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1 Introduction

Disk arrays have become increasingly popular as a means
of improving performance of secondary storage systems.
In making design decisions, it is essential to understand
the performances of different configurations as well as
effects of system parameters on their performance. An-
alytical performance models are desirable in both con-
figuring and designing disk arrays since they provide
designers with a quick and efficient tool to evaluate and
understand a system with a wide range of system and
workload parameters.

Despite the importance of analytic performance mod-
els, very little has been reported in the literature on
performance modeling of disk arrays. The main reason
to this is that analytical models for disk arrays are dif-
ficult to formulate because of the presence of queueing
and fork-join synchronization [1]. Most existing perfor-
mance studies on disk arrays use time-consuming sim-
ulations with a few exceptions [2, 3, 4, 1, 5] which are
summarized in [1]. Until now, however, no one has de-
rived a queueing model that contains all of the following
important and realistic properties:

1. A logical disk request, often called array request
[1], may fork into several disk requests that are
served in parallel by a group of disks;

2. Array request size, i.e. the number of disks in-
volved in serving a logical disk request, can take
different values with respect to the total number
of disks in the disk array system depending on
the parity scheme, parity group size, degree of
declustering [6], and request type. It can not be
guaranteed that all logical disk requests require

either only one disk or all the disks in the sys-
tem;

3. The disk requests belonging to an array request
may finish their data accesses at different times

due to the randomness of head positions and queue-

ing effects in disks. This is true for all RAID
systems which operate asynchronously;

4. Depending on the I/O workloads, it can not be
guaranteed that there is always a new array re-
quest being issued immediately after a disk fin-
ishes its data access for a request.
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We present here an analytical model that contains
all these four properties for disk arrays. More impor-
tantly, our model gives a closed-form solution to the
expected response time of an array request with a simi-
lar approximation made by Kim and Tantawi in [4] (Eq.
(7)) that was validated through real measurements. The
model is based on a queue network consisting of proces-
sors and a disk array system queue. Customers or jobs
that circulate in the queue network are array requests
each of which consists of a fixed number (array request
size) of disk requests. When an array request is gener-
ated from a process, the disk requests belonging to the
array request are placed in corresponding queues of in-
volved disks. Each disk serves disk requests in the queue
on first-in-first-out (FIFO) basis. An array request is
complete only when all the disk requests belonging to
that array request have finished their disk accesses. As
a result, if one considers each array request as a queue
customer and looks at the disk array system queue as
a whole, the queue service discipline is not necessar-
ily first-in-first-out any more because some disks may
be more heavily loaded than others. This phenomenon
makes the analytical model nontrivial. We have devised
an approximation technique to handle this kind of ir-
regular queue service discipline. The analytical model
is validated through extensive simulation experiments
to show they are in a very good agreement.

2 Queueing Model

We model the disk array system as a two-node closed
queueing network as shown in Figure 1. Each job in
the queueing system represents a logical I/O request or
array request issued by a processor. The first node is a
conventional infinite-server queue. The event that job i
is in the first node implies that the corresponding pro-
cess ¢ is busy doing computation. A process makes an
I/O request after a certain amount of time when a file
needs to be loaded, a page fault occurs or alike. This
amount of computation time varies depending upon the
applications. It is assumed that the interval time be-
tween two consecutive I/O requests is an exponentially
distributed random variable with mean Z.

The second node consists of D parallel single-server
queues, each of which represents an individual disk and
the associated queue in the disk array of D disks. Upon
arrival at the second node, a job will split into n subjobs
each of which represents an individual disk request. The
n subjobs will join n consecutive disk queues starting
from one of D disks equally likely. Subjobs arriving at
a disk queue are served on the first-in-first-out basis.
A job remains in the second node until all its subjobs
are served. Although all the subjobs in a disk queue
are processed in the order of arrival, the same does not
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Figure 1: The queueing model.

necessarily apply to jobs as explained in the last section.
All subjobs are identical in the sense that they re-
quest exactly same amount of data such as a byte, a
block or a sector depending upon the degree of inter-
leaving. However, the service times of subjobs of a job
vary depending upon disk head positions and requested-
data locations. The service time of a subjob or a disk
request consists of three parts: seek time for the disk
head to move to the disk track containing the requested
data, rotation latency for the desired sector to rotate un-
der the head position before it can be read or written,
and transfer time for the requested data to be physi-
cally transferred from the disk to a buffer from where
the CPU will read complete data after all subjobs are
done. Previous research and experiments [1, 4] have
shown that the seek time is in the following form:

