
1

 I-CASH: Intelligently Coupled Array of SSD and HDD

Jin Ren and Qing Yang

Dept. of Electrical, Computer, and Biomedical Engineering

University of Rhode Island, Kingston, RI 02881

(rjin,qyang)@ele.uri.edu

Abstract

This paper presents a new disk I/O architecture

composed of an array of a flash memory SSD (solid state

disk) and a hard disk drive (HDD) that are intelligently

coupled by a special algorithm. We call this architecture

I-CASH: Intelligently Coupled Array of SSD and HDD.

The SSD stores seldom-changed and mostly read

reference data blocks whereas the HDD stores a log of

deltas between currently accessed I/O blocks and their

corresponding reference blocks in the SSD so that

random writes are not performed in SSD during online

I/O operations. High speed delta compression and

similarity detection algorithms are developed to control

the pair of SSD and HDD. The idea is to exploit the fast

read performance of SSDs and the high speed

computation of modern multi-core CPUs to replace and

substitute, to a great extent, the mechanical operations of

HDDs. At the same time, we avoid runtime SSD writes

that are slow and wearing. An experimental prototype I-

CASH has been implemented and is used to evaluate I-

CASH performance as compared to existing SSD/HDD

I/O architectures. Numerical results on standard

benchmarks show that I-CASH reduces the average I/O

response time by an order of magnitude compared to

existing disk I/O architectures such as RAID and

SSD/HDD storage hierarchy, and provides up to 2.8

speedup over state-of-the-art pure SSD storage.

Furthermore, I-CASH reduces random writes to SSD

implying reduced wearing and prolonged life time of the

SSD.

1. Introduction
While storage capacity and CPU processing power

have experienced rapid growth in the past, improvement

in data bandwidth and access times of disk I/O systems

have not kept pace. As a result, there is an ever widening

speed gap between CPUs and disk I/O systems. Disk

arrays can improve overall I/O throughput [39] but

random access latency is still very high because of

mechanical operations involved. Large buffers and deep

cache hierarchy can improve latency but the access time

reduction they provide has been very limited because of

poor data locality at the disk I/O level [22, 52, 54].

This paper presents a new disk I/O architecture that

exploits the advancement of flash memory SSD (solid

state disks) and multi-core processors. The new disk I/O

architecture is referred to as I-CASH: Intelligently

Coupled Array of SSD and HDD. The main idea of our I-

CASH architecture is very simple. Each storage element

in the I-CASH consists of an SSD and an HDD that are

coupled by an intelligent algorithm. The SSD stores

seldom changed and mostly read data called reference

blocks and the HDD stores a log of deltas (or patches) of

data blocks of active I/Os with respect to reference data

blocks stored in the SSD. The intelligent algorithm

performs similarity detection, delta derivations upon I/O

writes, combining delta with reference blocks upon I/O

reads, and other necessary functions for interfacing the

storage to the host OS. I-CASH tries to take full

advantages of three different technologies: 1) fast read

performance of SSD, 2) high computing power of multi-

core processor, and 3) reliable/durable/sequential write

performance of HDD. Because of strong regularity and

content locality that exist in data blocks [19, 29, 50] , a

hard disk block can contain a log of potentially large

number of small deltas with respect to reference blocks.

As a result, one HDD operation accomplishes multiple

I/Os and hence I-CASH improves disk I/O performance

greatly by trading high speed computation of multi core

CPUs for low access latency of HDD. In addition,

random writes in flash SSD are minimized giving rise to

longer life time of SSD.

A preliminary prototype I-CASH has been built on the

Linux operating system. Standard benchmarks have been

run on the prototype to measure the disk I/O performance

of I-CASH as compared to existing disk I/O architectures

such as RAID0, Fusion-io [16], and LRU SSD cache on

top of a disk. Numerical results show that I-CASH

reduces the number of HDD operations drastically. The

overall I/O speedups over RAID0 range from 1.2 to 7.5.

Running our prototype on top of the state-of-the-art SSD

storage, I-CASH provides up to 2.8 speedup for certain

workloads while using one-tenth of SSD space.

The rest of the paper is organized as follows. Next

section gives the background and related work. Section 3

describes the I-CASH architecture and design issues. We

discuss our prototype implementation and evaluation

methodology in Section 4 followed by numerical results

and performance evaluations in Section 5. Section 6

concludes the paper.

2. Background and Motivations

2.1 Flash Memory SSD Technology
Recent developments of flash memory SSDs have

been very promising with rapid increase in capacity and

2

decrease in cost [24, 40]. Because SSD is on a semi-

conductor chip, it provides great advantages in terms of

high speed random reads, low power consumption,

compact size, and shock resistance. Researchers in both

academia and industry have been very enthusiastic in

adopting this technology [1, 5, 14, 24, 30, 51]. However,

most existing research in SSD focused on either using

SSD in the similar way to hard disk drives (HDD) with

various management algorithms at files system level [23]

and device level [5] , or using SSD as an additional cache

in the storage hierarchy [24, 30, 36, 40]. We believe that

both approaches have limitations because of the physical

properties of SSDs.

To understand why simple adoption of SSD has

limitations, let us take a close look at the physical

properties of a NAND-gate flash memory that is widely

used in SSDs. A typical NAND-gate array flash memory

chip consists of a number of blocks each of which

contains a number of pages. Block with size ranging from

tens of KB to MB is the smallest erasable units whereas

pages with size ranging from 512B to 16KB are the

smallest programmable units. When a write operation is

performed, it needs to first find a free page to write. If

there is no free page available, an erase operation is

necessary to make free pages. Read and write operations

usually take tens of microseconds, whereas an erase

operation takes 1.5 to 3 milliseconds. Besides

performance consideration, the lifetime of the flash

memory is limited by the number of erase operations

performed on a block. Typically, a block can be erased

for only 10k times (for multi level cell: MLC) or 100k

times (for single level cell: SLC). After that, the block

becomes bad [25]. To make the lifetime of a flash

memory longer, wear leveling is typically done by

distributing erase operations evenly across all blocks.

Recent studies have shown that manufacturers’

specifications about SSD lifetime are conservative [6, 18,

34], but reliablity is still one of the major concerns when

using SSD as a high data throughput storage device.

To tackle the write issues in SSD, researchers have

recently proposed techniques such as hiding erasure

latencies and wear leveling at file system level [23], using

a log disk as a disk cache to cache data blocks to be

written [46], and leveraging phase change random access

memory (PRAM) to implement log region [47].

However, none of the existing works on SSD has made

attempt to exploit the content locality that exists in disk

I/O accesses as discussed next.

2.2 Content Locality
Researchers in computer systems have long observed

the strong regularity and content locality that exist in

memory pages. Memory pages contain data structures,

numbers, pointers, and programs that process data in a

predefined way. Such strong regularity and content-

locality have been successfully exploited for in-memory

data compression [15, 48]. Large files and collections of

files also show strong content locality with large amount

of data redundancy that can be eliminated by efficient

compression algorithms [29, 41]. Data deduplication

reduces storage space and disk accesses by keeping a

single copy for identical blocks [11, 13, 26, 28, 49, 55].

Researchers have recently proposed efficient methods of

identifying duplicate data during backup process. One

example is the technique based on RAM prefetching and

bloom-filter [55] with close to 99% hit ratio for index

lookups. Another example is ChunkStash [13] that uses

flash memory to store chunk metadata to further improve

backup throughput. Content locality also been exploited

in processor designs for instruction reuse and value

prediction [9, 17, 21, 32, 44-45].

