



Abstract—Applying electromyographic (EMG) signal pattern

recognition to artificial leg control is challenging because leg

EMGs are non-stationary. Time-frequency features are suitable

for representing non-stationary signals; however, the

computation complexity to extract time-frequency features is

too high that current embedded systems applied for artificial

limb control are inadequate for real-time computing. The aim of

this study was to quantify the computation speed of Graphic

Processor Unit (GPU) on EMG time-frequency feature

extraction. The computation time derived from a GPU was

compared to that derived from a general purpose CPU. The

results indicated that GPU significantly increased the

computation speed. When the size of EMG analysis window was

set to 100 ms, the GPU extracted EMG time-frequency features

over 50 times faster than the CPU setting. Therefore, high

performance GPU shows a great promise for EMG-controlled

artificial legs and other medical applications that need high-

speed and real-time computation.

Index Terms—Electromyography, control of artificial limbs,

embedded system, high performance computing.

I. INTRODUCTION

lectromyographic (EMG) signals recorded from the

residual limb of individuals with limb amputations are

effective neural control signals for powered artificial

limbs [1]. Great success in multifunctional artificial arm

control has been realized by pattern recognition (PR) of

EMG signals [2-7]. Currently, our research group attempted

to apply EMG PR algorithms to artificial leg control.

Compared to upper-limb prosthesis control, the difficulties

of EMG PR in artificial leg control are two-fold. (1) The

EMG signals recorded from the leg are non-stationary and

(2) fast system response is required to ensure the user’s

safety for prosthesis use. To address these challenges, we

developed a new, phase-dependent EMG PR strategy to

classify the user’s locomotion modes [8]. To achieve a

prompt time response, four time-domain features [9] in each

of 11 EMG channels and a linear discriminant analysis

(LDA)-based classifier were applied due to their

computational simplicity. The offline testing results [8]

showed over 90% classification accuracy, which was

promising. However, this accuracy was still not enough for

the safe use of artificial legs because any error might lead to

a fall of the user. A previous study [4] compared the

This work was supported in part by the National Institute on Disability

and Rehabilitation Research, U.S. Department of Education (Grant

H133F080006) and RI Science and Technology Advisory Council (RIRA-

2009-27).

W. Xiao, Q. Yang, Y. Sun, and H. Huang are with the Department of

Electrical, Computer, and Biomedical Engineering, Kingston, RI, 02881

USA (corresponding author: H. Huang: 401-874-2385; fax: 401-782-6422;

e-mail: huang@ele.uri.edu).

classification performance among different classifiers and

EMG features on non-stationary EMG signals offline. The

result showed that time-frequency features outperformed

time-domain features, while the type of classifier did not

significantly influence the classification performance.

Therefore, time-frequency features, in lieu of time-domain

features, should be applied to non-stationary leg EMGs in

order to accurately identify user locomotion mode for neural

control of artificial legs.

Compared to time-domain features, the implementation

of time-frequency features significantly increases

computation complexity because it requires additional time-

frequency signal transformation and a calculation for feature

dimension reduction [3]. For example, given the number of

EMG channels is 11 used in [8] and the EMG sampling rate

is 1000 Hz, the total number of multiplication operations is

O(10
5
) for computing Cohen’s class time-frequency

representations [10] of 100 ms EMG data, O(10
15

) for

feature (a 1.1×10
5
-by-1 vector) dimension reduction during

the training of a classifier when using principle component

analysis (PCA)[11], and O(10
8
) for dimension reduction

during real-time testing if 1% of the feature dimension is

kept. Obviously, the computational speed of current

embedded systems used in C-leg® [12] or Rheo Knee [13]

are insufficient to identify the user’s intent within tens of

milliseconds when time-frequency domain features are

applied.

In this study, we explored a high performance embedded

controller with a built-in Graphic Processor Unit (GPU) for

EMG time-frequency feature extraction. GPU is a single chip

processor originally designed for the computation related to

3D graphic rendering. Recently, many researchers and

developers have become interested in leveraging the power

of GPUs for general-purpose computing. There are two

reasons for the explosive research efforts in general purpose

GPU computing. First, the GPUs can provide an

extraordinary speedup for applications that show inherent

data parallelism. For example, NVIDIA GeForce 8800 GTX

[14] can have 367 GFLOPS peak performance with 128

cores, which is 20-50 times faster than current high-end

microprocessors. Secondly, GPUs have been built for

commodity PC graphic cards with large volume productions

resulting in very low price. Currently a very powerful

graphic card cost only a few hundred dollars. The high

performance/cost ratio has attracted many researchers and

engineers to adopt the GPU for data intensive general

purpose computations. Typically, a GPU is a massively

parallel machine equipped with multiple cores for concurrent

execution of thousands of independent threads. Each core

Promise of Embedded System with GPU in Artificial Leg Control:
Enabling Time-frequency Feature Extraction from Electromyography