CVX +CyX +Co; for
where C,, Cp, and C., are constant chosen to satisfy
some mechanical and electrical constraints [1], and X is
a random variable. Most previous analytical models for
disk arrays have assumed that X is uniformly or expo-
nentially distributed [4]. In reality, X is the difference
in terms of track numbers between the current and de-
sired positions of the disk head. Both the current head
position and the position of the requested data track
are uniformly distributed between 0 and 7', where T is

the maximum number of tracks on one side of a disk.
To make our model more realistic, we consider X to

be the absolute difference between two uniform random
numbers. Taking X to be the absolute difference of two

uniform random numbers makes significant difference in
result from assuming X to be a uniform random num-
ber. The former gives T'//3 as the mean of X while the
latter gives T'/2 as the mean of X [7].

The rotation latency generally depends on the speed
of disk rotations. For today’s disks, a full revolution
takes a fixed amount of time that is usually about 16 ms.
It is reasonable to assume that the rotation latency to
be a uniform random variable between 0 and L, where
L is the length, in time, of one revolution time. Let
T represent the random variable for rotation latency.

X >0,

Clearly, Tr is independent of seek time and is uniformly
distributed between 0 and L. The transfer time is gen-
erally deterministic once the degree of interleaving is
determined. Let T; represent the data transfer time.
We have the service time of a disk queue in the second
node of the queue network

S=CVX+CoX+Co+Tr+Ts

where C,, Cy, C., and T; are constant and, X and Tg
are mutually independent random variables.

Consider an arbitrary queue in the second node.
Whenever there is an arrival at the second node, this
queue will receive a subjob with probability n/D since
the starting block of an array request is uniformly dis-
tributed over the D disks. Assuming that each proces-
sor performs context switching after issuing an array
request, the arrival process at each individual queue is
therefore a Poisson process with rate A which is given
by

for X >0, (1)

n P
A= A
Hence the second node can be considered as consisting
of D M/G/1 queues each of which has a service time S
given in Equation (1).

Let B(z) = Pr{S < z} be the cumulative distribu-
tion function of S. Let Y; be the waiting time (including
its service time) of an arbitrary subjob that joins the 7**
queue in the second node and let G;(y) = Pr{Y; < y}
be its cumulative distribution function. It can be shown
that all Y;’s have the same distribution. Let W be the
total time spent in the second node by an arbitrary job
and H(z) = Pr{W < z} be its cumulative distribution
function. Since a job remains in the second node until
the last subjob completes its disk access, W is given by

W:max(yvlana"'vyn)‘ (2)

We notice that the random variables Y;, Y5, ---, and
Yp are not necessarily independent. However, since
their correlation is quite weak from our experience in
modeling similar systems [8] and the simulation experi-
ments presented later in this paper, the approximation
assumption that they are independent is expected to
cause insignificant error for many cases of practical in-
terest. Under the independence assumption, we have

H(z) = G"(z), 3)
and the expected waiting time E(W) is given by
EW) = / (1-G™(z))dx. (4)
0

In order to derive E(W), let us first consider Y;, the
waiting time of each individual queue. Let uy (= E(Y))
and o2 be the mean and variance of Y, respectively.
From queueing theory, we obtain

wy = B(Y) = B(S) + % 5)
and
2 12 2 3
ot = B(S?) — BP(5) + T E ) MBS

41-p)*  3(1-p)’



where p = AE(S).
To find the moments E(S), E(S?) and E(S?), we
notice that S is the sum of two independent random

variables S; and S, where S; = C,vX + CvX and
Sy = C. + Tgr + T;. Therefore, we have

E(S)  =E(S;)+E(S),
E(S%) = E(S)+2B(SPE(S) +E(SD), (o)
E(S%) = E(S}) +3E(S7)E(Ss)

+3E(S1)E(S3) + E(S3).

Since S, is uniformly distributed between a = C,. + T}
and B =C, + T; + L, we have

E(Sy) =(a+p)/2=C.+T:+L/2,
aErggg) = (8° — %)/(3L), ®)
E(S3) = (B*—at)/(4L),

Let B;(x) be the cumulative distribution function
of the random variable S;. Then we have

Pr{S, <z} = Pr{C,VX + C,X < z}

2 —
:Pr{\/YsVC“+24gbx Ca}.
b

(9)

Since Pr{X < z} = (22T —2%)/T?,0 < z < T, which is

the distribution of the absolute difference between two
uniform random variables, we obtain

f(@)@T—f(z))
_ SR if 2 <y,
B () { 1, T otherwise, (10)
CiraCie—Ca \~
where v = /T C\,+TCy and f(z) = Ten ) :