Besides duplications or identical blocks that exist in

data storage, there are many data blocks that are very

similar among each other. Delta encoding has been

successfully used to eliminate redundancy of one object

relative to another [2, 8] , suggesting that many data

blocks can be represented as small patches/deltas with

respect to reference blocks. Furthermore, recent research

literature has reported strong content locality in many

data intensive applications with only 5% to 20% of bits

inside a data block being actually changed on a typical

block write operation [35, 53]. Effectively exploring such

content locality of both identical and similar blocks can

maximize disk I/O performance.

In addition to the strong regularity and content locality

inherent in block data, virtual machines provide us with

additional opportunities for content locality. The

emerging cloud computing requires hundreds, even

thousands, of virtual machines running on servers and

clients [31, 42]. Such widespread use of virtual machines

creates a problem of virtual machine image sprawl [42]

where each virtual machine needs to store the entire stack

of software and data as a disk image. These disk images

contain a large amount of redundant data as observed

previously by researchers [37-38, 43]. Gupta et al have

recently presented a powerful Difference Engine [19] that

has successfully exploited such content locality to

perform memory page compression with substantial

performance gains. This strong content locality suggests

again the possibility of organizing data differently in data

storage to obtain optimal performance.

3. I-CASH Architecture
Motivated by the developments of SSDs and multi-

core CPUs, coupled with regularity and content locality

of disk I/Os, we come up with the I-CASH architecture

constructed using a pair of SSD and HDD intelligently

coupled by a special algorithm as shown in Figure 1. The

idea is turning the traditional thinking by 90
o
. Instead of

having a vertical storage hierarchy with an SSD on top of

an HDD, I-CASH arranges SSD and HDD horizontally to

store different types of data blocks. The SSD stores

3

mostly read data called reference blocks and the HDD

stores a log of deltas called delta blocks. A delta in a delta

block is derived at run time representing the difference

between the data block of an active disk I/O operation

and its corresponding reference block stored in the SSD.

Upon an I/O write, I-CASH identifies its corresponding

reference block in the SSD and computes the delta with

respect to the reference block as shown in Figure 1b.

Upon an I/O read, the data block is returned by

combining the delta with its corresponding reference

block as shown in Figure 1c. Since deltas are small due

to data blocks’ regularity and content locality, we store

them in a compact form so that one HDD operation yields

many I/Os. The goal here is to convert the majority of

I/Os from the traditional seek-rotation-transfer I/O

operations on HDD to I/O operations involving mainly

SSD reads and computations. The former takes tens of

milliseconds whereas the latter takes tens of

microseconds. As a result, the SSD in I-CASH is not

another level of storage cache but an integral part of the I-

CASH architecture. Because of 1) high speed read

performance of reference blocks stored in SSDs, 2)

potentially large number of small deltas packed in one

delta block stored in HDD and cached in the RAM, and 3)

high performance CPU coupling the two, I-CASH is

expected to improve disk I/O performance greatly. In the

following subsections, we will discuss the key design

issues of I-CASH.

Figure 1. Block diagram of the I-CASH architecture.

3.1 Delta Packing and Unpacking
One critical issue to the success of the I-CASH

architecture is whether or not we are able to pack and

unpack a batch of deltas in a short time frame so that one

HDD operation generates many deltas that can be

combined with reference blocks in SSD to satisfy the

host’s I/O requests. Let LBAi, LBAi+1 … LBAj, (j>i) be a

set of addresses of a sequence of write I/Os from the host

in a predefined window. Suppose we derived deltas of

these I/Os with respect to their corresponding reference

blocks in SSD and packed them in a delta block stored in

HDD. The question is: when an I/O request with one of

the addresses in the above window, LBAk (i <= k <= j),

appears in subsequent IOs, can we find a set of I/O

requests immediately following LBAk with address LBAh

(i <= h <= j)? If we can, how many such I/Os can we

find and what is the time frame length containing these

I/Os? The number of LBAh’s appeared in the time frame

implies potential number of I/Os served by one HDD

access. For a given number of such LBAh’s, the length of

the time frame containing them determines how long

these data blocks need to stay in the DRAM buffer of the

I-CASH controller. Therefore, these parameters are very

important in our design of the I-CASH architecture. The

following examples show how such I/O patterns exist in

real applications.

The first case is that all I/O operations that can take

advantage of parallel disk arrays can take advantages of I-

CASH. RAID was designed to boost I/O performance

through parallelism in addition to fault tolerance. To

achieve high throughput in RAID system, disk IOs form

data stripes across parallel disks with each disk storing

one chunk of data in a stripe. With I-CASH, subsequent

changes to these data chunks in a stripe can be

compressed using the original data of the stripe as

reference blocks stored in SSD. The deltas representing

such changes on the stripe can be packed together in one

delta block. For example, I-CASH can pack deltas of all

sequential I/Os into one delta block. Upon read

operations of these sequential data blocks, one HDD

operation serves all the I/O requests in the sequence.

After the HDD operation that is the most time consuming

part (in the order of milliseconds), what is left is only

operations on semiconductors. The high speed

decompression algorithm takes only a few to tens of

microseconds to combine the deltas with their

corresponding reference blocks that are read from the

SSD to satisfy these I/Os.

The second case is the widespread use of virtual

machines. As virtual machines are being created, disk

images for the virtual machines are made to store

software stack and data. The difference between data

blocks of a virtual machine image and the data blocks of

the native machine are very small and therefore it makes

sense to store only the difference/delta between the two

instead of storing the entire image. The pairing between a

delta and its reference block is clear and should be the

data block of the native machine and its exact image of

the virtual machine. At the time when virtual machines

are created, I-CASH compares each data block of a

virtual machine image with the corresponding block of

the native machine, derives deltas representing the

differences of the image blocks from the native machine

blocks, and packs the deltas into delta blocks to be stored

in HDD. Future I/Os are served by combining deltas with

their corresponding reference blocks in SSD, which

mainly involves SSD reads and computations with

minimal HDD operations.

The third case is the temporal locality and partial

determinism behavior of general non sequential IOs

observed by prior researchers [4]. Prior experiments have

shown that strong temporal locality exists in disk I/Os

and besides sequential accesses to a portion of files,

fragments of block access sequence repeat frequently. In

(a)

Write

Ref

I-CASH Controller

SSD Disk

Reference Delta

SSD

I-CASH

Disk

HOST

Read

Ref

SSD

I-CASH

Disk

HOST

(b) (c)

4

many applications such as office, developer workstations,

version control servers, and web servers, there are a large

number of read IOs that occur repeatedly and only 4.5-

22.3% of the file system data were accessed over a week.

Such repetitive and determinism behavior can be

exploited to take full advantages of I-CASH architecture.

3.2 Possible Implementations of I-CASH
I-CASH can be implemented in several different ways.

The first and the most efficient implementation is to

embed the I-CASH architecture inside the controller

board of an HDD or an HBA card (host bus adaptor). The

controller board will have added NAND-gate flash SSD,

an embedded processor, and a small DRAM buffer in

addition to the existing disk control hardware and

interface. Figure 2(a) shows the block diagram for the

implementation of the I-CASH inside the controller. Host

system is connected to the controller using a standard

interface such as PCIe, SCSI, SATA, SAS, PATA, iSCSI,

FC, and etc. An SSD in form of flash memory chip or

SSD drive is used to store reference blocks. The

embedded processing element performs the I-CASH logic

such as delta derivation, similarity detection, combining

delta with reference blocks, managing reference blocks,

managing metadata, etc. The RAM cache stores

temporarily deltas and data blocks for active I/O

operations. The controller is connected to an HDD in any

of the conventional interfaces.

