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Abstract
7

Data storage plays an essential role in today’s fast-growing data-intensive network services. New standards and products emerge very
rapidly for networked data storage. Given the mature Internet infrastructure, the overwhelming preference among the IT community9
recently is using IP for storage networking because of economy and convenience. iSCSI is one of the most recent standards that allow
SCSI protocols to be carried out over IP networks. However, there are many disparities between SCSI and IP in terms of protocols, speeds,11
bandwidths, data unit sizes, and design considerations that prevent fast and efficient deployment of storage area network (SAN) over IP.
This paper introduces SCSI-to-IP cache storage (STICS), a novel storage architecture that couples reliable and high-speed data caching13
with low-overhead conversion between SCSI and IP protocols. A STICS block consists of one or several storage devices and an intelligent
processing unit with CPU and RAM. The storage devices are used to cache and store data while the intelligent processing unit carries15
out the caching algorithm, protocol conversion, and self-management functions. Through the efficient caching algorithm and localization
of certain unnecessary protocol overheads, STICS can significantly improve performance, reliability, and scalability over current iSCSI17
systems. Furthermore, STICS can be used as a basic plug-and-play building block for data storage over IP. Analogous to “cache memory”
invented several decades ago for bridging the speed gap between CPU and memory, STICS is the first-ever “cache storage” for bridging19
the gap between SCSI and IP making it possible to build an efficient SAN over IP. We have implemented software STICS prototype on
Linux operating system. Numerical results using popular benchmarks such as vxbench, IOzone, PostMark, and EMC’s trace have shown21
a dramatic performance gain over the current iSCSI implementation.
© 2004 Elsevier Inc. All rights reserved.23
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1. Introduction

As we enter a new era of computing, data storage has27
changed its role from secondary with respect to CPU and
RAM to primary importance in today’s information world29
[13]. Online data storage doubles every 9 months [7] due
to an ever-growing demand for networked information31
services [8,25,51]. In general, networked storage architec-
tures have evolved from network-attached storage (NAS)33
[11,17,35,37], storage area network (SAN) [23,39,42],
to most recent storage over IP (IP SAN) [17,44]. NAS35
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architecture allows a storage system/device to be directly 37
connected to a standard network, typically via Ethernet.
Clients in the network can access the NAS directly. A NAS- 39
based storage subsystem has built-in file system to provide
clients with file system functionality. SAN technology, on 41
the other hand, provides a simple block level interface
for manipulating nonvolatile magnetic media. Typically, a 43
SAN consists of networked storage devices interconnected
through a dedicated fibre channel (FC-4 protocol) network. 45
The basic premise of a SAN is to replace the “point-to-point”
infrastructure of server-to-storage communications with one 47
that allows “any-to-any” communications. A SAN provides
high connectivity, scalability, and availability using a spe- 49
cialized network protocol: FC-4 protocol. Deploying such
a specialized network usually introduces additional cost 51

YJPDC2069 DTD VER: 5.0.1 pp:1-17 (col.fig.: nil) PROD. TYPE: COM ED: Prathiba PAGN: Vish -- SCAN: Mangala

http://www.elsevier.com/locate/jpdc
mailto:hexb@tntech.edu
mailto:mingz@ele.uri.edu
mailto:qyang@ele.uri.edu


UNCORRECTED P
ROOF

ARTICLE IN PRESS

2 X. He et al. / J. Parallel Distrib. Comput. ( ) –

for implementation, maintenance, and management. Internet1
SCSI (iSCSI) [4,20,30,45,49] is the most recently emerging
technology with the goal of implementing the IP SAN.3

Compared to FC-4, implementing SAN over IP (IP SAN)
has several advantages [34,52]:

5
• IP SAN can run over standard off-the-shelf network com-

ponents, such as switched Ethernet, which reduces the7
cost. One can extend and expand the switched network
easily and quickly while riding the cost/performance im-9
provement trends of Ethernet.

• IP SAN can exploit existing IP-based protocols, and IP11
SANs using iSCSI can be managed using existing and fa-
miliar IP-based tools such as SNMP, while Fibre Channel13
SANs require specialized management infrastructure.