Weijun Xiao, Student member, IEEE, He Huang, Member, IEEE, Yan Sun, Member, IEEE, and Qing

Yang, Senior Member, IEEE

E

executes the same code on different data sets. Such a Single

Instruction Multiple Data (SIMD) architecture is favorable

for high-throughput numerical computation. Many numerical

problems, such as matrix computations and linear algebra

operations, can be easily parallelized into multiple identical

subtasks without data dependency, thus a notable

performance speedup is achieved on the GPUs [15, 16]. In

signal processing, most analysis tools or algorithms require

matrix or vector computations that can be naturally tailored

to GPUs to achieve high performance that would not have

been possible using general purpose microprocessors. To

quantify the computational capability of GPUs applied for

time-frequency feature-based EMG pattern recognition, we

developed an analytical algorithm for one channel EMG

signal and implemented it on both the CPU and GPU

architecture. We measured the results and compared the

computation time for both cases. The results demonstrated

that the GPU implementation can provide much faster

response time than the CPU. We have observed up to two

orders of magnitude performance gain (100 times) as

compared to the general purpose CPU, which is promising

for real-time EMG PR based on time-frequency feature sets.

II. METHODS

A. EMG Data Collection

This study was conducted with Institutional Review

Board (IRB) approval and the informed consent of the

recruited subject. One channel of EMG from the rectus

femoris was collected from an able-bodied male subject

during his level ground walking. An EMG electrode was

placed on the belly of the muscle, and the ground electrode

was placed on the bony part of the knee. A myomonitor®

wireless EMG system (Delsys Inc, MA, USA) was applied to

collect the EMG data at a sampling rate of 1000 Hz.

B. Algorithms for Time-Frequency Feature Extraction

The analytical algorithm included two parts: training and

testing. The steps for feature extraction were demonstrated in

Fig. 1. For both training and testing procedure, the time-

frequency features were extracted in every analysis window.

Next, time-frequency transformation of the EMG signal was

conducted. The Hilbert transform [17] was used to convert

the real-value EMG signal into the complex-value signal

first. The discrete Hilbert transform of a signal x(k) is

defined as

k);n odd(n
N

π
x(k)

N

k);n even(n
N

π
x(k)

N
nH

evenk

oddk























cot
2

cot
2

)((1)

where N is the number of samples in an analysis window.

After obtaining the analytical signal by the Hilbert transform,

Smoothed Pseudo-Wigner-Ville Distribution (SPWVD) [18]

was used to represent the signal in a time-frequency domain.

The calculation formula is defined as

Nkmj
M

Mp

t

N

Nk

fx

ekpnxkpnxpW

kWmnSPWVD

/2
1

1

*

1

1

)]()()([

(2))(2),(


















where Wf is the smoothing window in the frequency domain

with length 2N+1, and Wt is the smoothing window in the

time domain with length 2M+1. Then, the resulted time-

frequency representation (a matrix) was reorganized into an

EMG feature vector (a vector). Due to the high

dimensionality of EMG time-frequency feature vectors, a

dimension reduction algorithm is necessary to allow efficient

classification. Here, we used principle component analysis

(PCA) to reduce the dimension of feature vectors. During the

offline training procedure, the feature vector in one analysis

window was one observation. PCA was conducted on the

data matrix, composed of the feature vectors of several

observations. The number of principle components was set to

10% of the dimension of feature vectors. The algorithm of

PCA involves solving the Eigen values and vectors, which is

time-consuming. To enhance the computation speed, we

chose the Nonlinear Iterative Partial Least Squares

(NIPALS) algorithm to approximate PCA computation [19].

During the testing procedure, the feature dimension was

reduced directly by projecting the feature vectors to the

principle components obtained in the training procedure.

Finally, the feature vectors were fed to a classifier to identify

the user’s movement intent.

C. Testing Setup and Procedure

The analytical algorithm was implemented on both CPU

and GPU architectures. The algorithm was ran on a Dell

Dimension 8400 desktop PC equipped with a CPU (Intel

Pentium 4 with HT technology, 3GHz) and a GPU (NVIDA

9500GT graphic card, Multi-core parallel processor,

1.4GHz)[14]. The computation times for Hilbert transform,

SPWVD, and PCA with different window sizes were

measured for both the CPU and GPU settings.