Figure 2. I-CASH implementations.

While the above hardware implementations inside a

disk controller or HBA card can provide great

performance benefits, they require purpose-built

hardware. Another possible implementation is a software

approach using commodity hardware. Figure 2(b) shows

the block diagram of one software implementation of I-

CASH in which a software module at the block device

level controls standard off-the-shelf SSD and HDD. The

software is running entirely on the host CPU with a part

of the system RAM as a cache to temporarily buffer delta

and data blocks. The software solution is easy to

implement without requiring changes on the hardware but

it consumes system resources such as CPU, RAM, and

system bus for the necessary functionality of I-CASH. In

addition, software implementation is OS dependent and

requires different designs and implementations for

different operating systems. However, with the rapid

advances in multi core chip multiprocessors (CMP),

computation power in today’s servers and workstations is

abundant. Trading such high performance and low cost

computation for better I/O performance is a cost-effective

and attractive solution to many applications.

3.3 Data Reliability and Recovery
I-CASH uses a DRAM buffer to store temporarily

data blocks and delta blocks that are accessed by host I/O

requests. In addition, data and changes are stored

separately and a sector contains many deltas. As a result,

data reliability and recovery become a concern. This issue

can be addressed in two ways besides depending on lower

level redundancy. First, dirty delta and metadata are

flushed to disk periodically. There is a tradeoff here. For

reliability purposes, we would like to perform write to

HDD as soon as possible whereas for performance

purposes we would like to pack as many deltas in one

block as possible. The flush interval is a tunable

parameter based on the number of dirty delta blocks in

the system. The second approach is to employ a simple

log structure similar to prior researches [4, 20, 46]. For

data recovery after a failure, I-CASH can recover data by

combining reference blocks with deltas unrolled from the

delta logs in the HDD.

4. Prototype and Evaluation
Methodology

4.1 Prototype Implementation
We have developed a proof-of-concept prototype of I-

CASH using Kernel Virtual Machine (KVM). The

prototype represents the realization of our I-CASH design

using a software module and off-the-shelf hardware

components. The functions that the prototype has

implemented include identifying reference blocks,

deriving deltas for write I/Os, serving read I/Os by

combining deltas with reference blocks, and managing

interactions between SSD and HDD. The current

prototype carries out the necessary computations using

the host CPU and uses a part of system RAM as the

DRAM buffer of the I-CASH (The program is available

at ele.uri.edu/hpcl).

Figure 3. Prototype implementation of I-CASH.

The software module is implemented in the virtual

machine monitor as shown in Figure 3. The I/O function

HDD

Flash
MEM

RAM
Embedded
Processor

HOST Interface

HDD Interface

HOST

Controller

HOST to Disk
Connection

Controller to HDD
Connection

(a)

HDD

Block Level
Device Driver

Application

File System

Part of
HOST RAM

HOST

SSD

Bus to SSD
Connection

Bus to HDD
Connection

System Bus

(b)

App

OS

Guest Machine

Virtual Disk

QEMU Driver

Linux Kernel (Host)

KVM Module

Hardware

QEMU App

Host App

I-CASH

5

of the KVM depends on QEMU [3] that is able to

emulate many virtual devices including virtual disk drive.

The QEMU driver in a guest virtual machine captures

disk I/O requests and passes them to the KVM kernel

module. The KVM kernel module then forwards the

requests to QEMU application and returns the results to

the virtual machine after the requests are complete. The

I/O requests captured by the QEMU driver are block-

level requests of the guest virtual machine. Each of these

requests contains the virtual disk address and data length.

I-CASH is implemented within the QEMU application

module and is therefore able to catch the virtual disk

address and the length of an I/O request. The most

significant byte of the 64-bit virtual disk address is used

as the identifier of the virtual machine so that the requests

from different virtual machines can be managed in one

queue.

4.2 Program Structure and Data Layouts
In order to select reference blocks, we need to

determine and keep track of both access frequency and

content signature of a data block. For this purpose, each

block is divided into S sub-blocks. A sub-signature is

calculated for each of the S sub-blocks. A special two

dimensional array, called Heatmap, is maintained in our

design. The Heatmap has S rows and Vs columns, where

Vs is the total number of possible signature values for a

sub-block. For example, if the sub-signature is 8 bits, Vs

= 256. Each entry in the Heatmap keeps a popularity

value that is defined as the number of accesses of the sub-

block matching the corresponding signature value. As an

example, consider Figure 4 that shows the 8×256

Heatmap. In this example, each data block is divided into

8 sub-blocks and has 8 corresponding signature values.

When a block is accessed with sub-block signatures being

55, 00, and so on as shown in Figure 4, the popularity

value corresponding to column number 55 of the 1
st
 row

is incremented. Similarly, column number 0 of second

row is also incremented. In this way, Heatmap keeps

popularity values of all sub-signatures of sub-blocks.

Figure 4.Sub-signatures and the Heatmap.

To illustrate how Heatmap is organized and

maintained as I/O requests are issued, consider a simple

example where each cache block is divided into 2 sub-

blocks and each sub-signature has only four possible

values, i.e. Vs = 4. The Heatmap of this example is

shown in Table 1 for a sequence of I/O requests accessing

data blocks at addresses LBA1, LBA2, LBA3, and LBA4,

respectively. Assume that all possible contents of sub-

blocks are A, B, C, and D and their corresponding

signatures are a, b, c, and d, respectively. The Heatmap in

this case contains 2 rows corresponding to 2 sub-blocks

of each data block and 4 columns corresponding to 4

possible signature values. As shown in this table, all

entries of the Heatmap are initialized to {(0, 0, 0, 0), (0, 0,

0, 0)}. Whenever a block is accessed, the popularities of

corresponding sub-signatures in the Heatmap are

incremented. For instance, the first block has logical

block address (LBA) of LBA1 with content (A, B) and

signatures (a, b). As a result of the I/O request, two

popularity values in the Heatmap are incremented

corresponding to the two sub-signatures, and the Heatmap

becomes {(1, 0, 0, 0), (0, 1, 0, 0)} as shown in Table 1.

After 4 requests, the Heatmap becomes {(2, 1, 1, 0), (0, 1,

0, 3)}.

Table 1. The buildup of heatmap. Each block has 2 sub-blocks

represented by 2 sub-signatures each having 4 possible values Vs=4.
I/O

sequence

Content Signature Heatmap[0]

a b c d

Heatmap[1]

a b c d

 Initialized 0 0 0 0 0 0 0 0

LBA1 A B a b 1 0 0 0 0 1 0 0

LBA2 C D c d 1 0 1 0 0 1 0 1

LBA3 A D a d 2 0 1 0 0 1 0 2

LBA4 B D b d 2 1 1 0 0 1 0 3

In our current design, the size of a cache block is fixed

at 4 KB. Each 4KB block is divided into 8 512-bytes sub-

blocks resulting in 8 sub-signatures to represent the

content of a block. Unlike many existing content

addressable storage systems, each sub-signature is 1 byte

representing the sum of 4 bytes in a sub-block at offsets 0,

16, 32, and 64, respectively. In this way, the computation

overhead is substantially reduced compared with hash

value computation of the whole sub-block. What is more

important is that our objective is to find the similarity

rather than identical blocks. Hashing is efficient to detect

identical blocks, but it also lowers the chance of finding

similarity because a single byte change results in a totally

different hash value. Therefore, additional computation of

hashing does not help in finding more similarities.

