able to improve 

the application level response time by 64% and 81% over 

Fusion-io and RAID0, respectively as shown in Figure 11. 

The fast write performance of I-CASH helps to reduce 

the total response time seen from application level. 

However, the actual speedup at application level depends 

on the fraction of the I/O time in the total execution time. 

Figure 10(a) shows that I-CASH can process 14% and 45% 

more transactions per minute than Fusion-io and RAID0, 

respectively.  We noticed that RAID0 performs poorly 

because of a large amount of random and small 

transactions.  
 

 
(a)                                         (b) 

Figure 10. TPC-C performance and CPU utilization. 
 

 
Figure 11. TPC-C RSP time.  Figure 12. LoadSim score. 

 

Figure 12 shows the measured LoadSim results in 

terms of score which is calculated based on response time. 

The Exchange Server database in our experiment is set to 

16GB and I-CASH is configured to use 1GB SSD and the 

delta buffer of 256MB. From Figure 12 we can see that I-

CASH is 2.4x faster than RAID0 but about 20% slower 

than Fusion-io. We noticed that I-CASH uses 1GB SSD 

implying that I-CASH can greatly improve the 

performance of the Exchange Server running on RAID 

with a small SSD device. Fusion-io is faster in this case 

because the workload generated by LoadSim is almost 

100% random with little data locality. However, I-CASH 

is able to catch content locality and therefore performs 

much better than LRU and dedup caches as shown in 

Figure 12.  

Figure 13 plots the measured response time while 

running SPEC sfs benchmark. I-CASH is configured to 

use 1GB SSD with 128MB RAM delta buffer. From this 

figure we can see that I-CASH performs as well as 

Fusion-io while using only one-tenth of the SSD space.  

As shown in Table 4, SPEC sfs is a write intensive 

benchmark. For Dedup cache, changing a block that is 

shared by several other identical blocks results in a new 

copy of data so that write performance is slowed down. 

The reduction of the response time of I-CASH over 

Dedup is 28% because I-CASH is able to exploit the 

content similarity between the new data and the old data 

to store only the changed data in small deltas. 
 

  
Figure 13. SPEC-sfs RSP time. Figure 14. RUBiS request rate. 

 

RUBiS benchmark results are shown in Figure 14 in 

terms of number of requests finished per second. In this 

experiment, I-CASH uses 128MB SSD and 32MB delta 

buffer. As shown in Figure 14, I-CASH is 1.5x faster than 

RAID0 while 10% slower than baseline Fusion-io.  

Recall that over 90% of the requests are read requests 

(Table 4) in this benchmark, which limits the write 

performance advantage of I-CASH over Fusion-io. The 

major speedups of I-CASH over LRU and Dedup, which 

are 1.04 and 1.29, respectively, come from the capability 

of storing more data in the SSD to reduce disk accesses. 

The results show that the online similarity detection of I-

CASH is effective under read intensive workloads. It is 

also observed that LRU cache is faster than Dedup 

though Dedup can store more data in the SSD. This is 

because the cost of dedup has overweighed the gain of 

extra SSD capacity in this case.  

As discussed in Section 2, widespread use of virtual 

machines create additional burden to disk I/O systems. It 

is common to setup several similar virtual machines on 
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the same physical machine to run multiple services. Fast 

I/O performance becomes more important when multiple 

virtual machines compete for I/O resources. To evaluate 

how I-CASH performs in such virtual machine 

environment, we carried out experiments on multiple 

virtual machines. On each virtual machine, a distinct data 

set and benchmark parameters are used. The five TPC-C 

virtual machines use 1 to 5 warehouses, respectively. The 

five RUBiS machines use 20 to 24 items per page, 

respectively. I-CASH uses 512MB SSD and 512MB 

RAM for delta blocks for both benchmarks.  

Figures 15 and 16 show the normalized performances 

of running TPC-C and RUBiS on multiple virtual 

machines, respectively. The performance advantage of I-

CASH is clearly shown in these figures compared with 

the other four baseline systems. When the five virtual 

machines are running TPC-C benchmarks concurrently 

with different data sets, I-CASH provides 2.8x speedup 

over the baseline Fusion-io and over 5x to 6x speedup 

over the other three baseline systems. For RUBiS 

benchmark, the performance improvements are 20%, 6x, 

4x, and 4x over baseline Fusion-io, RAID, Dedup, and 

LRU cache, respectively. Fusion-io performs fairly well 

for RUBiS benchmark as shown in Figure 16 because 

RUBiS is read intensive workload.  
 