• A network that incorporates IP SANs need use only a sin-15
gle kind of network infrastructure (Ethernet) for both data
and storage traffic, whereas use of fibre channel proto-17
col (FCP) requires a separate kind of infrastructure (fibre
channel) for storage.19

IP SAN brings economy and convenience whereas it also
raises performance issues, which is the main downside of21
current IP SAN as compared to FC-SAN. Currently, there
are basically two existing approaches to implement IP SAN23
using iSCSI: one carries out SCSI and IP protocol conver-
sion at a specialized switch [39] and the other encapsulates25
SCSI protocol in TCP/IP at the host bus adapter (HBA) level
[45]. Both approaches have severe performance limitations.27
Converting protocols at a switch places an additional special
burden on an already-overloaded switch and requires spe-29
cialized networking equipment in a SAN. Such a specialized
switch is not only costly, as compared to off-the-shelf Eth-31
ernet switches, but also complicates installation, manage-
ment, and maintenance. To encapsulate SCSI protocol over33
IP requires significant amount of overhead traffic for SCSI
commands transfers and handshaking over the Internet. On35
a typical iSCSI implementation, we have measured around
58% of TCP/IP packets being less than 127 bytes long, im-37
plying an overwhelming quantity of small packets transfer-
ring SCSI commands and status (most of them are only39
one byte). A majority of such small packet traffic over the
net is not necessary because of the reliable and connection-41
oriented services provided by underlying TCP/IP. Our ex-
periments using the PostMark benchmark [22] have shown43
that efficient caching can reduce the total number of packets
transferred over the network from 3,353,821 to 839,100 for45
same amount of remote storage data, a 75 percent reduction!

In addition to the above-mentioned protocol disparities47
between SCSI and IP, packet transfer latency exists over
the network, particularly over long distances. Such latency49
does not decrease linearly with an increase in network band-
width. For example, we measured average network latencies51
over 100 Mbit and 1 Gbit Ethernet switches to be 128.99
and 106.78 �s, respectively. These results indicate that even53
though the bandwidth of Ethernet switches has increased to

gigabit or tens of gigabits, network latencies resulting from 55
packet propagation delays are still there.

Protocol disparities and network latencies motivate us to 57
introduce a new storage architecture: SCSI-to-IP cache stor-
age (STICS). The purpose of STICS is to bridge the dis- 59
parities between SCSI and IP so that an efficient SAN can
be built over the Internet. A typical STICS block consists 61
of a disk and an intelligent processing unit with an embed-
ded processor and sufficient RAM. It has two standard in- 63
terfaces: a SCSI interface and a standard Ethernet interface.
The disk is used as a nonvolatile cache that caches data 65
coming from possibly two directions: block data from the
SCSI interface and network data from the Ethernet interface. 67
In addition to standard SCSI and IP protocols running on
the intelligent processing unit, it also implements a special 69
caching algorithm controlling a two-level cache hierarchy
that writes data very quickly. Besides caching storage data, 71
STICS also localizes SCSI commands and handshaking op-
erations to reduce unnecessary traffic over the Internet. In 73
this way, it acts as a storage filter to discard a fraction of
the data that would otherwise move across the Internet, re- 75
ducing the bottleneck problem imposed by limited Internet
bandwidth and increasing storage data transfer rate. Appar- 77
ent advantages of the STICS are:

• It provides an iSCSI network cache to smooth out the 79
traffic and improve overall performance. Such a cache or
bridge is not only helpful but also necessary to a certain 81
degree because of the different nature of SCSI and IP,
such as speed, data unit size, protocols, and requirements. 83
Wherever there is a speed disparity, cache helps. Analo-
gous to “cache memory” used to cache memory data for 85
a CPU [36], STICS is a “cache storage” used to cache
networked storage data for a server host. 87

• It utilizes the techniques in a Log-structured file system
[46,53] to quickly write data into magnetic media for 89
caching data coming from both directions. A disk is used
in caching, which is extremely important for caching data 91
reliably since once data is written to a nonvolatile storage,
it is considered to be safe. 93

• By localizing part of SCSI protocol and filtering out some
unnecessary traffic, STICS can reduce the bandwidth re- 95
quired to implement a SAN.