With 4KB blocks, 512B sub-blocks, and 8 bits sub-

signature for each sub-block, we have Heatmap with 8

rows corresponding to 8 sub-blocks and 256 columns to

hold all possible signatures that a sub-block can have.

Each time a block is read or written, its 8 1-byte sub-

signatures are retrieved and the 8 popularity values of

corresponding entries in the Heatmap are increased by

one. This frequency spectrum of contents is the key to

identify reference blocks. It is able to capture both the

temporal locality and the content locality. If a block is

accessed twice, the increase of corresponding popularity

value in the Heatmap reflects the temporal locality. On

the other hand, if two similar blocks with different

addresses are accessed once each, the Heatmap can catch

55

00

...

...

...

...

...

...

Signature 00 ... 55 ... FF

Popularity i++

Signature 00 FF

Popularity j++

Heatmap[0][256]

Heatmap[1][256]

Signature 00 FF

Popularity

Heatmap[7][256]

8
 s

u
b

-s
ig

n
at

u
re

s
fo

r
a

b
lo

ck

6

the content locality since the popularity values are

incremented at entries that have matched signatures.

Similarity detection to identify reference blocks is

done in two separate cases in the prototype

implementation. The first case is when a block is first

loaded, I-CASH searches for the same virtual address

among the existing blocks in the cache. The second case

is periodical scanning after every 2,000 I/Os. At each

scanning phase, I-CASH checks the 4,000 blocks from

the beginning of an LRU queue to find the blocks with

the most frequently accessed signatures as references.

The other blocks of these 4,000 blocks are compared with

references. The association between newly found

reference blocks and their respective delta blocks is

reorganized at the end of each scanning phase.

Table 2. Selection of a reference block. The popularities of all blocks
are calculated according to the Heatmap of Table 1.

LBAs Block Popularity LRU Reference

 A B C D A D B D

LBA1 A B 2+1 = 3 A B A B A B _ B A B
LBA2 C D 1+3 = 4 C D C D C D C _ C _
LBA3 A D 2+3 = 5 A D _ D A _ A D A _
LBA4 B D 1+3 = 4 B D B D B _ B _ B D
 Cache space 4 3.5 3 2.5 3

Table 2 shows the calculation of popularity values and

the cache space consumption using different choices of

reference block for the example of Table 1. The

popularity value of a data block is the sum of all its sub-

block popularity values in the Heatmap. As shown in the

table, the most popular block here is the data block at

address LBA3 with content (A, D) and its popularity value

is 5. Therefore, block (A, D) should be chosen as the

reference block. Once the reference block is selected,

delta-coding is used to eliminate data redundancy. The

result shows that using the most popular block (A, D) as

the reference, cache space usage is minimum, about 2.5

cache blocks assuming perfect delta encoding. Without

considering content locality, a simple LRU would need 4

cache blocks to keep the same hit ratio. The saved space

can be used to cache more data. Figure 5 shows the data

layout after selecting block (A, D) as the reference block.

4.3 Data Management
I-CASH uses an LRU list of virtual blocks to manage

data. Each virtual block contains the LBA address, the

signature, the pointer to the reference block, the pointer to

data block, and the pointer to delta blocks. A virtual block

can be one of three different types: reference block,

associate block, or independent block. An associate block

is a virtual block that is associated with a reference block

together with a delta that is the difference between the

content of the associate block and the reference block. An

independent block is a virtual block that has no associated

reference block in the cache. Delta blocks are managed

using a linked list of 64-bytes segments. A virtual block

can have one or more delta blocks due to (i) this virtual

block refers to a reference block; (ii) this virtual block is

a reference block and has been written since it was

selected as a reference.

When a disk block is accessed the first time and

brought into the cache, a virtual block and a data block

are allocated to cache it. Before this virtual block is

selected as a reference block or associate block, it is an

independent block so that data is read from or written to

its data block. Its signature is updated upon every write

request. Once it is selected as a reference block or

associate block, one or more delta blocks are allocated for

this virtual block. A write request to a virtual block that is

an associate block needs to read its reference block first,

calculate the difference using delta-coding, and write the

difference to the delta block. Read request to an associate

block combines its delta and the reference block to obtain

its data. As a result, a reference block is always ahead of

its associate blocks in the LRU queue because accesses to

its associate blocks also need to access the reference

block. Similarly, write requests to a reference block need

update its delta blocks. But the signature of the block

does not change since its data is being referred. Read

requests to the changed reference block need combine

with its delta block.

Figure 5. The data layout of I-CASH buffer cache.

To manage cached data blocks described above, we

need to consider 3 kinds of replacements. The first is

virtual block replacement when there is no available

virtual block. I-CASH searches from the end of the LRU

queue and replaces the first non-reference block. The

second is data block replacement. I-CASH searches from

the end of LRU queue and replaces the first data block.

The data block of a reference block can also be evicted

indicating that the reference block and its associate blocks

have not been accessed for a long time. The third is delta

replacement which leads to virtual block replacement. I-

CASH searches from the end of the LRU queue, replaces

the first virtual block that has delta and is not a reference.

The data block, if exists, of the replaced virtual block is

released because its content is invalid without delta

blocks.

4.4 Experimental Setup and Workload
Characteristics

The prototype I-CASH is installed on KVM running

on a PC server that is a Dell PowerEdge T410 with

LBA1
(a, b)
LBA2
(c, d)
LBA3
(a, d)
LBA4
(b, d)

B

C

A D

B

Delta

Data blk

Virtual blk

...

7

1.8GHz Xeon CPU, 8GB RAM, and 160G Seagate

SATA drive. This PC server acts as the primary server. A

Fusion-io ioDrive 80G SLC SSD is installed on the

primary server. Another Dell Precision 690 with 1.6GHz

Xeon CPU, 2GB RAM, and 400G Seagate SATA drive is

used as the workload generator. The two servers are

interconnected using a gigabit Ethernet switch. The

operating system on both the primary server and the

workload generator is Ubuntu 9.10 64bit. Multiple virtual

machines, including Ubuntu 8.10, Ubuntu10.04, and

Windows 2003, are built to execute a variety of

benchmarks. The virtual machine RAM size used ranges

from 128MB to 512MB depending on benchmarks as

shown in the last column of Table 4.

In all experiments, the I-CASH software module runs

on the host CPU with a partition of the system RAM to

store delta blocks. The SSD in the I-CASH is the Fusion-

io ioDrive 80G SLC and the HDD is the 160GB Seagate

SATA drive. For performance comparison purpose, four

baseline systems are setup on the same hardware

environment:

1) Fusion-io: The first baseline system is using the

Fusion-io ioDrive 80G SLC as the pure data storage

with no HDD involved. All applications run on this

SSD that stores the entire data set.

2) RAID0: The second baseline is RAID0 with data

striping on 4 SATA disks. Linux MD is used as the

RAID controller.

3) DeDup: The third baseline is data deduplication that

saves only one copy of data in SSD for identical

blocks.

4) LRU: The fourth case is using SSD as an LRU cache

on top of the SATA disk drive.

Except for the first baseline, Fusion-io, that allocates

enough SSD to store all application data, DeDup and

LRU use exactly the same amount of SSD space as I-

CASH which is typically about 10% of the size of data

set for each benchmark.

Right workloads are important for performance

evaluations. It should be noted that evaluating the

performance of I-CASH is unique in the sense that I/O

address traces are not sufficient because deltas are content

dependent. That is, the workload should have data

contents in addition to addresses. We have collected 6

standard I/O benchmarks available to the research

community as shown in Table 3. Table 4 summarizes the

characteristics of these benchmarks.