III. RESULTS

Fig. 2. Computational time of Hilbert transformation.
Fig. 1. Block diagram of EMG time-frequency feature extraction.

Window Size

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

Fig. 2 shows the computation time of the Hilbert

transform. The GPU implementation outperformed the CPU

for all window sizes. When the applied window was 100 ms,

the GPU setting was about 50 times faster than the CPU

case.

Similar results for computing smoothed pseudo-Wigner-

Ville distribution as those for the Hilbert transform

calculation were observed (Fig. 3). Note that we used the

latest CUFFT 2.1[20] and FFTW 3.2.1[21] libraries to

calculate SPWVD, but we did not optimize the Hilbert

transform. Therefore, SPWVD had faster response time than

the Hilbert transform in some parameter settings.

Fig. 4 shows the time response of the PCA computation

when 8 principle components were selected. The GPU

produced much faster response than the CPU with up to 30

times performance improvements. Another observation is

that the performance speedup of the GPU over the CPU

increased as the size of analysis window increased. That is to

say, the larger the window size, the more speedup can be

obtained using the GPU. This result can be attributed to the

better parallelism with a larger data set. Fig. 5 shows the

computation time for selecting six different numbers of

principle components when the window size was 100 ms.

Compared to the CPU, the performance speedup of the GPU

was 144 times faster. Fig. 6 demonstrates the results for

dimension reduction in the testing procedure. Once again,

dramatic speedup was observed by using the GPU as

compared to the CPU architecture.

IV. DISCUSSION

From the measured outcomes, we found that the most

time was spent on the PCA computation for both the CPU

and GPU architectures. Therefore, PCA is the bottleneck of

our analytical algorithm. Currently we used the NIAPALS

method to approximate PCA. This algorithm works well for

a small size matrix; however, if the matrix is large, other

more efficient algorithms should be considered. One possible

optimization is the divide-on-conquer strategy that partitions

the single big matrix into multiple smaller matrices. PCA is

conducted on each block matrix. Then the global principle

components are the combination of all the “block” principle

components. In computational terms, it is called data/loop

blocking that can significantly improve computation

performance due to increased data locality, parallelism, and

communication efficiency. Since there is no data dependence

among different block matrices, we can perform the PCA for

each block matrix simultaneously on the GPU architecture.

Our theoretical analysis and preliminary experiment showed

that the block PCA is potential to improve the performance

of the PCA. We will address PCA optimization in our future

research.

In this study, the selected analytic algorithm was

relatively complicated because our intent was to indicate the

maximum performance of the GPU. When using feature

vectors with 10,000 dimension (derived from 100ms window

Fig. 6. Computation time of dimension reduction during the testing

procedure. The applied window size was 100 ms.

Fig. 5. Computation time of NIPALS when a different number of

principle components were selected. The applied window size was

100 ms.

Fig. 4. Computation time of NIPALS to obtain 8 principle

components during the training procedure.

Fig. 3. Computation time of smoothed pseudo-Wigner-Ville

distribution.

Window Size

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

Window Size

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

C

o
m

p
u

ta
ti

o
n

 T
im

e
(m

s)

Number of Principle Components (k)

Number of Principle Components (k)

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

size) and 16 principle components, the training procedure

took around 1.5 seconds for GPU but over 100 seconds for

CPU. In the real-time testing (result was not shown), the

GPU can extract the features from a 100ms analysis window

within 20 ms, sufficient for real-time EMG PR in artificial

leg control. Hence, GPU is potential for design of EMG-

controlled artificial legs.

The limitation of this work is that only one EMG channel

was used. In real application, multiple channels will be

considered, which further increases the feature dimension

and computational complexity. However, the selected

analytic algorithm in this study was relatively complex; other

simple methods should be investigated to improve the

computation efficiency without deteriorating the

classification performance. In addition, some prior

knowledge of EMG signals can be useful to reduce the

feature dimension before computing PCA.

V. CONCLUSIONS

In this paper, we have presented a design and

implementation of a new set of parallel algorithms for time-

frequency feature exaction from EMG. Our algorithms have

been tested and measured on both a commodity embedded

system with a GPU and a general purpose PC. Because of

the inherent parallelism that exists in these computations, we

are able to effectively parallelize the algorithm on the GPU.

Measurement results have shown dramatic speedup of the

computation on the GPU system as compared to the CPU

architecture. Up to two orders of magnitude speedup have

been observed. With continued advancement in performance

and decrease in cost, GPUs show a great promise for real

time and high speed computation for EMG pattern

recognition and eventual application to neural-controlled

artificial legs. We are currently working on further

optimization of these algorithms.