• Active disks [1,29,43] are becoming feasible and popu- 97
lar. STICS represents another specific and practical im-
plementation of active disks. 99

• It is a standard plug-and-play building block for SAN
over the Internet. If ISTORE [7] is standard “brick” for 101
building storage systems, then STICS can be considered
as a standard “beam” or “post” that provides interconnect 103
and support for the construction of SANs.

Overall, STICS adds a new dimension to the networked 105
storage architectures. To quantitatively evaluate the perfor-
mance potential of STICS in a real network environment, 107
we have implemented the STICS under the Linux OS over
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an Ethernet switch. We have used popular benchmark pro-1
grams, such as PostMark [22], IOzone [40], vxbench,1 and
EMC’s trace to measure system performance. Benchmark3
results show that STICS provides up to 4.3 times perfor-
mance improvement over iSCSI implementation in terms of5
average system throughput. For EMC’s trace measurement,
STICS can be 6 times as fast as iSCSI in terms of average7
response time.

The paper is organized as follows. Section 2 summarizes9
related work. Section 3 presents the STICS architecture, fol-
lowed by detailed descriptions of the design and implemen-11
tation in Section 4. Section 5 presents our performance eval-
uation methodology and numerical results. Finally, Section13
6 concludes the paper.

2. Related work15

Existing research that is most closely related to STICS is
NAS [11-12,43]. The NAS technology provides direct net-17
work connection for hosts to access through network inter-
faces. It also provides file system functionality. NAS-based19
storage appliances range from terabyte servers to a simple
disk with an Ethernet plug. The main difference between21
NAS and SAN is that NAS provides storage at the file sys-
tem level while SAN provides storage at the block device23
level. Another difference is that NAS is attached to the same
LAN as the one connecting servers accessing storage, while25
SAN has a dedicated network connecting storage devices
without competing for network bandwidth with the servers.27
STICS provides a direct SCSI connection to a server host to
allow the server to access a SAN implemented over the In-29
ternet at the block level. In addition to being a storage com-
ponent of the SAN, STICS performs network cache func-31
tions for a smooth and efficient SAN implementation over IP
network.33

Another important related effort is Petal [27,48], a re-
search project of Compaq’s Systems Research Center. Petal35
uses a collection of NAS-like storage servers interconnected
using a specially customized LAN to form a unified virtual37
disk space to clients at the block level. iSCSI [17,20,45],
which emerged very recently, provides an ideal alternative39
to Petal’s customized LAN-based SAN protocol. Taking ad-
vantage of existing Internet protocols and media, it is a nat-41
ural way for storage to make use of TCP/IP, as demonstrated
by the earlier research work of Meter et al., VISA [33] to43
transfer SCSI commands and data using IP protocol. iSCSI
protocol is a mapping of the SCSI remote procedure invo-45
cation model over the TCP/IP protocol [45]. The STICS ar-
chitecture attempts to localize some of SCSI protocol traffic47
by accepting SCSI commands and data from the host and
filtering data block to be sent to the remote storage target.49
This SCSI-in block-out mechanism provides an immediate
and transparent solution, both to the host and the storage,51

1 An I/O benchmark developed by VERITAS Corp.

eliminating some unnecessary remote synchronization. Fur-
thermore, STICS provides a nonvolatile cache exclusively 53
for SCSI commands and data that are supposed to be trans-
ferred through the network. This cache reduces latency from 55
the host’s point of view and avoids many unnecessary data
transfers over the network, because many data are frequently 57
overwritten.

The idea of using a disk-based log to improve system 59
performance or to improve the reliability of RAM has been
used in both file system and database systems for a long time. 61
For example, the Log-structured File System (LFS [46,53]),
Disk Caching Disk (DCD [18]), and other similar systems all 63
use disk-based data/metadata logging to improve file system
performance and speed-up crash recovery. Several RAID 65
systems have implemented the LFS algorithm at the RAID
controller level [19,32,54]. LFS collects writes in a RAM 67
buffer to form large logs and writes large logs to data disks.
While many implementation techniques are borrowed from 69
existing work, the novelty of STICS is the new concept of
caching between SCSI and IP. 71