The first benchmark, SysBench, is a multi-threaded

benchmark tool for evaluating the capability of a system

to run a database under intensive load [27]. SysBench

runs against MySQL database with a table of size

4,000,000, max requests of 100,000, and 16 threads.

Hadoop is currently one of the most important

frameworks for large scale data processing [7]. Two

Ubuntu 10.04 virtual machines are built to form a two-

node Hadoop environment with default settings. The two

virtual machines share one storage system. We measure

the execution time of the MapReduce job, WordCount, to

process the access log of our university website.

TPC-C is a benchmark modeling the operations of

real-time transactions [12]. It simulates the execution of a

set of distributed and on-line transactions (OLTP) on a

number of warehouses. These transactions perform the

basic database operations such as inserts, deletes, updates

and so on. TPCC-UVA [33] is used on the Postgres

database with 5 warehouses, 10 clients for each

warehouse, and 30 minutes running time.

LoadSim2003 is a load simulator for Microsoft

Exchange Server 2003 [56]. Multiple clients send

messages to Exchange Server to simulate an email

workload. In our test, the client computer simulates 100

clients of heavy user type and stress mode to access the

Exchanger Server 2003 which is installed on Windows

Server 2003. The duration of the simulation is 1 hour.

SPECsfs, is used to evaluate the performance of an

NFS or CIFS file server. Typical file server workloads

such as LOOKUP, READ, WRITE, CREATE, and

REMOVE, etc are simulated. The benchmark results

summarize the server’s capability in terms of the number

of operations that can be processed per second and the

I/O response time. The client computer generates 100

LOADs on an Ubuntu8.10 NFS server.

RUBiS is a prototype that simulates an e-commerce

server performing auction operations such as selling,

browsing, and bidding similar to eBay [10]. To run this

benchmark, each virtual machine on the server has

installed Apache, MySQL, PHP, and RUBiS client. The

database is initialized using the sample database provided

by RUBiS. RUBiS runs with 300 clients and 15 minutes

running time.

Table 3. Benchmarks used in performance evaluation.
Name Description

SysBench OLTP benchmark

MapReduce Word Counter Hadoop example job

TPC-C Database server workload

LoadSim2003 Exchange mail server benchmark

SPEC sfs NFS file server
RUBiS e-Commerce web server workload

Table 4. Characteristics of benchmarks.
 # of

Read
of
Write

Avg.
Read Len

Avg.
Write Len

Data
Size

VM
RAM

SysBench 619K 236K 6656B 7680B 960MB 256MB

Hadoop 241K 62K 20992B 101376B 4.4GB 512MB

TPC-C 339K 156K 13312B 10752B 1.2GB 256MB

LoadSim 4329K 704K 12288B 11776B 17.5GB 512MB

SPEC-sfs 64K 715K 6144B 17408B 10GB 512MB

RUBiS 799K 7K 4608B 20480B 1.8GB 256MB

TPC-C
5VMs

256K 153K 23552B 23040B 5.2GB 256MB

RUBiS
5VMs

3396K 52K 5632B 25088B 10GB 256MB

8

5. Numerical Results and Evaluations

5.1 Performance
Our first experiment is on SysBench. Figure 6(a)

shows the transaction rate results of SysBench running on

the 5 different storage architectures. We allocated 128MB

SSD space for I-CASH, LRU, and Dedup and the rest is

stored in the HDD. It is interesting to observe from

Figure 6(a) that I-CASH is able to finish more

transactions per second than Fusion-io even though

Fusion-io stores the entire data set in the SSD. Both LRU

and DeDup provide better performance than RAID0

because of data locality that exists in this benchmark.

Among all these storage architectures, I-CASH performs

the best showing 2.24x faster than RAID0, 9% better than

LRU, and 18% faster than DeDup.

(a) (b)

Figure 6. SysBench transaction rate and CPU utilization.

Figure 7. Response time of SysBench.

To better understand why I-CASH performs better

than Fusion-io that stores the entire dataset in the SSD,

we took a close look at how the two systems work by

collecting more I/O statistics. Experiments showed that

the percentages of reference blocks, delta blocks, and

independent blocks are 1%, 85%, and 14%, respectively.

That is, I-CASH is able to find 85% of data blocks that

are similar in contents to 1% of reference blocks stored in

the SSD and is able to cache all delta blocks within

32MB RAM. In addition, write operations to SSD are

inevitable in Fusion-io whereas I-CASH seldom performs

online writes to SSD because reference blocks stored in

the SSD are relatively stable.

In order to further investigate the I/O behaviors of the

systems, we measured the average response times for

read I/Os and write I/Os while running the SysBench on

the 5 different architectures as shown in Figure 7.

Intuitively, the I/O response times of I-CASH should be

longer than the first baseline system because of the

additional computation time for compression/

decompression. However, Figure 7 shows that the

average read time of I-CASH is half of that of Fusion-io

and the average write time of I-CASH is more than 10

times faster than that of Fusion-io. Although such

speedups are counter intuitive, careful analysis of the two

systems makes it easily understandable. First of all, recall

that only 1% of data blocks are reference blocks that are

stored in SSD in I-CASH system. This means I-CASH

accesses only 10MB SSD very frequently with mostly

read I/Os while Fusion-io needs to access 1GB SSD with

both read and write I/Os. Secondly, the most time

consuming part of processing a write request is

compression which can be done in parallel with I/O

processing. It is observed that the time difference of

accessing 4KB block between randomly accessing a

10MB file and randomly accessing 1GB file on Fusion-io

is about 15μs. By keeping Fusion-io working at its peak

speed, I-CASH is able to get average read response time

of 18μs including 10μs decompression time. We further

measured the average I/O times of Fusion-io with

asynchronous writes and the results are similar to Figure

7 although write time is smaller but read time is larger.

Most performance gains of the I-CACH come from

substituting disk I/Os by high speed computations. One

obvious question is how much computation overhead that

I-CASH incurs during I/O operations. Such computation

overheads compete with normal applications that run on

the same host CPU. We measured the CPU utilizations of

the 5 storage systems while running the benchmarks.

These CPU utilizations are shown in Figure 6(b). It was

observed that the additional CPU busy time due to I-

CASH algorithm is manageable. The CPU utilizations of

all 5 systems are about the same with the difference less

than 4%.

(a) (b)

Figure 8. Hadoop performance and CPU utilization.

Figure 9. Response time of Hadoop.

The measured Hadoop execution times are shown in

Figure 8(a) for the five different storage systems. It is

clear from this figure that I-CASH out-performed all

other baseline systems with speedups ranging from 1.3 to

1.8. For an I/O bound application, I-CASH clearly

180

85

161

175

190

0 50 100 150 200

FusionIO

RAID

Dedup

LRU

I-CASH

Transactions/s

52%

53%

53%

56%

55%

0% 20% 40% 60%

FusionIO

RAID

Dedup

LRU

I-CASH

CPU Utilization

FusionIO RAID Dedup LRU I-CASH

rsp_read 35 192 71 36 18

rsp_write 75 1156 106 122 7

0
500

1000
1500

Ti
m

e
(u

s)

24

32

26

25

18

0 20 40

FusionIO

RAID

Dedup

LRU

I-CASH

Time (s)

83%

73%

82%

84%

86%

60% 70% 80% 90%

FusionIO

RAID

Dedup

LRU

I-CASH

CPU Utilization

FusionIO RAID Dedup LRU I-CASH

rsp_read 1311 3959 1712 1699 1368

rsp_write 7301 3244 7520 7405 586

0

5000

10000

Ti
m

e
(μ

s)

9

showed superb performance advantages over the baseline

systems. In this experiment, I-CASH uses 512MB SSD,

which is about one-tenth of the total data set. The

memory footprint to cache deltas is 256MB which is less

than the memory requirement of Fusion-io driver. This

required RAM cache size is expected to become smaller

with further optimization of the delta compression

algorithm. Figure 9 shows the detailed read and write

response times measured at block I/O level. I-CASH has

much shorter response time than other systems. The

baseline system writes many modified data blocks to SSD,

giving rise to large write response time due to slow SSD

writes and possible erasure operations. Similar to

previous experiments, the additional computation

overhead of I-CASH is within a few percents as shown in

Figure 8(b) except for RAID system that uses much less

CPU resources than other systems.