Let by(x) = dB1(z)/dx for 0 < x < v. Then, we have
for 0 <z <7,

_2f'(x)  2f(x)f'(x)
h@)=—"7="-"713
1
= 7263 [2TC} — 2C2 — 2Cya+
L(2TC2 — C2 — 2Cya)
+Cu\/C? 1 4Cha a 11
\/ Cg + 4Cyx ( )
Hence we obtain
§
B(S,) = / by (x)da, (12)
0
§
E(S?) = / 22y (2)da, (13)
0
and N
B(S?) = / b () dz. (14)
0

Because of the nice form of Equation (11), we can
derive closed form expressions for E(S;1), E(S?) and
E(S3$) from the integrations in Equations (12), (13), and
(14). Substituting the expressions for E(S1), E(S?) and

E(S}) into Equation (7), we obtain the first, second and
third moments of S. Using Equations (5) and (6), we
get closed-form expressions for uy and oy. According
to (4) and the approximation in [4], we have

E(W) = py + oy +/2log(n). (15)
And a tight upper bound on E(W) is given by
—1
E(W) < py + oy ——. (16)
2n —1

3 Experimental Validation

In order to verify the correctness of our analytical model
developed in the last section, we have developed a sim-
ulator. There are two main approximations in our anal-
ysis: independence assumption to derive Equation (3)
and the approximation of E(max(Y;)) in Equation (15).
Our main purpose here is to analyze the effects of these
two approximations. We run our simulator in two dif-
ferent modes. In the first mode, the starting disk of an
array request is selected from the D disks equally likely.
Once the starting disk is determined, n disk requests are
then appended to the subsequent disk queues. As a re-
sult, dependency between disks exists. With this mode,
we check the errors of the analytical model caused by the
independence assumption. The second mode of the sim-
ulator assumes independence between disk queues, i.e.
n disks are selected randomly to serve an array request
upon arrival. With this mode, we analyze the sole ef-
fect of approximation in Equation (15). All simulations
have been run for sufficiently long time so that the 90%
confidence intervals are small enough to be within 1%.

We validate our analysis by considering all possible
workload parameters and the validation is done in terms
of response times. Recall that the load to the queue-
ing system is mainly determined by the arrival rate A
which is a function of D, n, Z, and P. We observed
through our experiments that the effects of changing
1/Z and P are identical, therefore we consider all pos-
sible values of D, n, and Z. By all possible values, we
mean the values of D, n, and Z that make p range from
very small to close to 1. Other system parameters are
fixed at the commonly used values in the literature :
C, = 04623, C, =0.0092, C. =2, T = 949, subblock
size is 4 Kbytes and the average transfer time is 0.6023
ms/Kbyte.

Figure 2 shows the comparison between our analysis
and the simulation. Response time of array requests are
drawn as a function of p which is the utilization of each
disk queue. Different p’s in Figure 2 are obtained by
varying D between 30 and 100. It can be seen from
this figure that our analytical model matches well with
both simulation results. It is clear from this figure that
the assumption that disk queues are independent brings
little error. Even at very high load, i.e. p approaching 1,
the results with independence assumption are very close
to that without independence assumption. Our analysis
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slightly over estimates the queueing delay at very high
load as shown in this figure. Such over estimation can
be mainly attributed to the independence assumption
and the approximation of Equation (15).

In Figure 3, we plotted the analytical and simula-
tion results by varying array request size n. Again, the
analytical results are very close to those of simulations
and have the exactly the same shape as that of simula-
tions. As the array request size increases, we observed
slight increase in the difference between the analysis and
simulations. This increase is under our expectation be-
cause the larger the n is, the stronger the dependence
between disk queues will be. As a result, the model
over estimates the delay. But, we notice that the error
caused by the second approximation (15) does not in-
crease with the increase of n. In general, the two results
match well. Similar agreements are observed by varying
interrequest time Z as shown in Figure 4.

4 Conclusions

In this paper, we have presented an approximate ana-
lytical performance model for disk array systems. We
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consider the request forking, queueing, and nonFIFO
service for array requests as is the case in reality. Based
on these assumptions, we have derived a closed-form
solution for the expected queueing delay of an array re-
quest in the disk array system. Simulation experiments
have been carried out to validate our analysis. It has
been shown that the newly developed analytical model
behaves well for all practical workloads. The closed-
form formula can be used easily by disk array designers
to parameterize the system with no cost.
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