3. Architecture

Essentially, STICS is a cache that bridges the protocol and 73
speed disparities between SCSI and IP. Fig. 1 shows a typ-
ical SAN implementation over IP using STICS. Any num- 75
ber of storage devices or server computers can be connected
to the standard Internet through STICS to form a SAN. In- 77
stead of using a specialized network or specialized switch,
STICS connects a regular host server or a storage device 79
to the standard IP network using off-the-shelf components.
Consider STICS 1 in the diagram. It is directly connected 81
to the SCSI HBA of Host 1 as a local storage device. It
also acts as a cache and bridge to allow Host 1 to access, 83
at the block level, any storage device connected to the SAN
such as NAS, STICS 2, STICS 3, etc. In order to allow 85
a smooth data access from Host 1 to the SAN, STICS 1

Fig. 1. System overview. A STICS connects to the host via SCSI interface
and connects to other STICS’ or NAS via Internet. 87
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Fig. 2. STICS architecture.

provides SCSI service, caching service, naming service, and1
IP protocol service.

Fig. 2 shows the basic structure of STICS, which consists3
of five main components:

1. A SCSI interface: STICS supports SCSI communica-5
tions with hosts and other extended storage devices. Via
the SCSI interface, STICS may run under two differ-7
ent modes: initiator mode or target mode [55]. When
a STICS is used to connect to a host, it runs in target9
mode receiving requests from the host, carrying out the
I/O processing possibly through network, and sending11
back results to the host. In this case, the STICS acts as
a directly attached storage device from the host’s point13
of view. When a STICS is used to connect to a storage
device such as a disk or RAID to extend storage, it runs15
in initiator mode, and it sends or forwards SCSI requests
to the extended storage device. For example, in Fig. 1,17
STICS 1 runs in target mode while STICS 2 runs in
initiator mode.19

2. An Ethernet interface: Via the network interface, a STICS
can be connected to the Internet and share storage with21
other STICS’s or NAS.

3. An intelligent processing unit: This processing unit has23
an embedded processor and an amount of RAM. A spe-
cialized Log-structured file system, standard SCSI pro-25
tocols, and IP protocols run on the processing unit. The
RAM consists of a regular DRAM for read caching and27
a small (1–4 MB) nonvolatile RAM (NVRAM) for write
caching. The NVRAM is also used to maintain the meta29
data such as hash table, LRU list, and the mapping in-
formation (STICS_MAP). Alternatively, we can also use31
Soft Updates [10] technique to keep meta data consis-
tency without using NVRAM.33

4. A log disk: The log disk is a sequentially accessed
device. It is used to cache write data along with the35
NVRAM above in the processing unit. The log disk and
the NVRAM form a two-level hierarchical cache.37

5. Storage device: The regular storage device is an optional
component. It can be a disk, a RAID, or Just-Bunch-Of-39
Disks (JBOD). It is used as an extra and backup storage
capacity. For example, it can be used as temporary offline41

storage when the network fails. From the point of view
of a server host to which the STICS is connected through 43
the SCSI interface, this storage device can be considered
as a local disk. From the point of view of the IP network 45
through the network interface, it can be considered as a
component of a SAN with an IP address as its ID. 47

4. Design and implementation

4.1. STICS naming service 49

To allow a true “any-to-any” communication between
servers and storage devices, a global naming is necessary. 51
In our design, each STICS is named by a global location
number (GLN) which is unique for each STICS. Currently 53
we assign an IP address to each STICS and use this IP as
the GLN. 55

4.2. Cache structure of STICS

Each STICS has a read cache consisting of a large DRAM 57
and a write cache consisting of a two-level hierarchy with
a small NVRAM on top of a log disk. Frequently accessed 59
data reside in the DRAM that is organized as LRU cache [21]
for read operations. Write data are first stored in the small 61
NVRAM. Whenever the newly written data in the NVRAM
are sufficiently large or whenever the log disk is free, a log 63
of data is written into the log disk sequentially. After the log
write, the NVRAM becomes available to absorb additional 65
write data. At the same time, a copy of the log is placed in
the DRAM to speed up possible read operations of the data 67
that have just been written to the log disk. Data in the log
disk are organized in the format of segments similar to that 69
in a LFS [46]. A segment contains a number of slots each
of which can hold one data block. Data blocks in a segment 71
are addressed by their Segment IDs and Slot IDs.