Measured TPC-C results of the 5 different storage

systems are shown in Figures 10(a) and 11 in terms of

transaction rate and average application level response

time, respectively. In this benchmark, clients commit

small transactions frequently generating a large amount

of write requests. As a result, I-CASH is able to improve

the application level response time by 64% and 81% over

Fusion-io and RAID0, respectively as shown in Figure 11.

The fast write performance of I-CASH helps to reduce

the total response time seen from application level.

However, the actual speedup at application level depends

on the fraction of the I/O time in the total execution time.

Figure 10(a) shows that I-CASH can process 14% and 45%

more transactions per minute than Fusion-io and RAID0,

respectively. We noticed that RAID0 performs poorly

because of a large amount of random and small

transactions.

(a) (b)

Figure 10. TPC-C performance and CPU utilization.

Figure 11. TPC-C RSP time. Figure 12. LoadSim score.

Figure 12 shows the measured LoadSim results in

terms of score which is calculated based on response time.

The Exchange Server database in our experiment is set to

16GB and I-CASH is configured to use 1GB SSD and the

delta buffer of 256MB. From Figure 12 we can see that I-

CASH is 2.4x faster than RAID0 but about 20% slower

than Fusion-io. We noticed that I-CASH uses 1GB SSD

implying that I-CASH can greatly improve the

performance of the Exchange Server running on RAID

with a small SSD device. Fusion-io is faster in this case

because the workload generated by LoadSim is almost

100% random with little data locality. However, I-CASH

is able to catch content locality and therefore performs

much better than LRU and dedup caches as shown in

Figure 12.

Figure 13 plots the measured response time while

running SPEC sfs benchmark. I-CASH is configured to

use 1GB SSD with 128MB RAM delta buffer. From this

figure we can see that I-CASH performs as well as

Fusion-io while using only one-tenth of the SSD space.

As shown in Table 4, SPEC sfs is a write intensive

benchmark. For Dedup cache, changing a block that is

shared by several other identical blocks results in a new

copy of data so that write performance is slowed down.

The reduction of the response time of I-CASH over

Dedup is 28% because I-CASH is able to exploit the

content similarity between the new data and the old data

to store only the changed data in small deltas.

Figure 13. SPEC-sfs RSP time. Figure 14. RUBiS request rate.

RUBiS benchmark results are shown in Figure 14 in

terms of number of requests finished per second. In this

experiment, I-CASH uses 128MB SSD and 32MB delta

buffer. As shown in Figure 14, I-CASH is 1.5x faster than

RAID0 while 10% slower than baseline Fusion-io.

Recall that over 90% of the requests are read requests

(Table 4) in this benchmark, which limits the write

performance advantage of I-CASH over Fusion-io. The

major speedups of I-CASH over LRU and Dedup, which

are 1.04 and 1.29, respectively, come from the capability

of storing more data in the SSD to reduce disk accesses.

The results show that the online similarity detection of I-

CASH is effective under read intensive workloads. It is

also observed that LRU cache is faster than Dedup

though Dedup can store more data in the SSD. This is

because the cost of dedup has overweighed the gain of

extra SSD capacity in this case.

As discussed in Section 2, widespread use of virtual

machines create additional burden to disk I/O systems. It

is common to setup several similar virtual machines on

51

40

49

50

58

0 20 40 60 80

FusionIO

RAID

Dedup

LRU

I-CASH

Transactions/s

51%

41%

52%

61%

62%

0% 20% 40% 60% 80%

FusionIO

RAID

Dedup

LRU

I-CASH

CPU Utilization

6.6

14

12

7.1

2.6

0 5 10 15

FusionIO

RAID

Dedup

LRU

I-CASH

Response Time (ms)

1803

5340

3259

3002

2263

0 2000 4000 6000

FusionIO

RAID

Dedup

LRU

I-CASH

Score(the lower the better)

1.4

1.8

2.1

2.1

1.5

0 1 2 3

FusionIO

RAID

Dedup

LRU

I-CASH

Response Time (ms)

84

48

59

73

76

0 50 100

FusionIO

RAID

Dedup

LRU

I-CASH

Requests/s

10

the same physical machine to run multiple services. Fast

I/O performance becomes more important when multiple

virtual machines compete for I/O resources. To evaluate

how I-CASH performs in such virtual machine

environment, we carried out experiments on multiple

virtual machines. On each virtual machine, a distinct data

set and benchmark parameters are used. The five TPC-C

virtual machines use 1 to 5 warehouses, respectively. The

five RUBiS machines use 20 to 24 items per page,

respectively. I-CASH uses 512MB SSD and 512MB

RAM for delta blocks for both benchmarks.

Figures 15 and 16 show the normalized performances

of running TPC-C and RUBiS on multiple virtual

machines, respectively. The performance advantage of I-

CASH is clearly shown in these figures compared with

the other four baseline systems. When the five virtual

machines are running TPC-C benchmarks concurrently

with different data sets, I-CASH provides 2.8x speedup

over the baseline Fusion-io and over 5x to 6x speedup

over the other three baseline systems. For RUBiS

benchmark, the performance improvements are 20%, 6x,

4x, and 4x over baseline Fusion-io, RAID, Dedup, and

LRU cache, respectively. Fusion-io performs fairly well

for RUBiS benchmark as shown in Figure 16 because

RUBiS is read intensive workload.

Figure 15. Five TPC-C VMs. Figure 16. Five RUBiS VMs.

5.2 Power Efficiency
Table 5 lists the energy consumption measured using

a power meter (Electricity Usage Monitor) which can

record power usage accumulatively while a benchmark is

running. The power meter is connected to the power

supply of the PC server and therefore the measured power

consumption includes energy consumed by CPU,

memory, and I/O operations. Since measuring energy

consumption involves open the server box and

reconnecting power supply and the power meter, we

measured only two benchmarks as listed in Table 5. The

numbers in Table 5 were calculated as follows. We first

subtract the power consumption level when system is idle

from the power consumption level while benchmarks are

running. The difference is then multiplied by the

benchmark running time resulting in Walt-Hours. RAID0

has 4 disks, 15 Walts each, and consumed 240% more

energy than I-CASH for Hadoop benchmark and 150%

more for TPC-C benchmark. Fusion-io (including the

system disk), LRU, and Dedup use the same hardware as

I-CASH but took longer time to finish the same Hadoop

job resulting in more energy consumption. The energy

saving of I-CASH also comes from less write requests to

the SSD given that each 4KB read and write operation

consumes 9.5μJ and 76.1μJ [47]. I-CASH saved about 12%

energy compared to baseline Fusion-io running Hadoop.

For TPC-C benchmark, the power consumptions of the 4

systems are comparable as shown in the table. The power

savings compared to RAID are mainly attributed to the

use of SSD as opposed to multiple HDDs.