  
Figure 15. Five TPC-C VMs. Figure 16. Five RUBiS VMs. 

5.2 Power Efficiency 
Table 5 lists the energy consumption measured using 

a power meter (Electricity Usage Monitor) which can 

record power usage accumulatively while a benchmark is 

running. The power meter is connected to the power 

supply of the PC server and therefore the measured power 

consumption includes energy consumed by CPU, 

memory, and I/O operations. Since measuring energy 

consumption involves open the server box and 

reconnecting power supply and the power meter, we 

measured only two benchmarks as listed in Table 5. The 

numbers in Table 5 were calculated as follows. We first 

subtract the power consumption level when system is idle 

from the power consumption level while benchmarks are 

running. The difference is then multiplied by the 

benchmark running time resulting in Walt-Hours.  RAID0 

has 4 disks, 15 Walts each, and consumed 240% more 

energy than I-CASH for Hadoop benchmark and 150% 

more for TPC-C benchmark. Fusion-io (including the 

system disk), LRU, and Dedup use the same hardware as 

I-CASH but took longer time to finish the same Hadoop 

job resulting in more energy consumption. The energy 

saving of I-CASH also comes from less write requests to 

the SSD given that each 4KB read and write operation 

consumes 9.5μJ and 76.1μJ [47]. I-CASH saved about 12% 

energy compared to baseline Fusion-io running Hadoop. 

For TPC-C benchmark, the power consumptions of the 4 

systems are comparable as shown in the table. The  power 

savings compared to RAID are mainly attributed to the 

use of SSD as opposed to multiple HDDs. 
 

Table 5. Power consumption in terms of Walt-hours. 
 Hadoop TPC-C 

Fusion-io 8 11 

RAID 24 28 

Dedup 10 11 

LRU 10 12 

I-CASH 7 11 

5.3 Prolonged SSD Life Time 
Finally, we measured the number of write I/Os 

performed on SSD of the 5 different storage systems. 

Only four benchmarks with a large percentage of write 

I/Os are measured as shown in Table 6.  Recall that our 

preliminary prototype does not strictly disallow random 

writes to SSD. For blocks that have deltas larger than the 

threshold value (2048 byte in the current implementation), 

the new data are written directly to the SSD to release 

delta buffer. Nevertheless, random writes to SSD are still 

substantially smaller than LRU and DeDup baseline 

systems. For SysBench, Hadoop, and TPC-C, I-CASH 

performs much less write I/Os to SSD than the baseline 

Fusion-io does. For benchmark SPEC sfs, the write 

operations in SSD of the two systems are comparable. 

The write I/O reductions of I-CASH imply prolonged life 

time of the SSD as discussed previously. 
 

Table6. Number of write requests on SSD. 
 SysBench Hadoop TPC-C SPEC sfs 

Fusion-io 893,700 2,540,124 1,173,741  5,752,436  

Dedup 1,419,023 3,082,196 1,963,988  5,559,698  

LRU 1,494,220 3,469,785  2,051,511  5,514,935  

I-CASH 232,452 1,521,399     359,919    5,096,890  

6. Conclusions 
In this paper, a novel disk I/O architecture has been 

presented to exploit the high random access speed of 

flash memory SSDs. The idea of the new disk I/O 

architecture is intelligently coupling an array of SSD and 

HDD, referred to as I-CASH, in such a way that read I/Os 

are done mostly in SSD and write I/Os are done in HDD 

in batches by packing deltas with respect to the reference 

blocks stored in the SSD. By making use of the 

computing power of CPU and exploiting regularity and 

content locality of I/O data blocks, I-CASH achieved 

high I/O performance. Many I/O operations that would 

have been mechanical operations in HDDs are now 

replaced by high speed computations and SSD reads. A 

preliminary prototype of I-CASH has been built on Linux 

OS to provide a proof-of-concept of I-CASH. 
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Performance evaluation experiments using standard I/O 

benchmarks have shown great performance 

improvements over RAID0 and traditional systems using 

SSD as a storage cache.  In some cases, I-CASH even 

performs better than SSD only storage that stores the 

entire data set with no HDD. As a future research, we are 

building a hardware prototype using an embedded 

processor in order to fully realize the performance 

potential of I-CASH.  
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