Fig. 3 shows the data structure in both DRAM and 73
NVRAM. A Hash table is used to locate data in the
RAM buffer including DRAM and NVRAM. DRAM and 75
NVRAM can be differentiated through their addresses. A
LRU list and a Free list are used to keep tracks of the most 77
recently used data and the free slots, respectively.

Data blocks stored in the RAM buffer are addressed by 79
their Logical Block Addresses (LBAs). The Hash table con-
tains location information for each of the valid data blocks 81
in the buffer and uses LBAs of incoming requests as search
keys. The slot size is set to be the size of a block. A slot 83
entry consists of the following fields:

• An LBA of a cache line. It serves as the search key of 85
hash table;

• Global Location Number (GLN) if the slot contains data 87
from or to other STICS.
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location hash_ prev hash _next prev next Slot No
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# LBA 
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Fig. 3. RAM buffer layout. RAM buffer consists of slot entries and slots. The hash table, LRU list and Free list are used to organize the slot entries.

• A location field containing 2 parts:

1
(1) a state tag (2 bits), used to specify where the

slot data is: IN_RAM_BUFFER, IN_LOG_DISK,3
IN_DATA_DISK or IN_OTHER_STICS;

(2) a log disk block index (30 bits), used to specify5
the log disk block number if the state tag indicates
IN_LOG_DISK. The size of each log disk can be7
up to 230 blocks.

• Two pointers (hash_prev and hash_next) used to link the9
hash table.

• Two pointers (prev and next) used to link the LRU list11
and FREE list.

• A Slot-No used to describe the in-memory location of the13
cached data.

4.3. Basic operations15

4.3.1. Write
Write requests may come from one of two sources: the17

host via the SCSI interface and another STICS via the Eth-
ernet interface.19

Write requests from the host via SCSI interface: After re-
ceiving a write request, the STICS first searches the Hash21
table by the LBA address. If an entry is found, the entry
is overwritten by the incoming write and is moved to the23
NVRAM if it is in DRAM. If no entry is found, a free slot
entry in the NVRAM is allocated from the Free list, the25
data are copied into the corresponding slot, and its address
is recorded in the Hash table. The LRU list and Free list are27
then updated. When enough data slots (128 in our prelimi-
nary implementation) are accumulated or when the log disk29

is idle, the data slots are written into log disk sequentially in
one large write. After the log write completes successfully, 31
STICS signals the host that the request is complete and the
log is moved from the NVRAM to DRAM. 33

Write requests from another STICS via Ethernet interface:
A packet coming from the network interface may turn out to 35
be a write operation from a remote STICS on the network.
After receiving such a write request, STICS gets a data block 37
with GLN and LBA. It then searches the Hash table by the
LBA and GLN. The same writing process as above is then 39
performed.

4.3.2. Read 41
Similar to write operations, read operations may also

come either from the host via the SCSI interface or from 43
another STICS via the Ethernet interface.

Read requests from the host via SCSI interface: After re- 45
ceiving a read request, the STICS searches the Hash table
by the LBA to determine the location of the data. Data re- 47
quested may be in one of four different places: the RAM
buffer, the log disk(s), the storage device in the local STICS, 49
or a storage device in another STICS on the network. If the
data are found in the RAM buffer, the data are copied from 51
the RAM buffer to the requesting buffer. The STICS then
signals the host that the request is complete. If the data are 53
found in the log disk or the local storage device, the data
are read from the log disk or storage device into the request- 55
ing buffer. Otherwise, the STICS encapsulates the request
including LBA, current GLN, and destination GLN into an 57
IP packet and forwards it to the corresponding STICS.

Read requests from another STICS via Ethernet interface: 59
When a read request is found after unpacking an incoming
IP packet, the STICS obtains the GLN and LBA from the 61
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packet. It then searches the Hash table by the LBA and the1
source GLN to determine the location of the data. It locates
and reads data from that location. Finally, it sends the data3
back to the source STICS through the network.