Table 5. Power consumption in terms of Walt-hours.
 Hadoop TPC-C

Fusion-io 8 11

RAID 24 28

Dedup 10 11

LRU 10 12

I-CASH 7 11

5.3 Prolonged SSD Life Time
Finally, we measured the number of write I/Os

performed on SSD of the 5 different storage systems.

Only four benchmarks with a large percentage of write

I/Os are measured as shown in Table 6. Recall that our

preliminary prototype does not strictly disallow random

writes to SSD. For blocks that have deltas larger than the

threshold value (2048 byte in the current implementation),

the new data are written directly to the SSD to release

delta buffer. Nevertheless, random writes to SSD are still

substantially smaller than LRU and DeDup baseline

systems. For SysBench, Hadoop, and TPC-C, I-CASH

performs much less write I/Os to SSD than the baseline

Fusion-io does. For benchmark SPEC sfs, the write

operations in SSD of the two systems are comparable.

The write I/O reductions of I-CASH imply prolonged life

time of the SSD as discussed previously.

Table6. Number of write requests on SSD.
 SysBench Hadoop TPC-C SPEC sfs

Fusion-io 893,700 2,540,124 1,173,741 5,752,436

Dedup 1,419,023 3,082,196 1,963,988 5,559,698

LRU 1,494,220 3,469,785 2,051,511 5,514,935

I-CASH 232,452 1,521,399 359,919 5,096,890

6. Conclusions
In this paper, a novel disk I/O architecture has been

presented to exploit the high random access speed of

flash memory SSDs. The idea of the new disk I/O

architecture is intelligently coupling an array of SSD and

HDD, referred to as I-CASH, in such a way that read I/Os

are done mostly in SSD and write I/Os are done in HDD

in batches by packing deltas with respect to the reference

blocks stored in the SSD. By making use of the

computing power of CPU and exploiting regularity and

content locality of I/O data blocks, I-CASH achieved

high I/O performance. Many I/O operations that would

have been mechanical operations in HDDs are now

replaced by high speed computations and SSD reads. A

preliminary prototype of I-CASH has been built on Linux

OS to provide a proof-of-concept of I-CASH.

1.0

0.4

0.5

0.4

2.8

0.0 1.0 2.0 3.0

FusionIO

RAID

Dedup

LRU

I-CASH

Normalized Tansactions/s

1.0

0.2

0.3

0.3

1.2

0.0 0.5 1.0 1.5

FusionIO

RAID

Dedup

LRU

I-CASH

Normalized Requests/s

11

Performance evaluation experiments using standard I/O

benchmarks have shown great performance

improvements over RAID0 and traditional systems using

SSD as a storage cache. In some cases, I-CASH even

performs better than SSD only storage that stores the

entire data set with no HDD. As a future research, we are

building a hardware prototype using an embedded

processor in order to fully realize the performance

potential of I-CASH.

Acknowledgements
This research is supported in part by National

Science Foundation under Grants CCF-0811333, CPS-
0931820, CCF-1017177 and Natural Science Foundation
of China under grant NSFC-60736013. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation. The authors are grateful to anonymous
referees for their comments that improve the quality of
the paper.

References
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M.

Manasse, and R. Panigrahy, "Design Tradeoffs for SSD

Performance," in Proc. of USENIX Annual Technical

Conference, Boston, MA, 2008, pp. 57-70.

[2] M. Ajtai, R. Burns, R. Fagin, D. Long, and L. Stockmeyer,

"Compactly Encoding Unstructured Inputs with

Differential Compression," Journal of the ACM (JACM),

vol. 49, pp. 318-367, 2002.

[3] F. Bellard, "QEMU, a Fast and Portable Dynamic

Translator," in Proc. of USENIX Annual Technical

Conference, 2005.

[4] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J.

Liptak, R. Rangaswami, and V. Hristidis, "BORG: Block-

reORGanization for Self-optimizing Storage Systems," in

Proc. of USENIX Conference on File and Storage

Technologies, 2009, pp. 183-196.

[5] A. Birrell, M. Isard, C. Thacker, and T. Wobber, "A

Design for High-Performance Flash Disks," ACM

SIGOPS Operating Systems Review, vol. 41, pp. 88-93,

2007.

[6] S. Boboila and P. Desnoyers, "Write Endurance in Flash

Drives: Measurements and Analysis," in Proc. of USENIX

Conference on File and Storage Technologies, San Jose,

California, 2010.

[7] D. Borthakur, "The Hadoop Distributed File System:

Architecture and Design," http://hadoop.apache.org/

core/docs/current/hdfs_design.pdf, 2007.

[8] A. Broder, "Identifying and Filtering Near-Duplicate

Documents," in Proc. of 11th Annual Symposium on

Combinatorial Pattern Matching, 2000, pp. 1-10.

[9] B. Calder, G. Reinman, and D. Tullsen, "Selective Value

Prediction," in Proc. of 26th International Symposium on

Computer Architecture (ISCA'99), 1999, p. 74.

[10] E. Cecchet, J. Marguerite, and W. Zwaenepoel,

"Performance and Scalability of EJB Applications," in

Proc. of 17th ACMConference on Object-oriented

programming, systems, languages, and applications, 2002,

pp. 246-261.

[11] A. Clements, I. Ahmad, M. Vilayannur, and J. Li,

"Decentralized Deduplication in SAN Cluster File

Systems," in Proc. of USENIX Annual Technical

Conference, 2009, pp. 102-114.

[12] Transaction Processing Performance Council, "TPC

BenchmarkTMC Standard Specification," http://tpc.org/

tpcc, 2005.

[13] B. Debnath, S. Sengupta, and J. Li, "ChunkStash:

Speeding up Inline Storage Deduplication using Flash

Memory," in Proc. of USENIX Annual Technical

Conference, 2010.

[14] C. Dirik and B. Jacob, "The Performance of PC Solid-

State Disks (SSDs) as a Function of Bandwidth,

Concurrency, Device Architecture, and System

Organization," in Proc. of 36th International Symposium

on Computer Architecture (ISCA 2009), 2009, pp. 279-

289.

[15] F. Douglis, "The Compression Cache: Using On-line

Compression to Extend Physical Memory," in Proc. of

1993 Winter USENIX Conference., 1993, pp. 519-529.

[16] Fusion-io, "Fusion-io ioDrive specification sheet,"

http://www.fusionio.com/.

[17] F. Gabbay and A. Mendelson, "Can Program Profiling

Support Value Prediction?," in Proc. of 30th Annual

ACM/IEEE Int. Symposium on Microarchitecture, 1997,

pp. 270-280.

[18] L. Grupp, A. Caulfield, J. Coburn, S. Swanson, E.

Yaakobi, P. Siegel, and J. Wolf, "Characterizing Flash

memory: Anomalies, Observations, and Applications," in

Proc. of 42nd Annual IEEE/ACM International

Symposium on Microarchitecture 2009, pp. 24-33.

[19] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G.

Varghese, G. Voelker, and A. Vahdat, "Difference Engine:

Harnessing Memory Redundancy in Virtual Machines," in

Proc. of 8th USENIX Symposium on Operating Systems

Design and Implementation, 2008.

[20] Y. Hu and Q. Yang, "DCD---Disk Caching Disk: A New

Approach for Boosting I/O Performance," in Proc. of 23rd

Annual International Symposium on Computer

Architecture (ISCA'96), Philadelphia, PA, 1996, pp. 169-

178.

[21] J. Huang and D. Lilja, "Exploiting Basic Block Value

Locality With Block Reuse," in Proc. of 5th IEEE

International Symposium on High-Performance Computer

Architecture, 1999, pp. 106-114.