REFERENCES

[1] J. Basmajian and C. De Luca, "Muscles alive: their functions revealed

by electromyography," 5 ed. Baltimore, MD: Williams and Wilkins,

1985.

[2] S. H. Park and S. P. Lee, "EMG pattern recognition based on artificial

intelligence techniques," IEEE Transactions on Rehabilitation

Engineering, vol. 6, pp. 400-405, 1998.

[3] K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson,

"Classification of the myoelectric signal using time-frequency based

representations," Med Eng Phys, vol. 21, pp. 431-8, 1999.

[4] K. Englehart, B. Hudgins, and P. A. Parker, "A wavelet-based

continuous classification scheme for multifunction myoelectric

control," IEEE Transactions on Biomedical Engineering, vol. 48, pp.

302-311, 2001.

[5] K. Englehart and B. Hudgins, "A robust, real-time control scheme for

multifunction myoelectric control," IEEE Trans Biomed Eng, vol. 50,

pp. 848-54, 2003.

[6] D. Graupe, A. A. Beex, W. J. Monlux, and I. Magnussen, "A

multifunctional prosthesis control system based on time series

identification of EMG signals using microprocessors," Bull Prosthet

Res, vol. 10, pp. 4-16, 1977.

[7] H. Huang, P. Zhou, G. Li, and T. A. Kuiken, "An analysis of EMG

electrode configuration for targeted muscle reinnervation based neural

machine interface," IEEE Trans Neural Syst Rehabil Eng, vol. 16, pp.

37-45, 2008.

[8] H. Huang, T. Kuiken, and R. D. Lipschutz, " A Strategy for

Identifying Locomotion Modes using Surface Electromyography,"

IEEE Trans Biomed Eng, vol. 56, pp. 65-73, 2009.

[9] B. Hudgins, P. Parker, and R. Scott, "A New Strategy for

Multifunction Myoelectric Control," in IEEE Transactions on

Biomedical Engineering, vol. 40, 1993, pp. 82-94.

[10] L. Cohen, Time-frequency analysis. Englewood Cliffs, N.J: Prentice

Hall PTR, 1995.

[11] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd

ed. New York: Wiley, 2001.

[12] I. Otto Bock Orthopedic Industry, Manual for the 3c100 Otto Bock C-

LEG. Duderstadt, Germany, 1998.

[13] OSSUR, RHEO KNEE: http://bionics.ossur.com/Products/RHEO-

KNEE/ACT.

[14] "NVIDIA Corporation, CUDA: compute unified device architecture

programming guide," www.nividia.com.

[15] N. Fujimoto, "Faster Matrix-Vector Multiplication on GeForce

8800GTX," presented at In the Proceedings of the 22nd IEEE

International Parallel and Distributed Processing Symposium

(IPDPS), 2008.

[16] V. Volkov and J. W. Demmel, "Benchmarking GPUs to tune dense

linear algebra," presented at In Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, Austin, TX, USA, 2008.

[17] S. Kak, "The discrete finite Hilbert transform," Indian Journal Pure

Applied Math, vol. 8, pp. 1385-1390, 1977.

[18] V. Bernasconi, L. Bollea, A. Breda, P. Daponte, G. Maroncelli, and S.

Rapuano, " A TFR-based method for the quality assessment of UMTS

signals: an application on the first Italian experimental network,"

IEEE Trans. on Instrumentation and Measurement, vol. 53, pp. 485-

492, 2004.

[19] S. Wold, K. Esbensen, and P. Geladi, "Principal Component

Analysis," Chemometrics and Intelligent Laboratory Systems, vol. 2,

pp. 37-52.

[20] "NVIDIA Corporation. CUDA: CUFFT library," http://devel-

oper.download.nvidia.com/compute/cuda/2_1/toolkit/docs/CUFFT_L

ibrary_2.1.pdf, 2008.

[21] M. Frigo and S. G. Johnson, "The Design and Implementation of

FFTW3," IEEE Proceedings of the Special Issue on Program

Generation, Optimization, and Platform Adaptation, vol. 93, pp. 216-

231, 2005.

http://bionics.ossur.com/Products/RHEO-KNEE/ACT
http://bionics.ossur.com/Products/RHEO-KNEE/ACT
http://www.nividia.com/
http://devel-oper.download.nvidia.com/compute/cuda/2_1/toolkit/docs/CUFFT_Library_2.1.pdf
http://devel-oper.download.nvidia.com/compute/cuda/2_1/toolkit/docs/CUFFT_Library_2.1.pdf
http://devel-oper.download.nvidia.com/compute/cuda/2_1/toolkit/docs/CUFFT_Library_2.1.pdf