[22] S. Jiang, K. Davis, and X. Zhang, "Coordinated Multilevel

Buffer Cache Management with Consistent Access

Locality Quantification," IEEE Transactions on

Computers, vol. 15, pp. 95-108, 2007.

[23] W. Josephson, L. Bongo, D. Flynn, and K. Li, "DFS: A

File System for Virtualized Flash Storage," in Proc. of

USENIX Conference on File and Storage Technologies,

2010, pp. 85–100.

[24] T. Kgil, D. Roberts, and T. Mudge, "Improving NAND

Flash Based Disk Caches," in Proc. of 35th International

Symposium on Computer Architecture (ISCA 2008),

Beijing, China, 2008, pp. 327-338.

[25] D. Klein, "The Future of Memory and Storage: Closing

the Gaps," Micron Technology, Inc. , 2007.

http://www.fusionio.com/

12

[26] R. Koller and R. Rangaswami, "I/O Deduplication:

Utilizing Content Similarity to Improve I/O

Performance," in Proc. of USENIX Conference on File

and Storage Technologies, 2010.

[27] A. Kopytov, "SysBench, a System Performance

Benchmark," http://sysbench.sourceforge.net/, 2004.

[28] E. Kruus, C. Ungureanu, and C. Dubnicki, "Bimodal

Content Defined Chunking for Backup Streams," in Proc.

of USENIX Conference on File and Storage Technologies,

2010.

[29] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey,

"Redundancy Elimination within Large Collections of

Files," in Proc. of USENIX Annual Technical Conference,

2004, pp. 59-72.

[30] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim, "A Case

for Flash Memory SSD in Enterprise Database

Applications," in Proc. of ACM SIGMOD International

Conference on Management of Data (SIGMOD), 2008, pp.

1075-1086.

[31] A. Liguori and E. Hensbergen, "Experiences with Content

Addressable Storage and Virtual Disks," in Proc. of

Workshop on I/O Virtualization USENIX Association,

2008.

[32] M. Lipasti, "Value Locality and Speculative Execution,"

PhD thesis, Carnegie Mellon University, 1997.

[33] D. Llanos, "TPCC-UVa: an Open-Source TPC-C

Implementation for Global Performance Measurement of

Computer Systems," ACM SIGMOD Record, vol. 35, p.

15, 2006.

[34] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. Stan,

"How I Learned to Stop Worrying and Love Flash

Endurance," in Proc. of the 2nd USENIX Conference on

Hot Topics in Storage and File Systems 2010.

[35] C. Morrey III and D. Grunwald, "Peabody: The Time

Travelling Disk," in Proc. of IEEE Mass Storage

Conference, San Diego, CA, 2003.

[36] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and

A. Rowstron, "Migrating Server Storage to SSDs:

Analysis of Tradeoffs," in Proc. of fourth ACM European

conference on Computer systems, 2009, pp. 145-158.

[37] P. Nath, M. Kozuch, D. O’hallaron, J. Harkes, M.

Satyanarayanan, N. Tolia, and M. Toups, "Design

Tradeoffs in Applying Content Addressable Storage to

Enterprise-Scale Systems Based on Virtual Machines," in

Proc. of USENIX Annual Technical Conference, 2006.

[38] F. Oliveira, G. Guardiola, J. Patel, and E. Hensbergen,

"Blutopia: Stackable Storage for Cluster Management," in

Proc. of IEEE Cluster, 2007, pp. 293-302.

[39] D. Patterson, G. Gibson, and R. Katz, "A Case for

Redundant Arrays of Inexpensive Disks (RAID)," in Proc.

of ACM SIGMOD International Conference on

Management of Data, 1988, pp. 109-116.

[40] T. Pritchett and M. Thottethodi, "SieveStore: A Highly-

selective, Ensemble-level Disk Cache for Cost-

Performance," in Proc. of 37th International Symposium

on Computer Architecture (ISCA 2010), 2010, pp. 163-

174.

[41] S. Quinlan and S. Dorward, "Venti: a new approach to

archival storage," in Proc. of First USENIX Conference

on File and Storage Technologies, Monterey, CA, 2002.

[42] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B.

Alpern, and V. Bala, "Opening Black Boxes: Using

Semantic Information to Combat Virtual Machine Image

Sprawl," in Proc. of ACM/Usenix International

Conference On Virtual Execution Environments, 2008, pp.

111-120.

[43] S. Rhea, R. Cox, and A. Pesterev, "Fast, Inexpensive

Content-Addressed Storage in Foundation," in Proc. of

USENIX Annual Technical Conference, Boston,

Massachusetts, 2008, pp. 143-156.

[44] Y. Sazeides, "An Analysis of Value Predictibality and its

Application to a Superscalar Processor," PhD thesis,

University of Wisconsin, Madison, 1999.

[45] A. Sodani and G. Sohi, "Dynamic Instruction Reuse," in

Proc. of 24th International Symposium on Computer

Architecture, 1997, pp. 194-205.

[46] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and

T. Wobber, "Extending SSD Lifetimes with Disk-Based

Write Caches," in Proc. of 8th USENIX Conference on

File and Storage Technologies, 2010.

[47] G. Sun, Y. Joo, Y. Chen, D. Niu, Y. Xie, and H. Li, "A

Hybrid Solid-State Storage Architecture for the

Performance, Energy Consumption, and Lifetime

Improvement," in Proc. of 16th IEEE International

Symposium on High-Performance Computer Architecture,

2010, pp. 141–153.

[48] I. Tuduce and T. Gross, "Adaptive Main Memory

Compression," in Proc. of USENIX Annual Technical

Conference, Anaheim, CA, 2005.

[49] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago,

G. Całkowski, C. Dubnicki, and A. Bohra, "HydraFS: a

High-Throughput File System for the HYDRAstor

Content-Addressable Storage System," 8th USENIX

Conference on File and Storage Technologies, 2010.

[50] P. Wilson, S. Kaplan, and Y. Smaragdakis, "The Case for

Compressed Caching in Virtual Memory Systems," in

Proc. of USENIX Annual Technical Conference, 1999.

[51] M. Wu and W. Zwaenepoel, "eNVy: A Non-Volatile,

Main Memory Storage System," in Proc. of 6th

International Conference on Architectural Support for

Programming Languages and Operating Systems, 1994,

pp. 86-97.

[52] G. Yadgar, M. Factor, and A. Schuster, "Karma: Know-it-

All Replacement for a Multilevel Cache," in Proc. of

USENIX Conference on File and Storage Technologies,

2007, pp. 25-25.

[53] Q. Yang, W. Xiao, and J. Ren, "TRAP-Array: A disk

Array Architecture Providing Timely Recovery to Any

Point-in-Time," in Proc. of 33rd Annual International

Symposium on Computer Architecture, 2006.

[54] Y. Zhou, Z. Chen, and K. Li, "Second-Level Buffer Cache

Management," IEEE Transactions on Parallel and

Distributed Systems, vol. 15, pp. 505-519, 2004.

[55] B. Zhu, K. Li, and H. Patterson, "Avoiding the Disk

Bottleneck in the Data Domain Deduplication File

System," in Proc. of 6th USENIX Conference on File and

Storage Technologies, San Jose,CA, 2008.

[56] A. Zinman, "Simulating Stress for your Exchange 2003

Hardware using LoadSim 2003," http://www.msexchange.

org/tutorials/Simulating-Stress-Exchange-2003-

LoadSim.html, 2004.

http://sysbench.sourceforge.net/