4.3.3. Destages5
The operation of moving data from a higher-level storage

device to a lower level storage device is defined as destage7
operation [50]. Two levels of destage operations are defined
in STICS: destaging data from the NVRAM buffer to the9
log disk (Level 1 destage) and destaging data from the log
disk to a storage device (Level 2 destage). We implement a11
separate kernel thread, LogDestage, to perform the destaging
tasks. The LogDestage thread is registered during system13
initialization and monitors the STICS states. Level 1 destage
activates whenever the log disk is idle and there are data15
to be destaged in the NVRAM. Level 2 destage activates
whenever one of the following events occurs: (1) the STICS17
detects a CPU idle period; (2) the size of data in the log disk
exceeds a threshold value. Level 1 destage has higher priority19
than Level 2 destage. Once the Level 1 destage starts, it
continues until a log of data in the NVRAM buffer is written21
to the log disk. Level 2 destage may be interrupted if a new
request comes in or until the log disk becomes empty. If23
the destage process is interrupted, the destage thread would
be suspended until the STICS detects another idle period.25
For extreme burst writes, where the log disk is full, Level 1
destage forces subsequent writes to the addressed network27
storage to bypass the log disk to avoid cache overflow [50].

As for Level 1 destage, the data in the NVRAM buffer are29
written to the log disk sequentially in large size (64 KB). At
the same time, the data are moved from NVRAM to DRAM.31
The log disk header and the corresponding in-memory slot
entries are updated. All data are written to the log disk in33
“append” mode, which ensures that every time the data are
written to consecutive log disk blocks.35

For Level 2 destage, we use a “first-write-first-destage”
algorithm according to the LRU List. Currently, we are using37
the LRU replacement algorithm, and other algorithms [56]
are in consideration for the future implementation. Each time39
64 KB data are read from the consecutive blocks of the log
disk and written to the addressed network storage. The LRU41
list and free list are updated subsequently.

4.4. Cache coherence43

There are three ways to configure a distributed storage
system using STICS, placing STICS near the host, target45
storage, or both. If we place a STICS near the host, the cor-
responding STICS building block is a private cache. If we47
place a STICS near the storage, we have a shared cache sys-
tem. There are tradeoffs between shared cache and private49
cache configurations. From the point of view of cache effi-
ciency, we would like to place cache as close to a host as51
possible to minimize latency [38]. Such a private cache sys-

tem allows multiple copies of a shared storage data to reside 53
in different caches giving rise to the well-known cache co-
herence problem [2,3,6,9,16,24,26,28,41]. Shared caches, on 55
the other hand, do not have such cache coherence problem
because each cache is associated with target storage. How- 57
ever, each request has to go through the network to obtain
data at the target storage side. We have considered both pri- 59
vate and shared cache configurations. Shared cache configu-
ration is relatively simple. For private cache configuration, a 61
coherence protocol is necessary. One possible way to imple-
ment a cache coherence protocol in private cache system is 63
using the local consistency (LC) model [3], which helps to
minimize meta-data network traffic pertaining to coherence 65
protocol. A shared-read/exclusive-write lock (token) can be
used to implement the necessary synchronization [5,47]. The 67
details of the cache coherence protocol are out of scope of
this paper. Interested readers are referred to [14]. 69

4.5. Implementation

There are several ways to implement STICS. A software 71
STICS is a device driver or kernel module that controls and
coordinates SCSI HBA and network interface card (NIC). 73
It uses a part of host’s system RAM and part of disk to
form the cache. STICS can also be implemented at HBA 75
controller level as a STICS card. Such a card has sufficient
intelligence with RAM, IDE or SCSI interface, and Ethernet 77
interface. The IDE or SCSI interface is used to connect to
a log disk for caching. Finally, STICS can be implemented 79
as a complete cache box with built-in controller, log disks,
and local storage. 81

Currently, we have implemented a software prototype of
STICS on Linux kernel 2.4.2, and it is implemented as kernel 83
module that can be loaded and unloaded dynamically. We
simulate NVRAM using part of system RAM. This part of 85
system RAM is reserved when the system is boot up, and it
is not accessible to other applications. So this part of RAM 87
is “immune” to application-level software crash and more
reliable than regular RAM. The log disk is an additional IDE 89
hard disk for caching function. There is no local storage and
all I/O operations are remote operations going through the 91
network.

5. Performance evaluations 93

5.1. Methodology

For the purpose of performance evaluation, we have 95
implemented a STICS prototype and deployed a software
iSCSI. For a fair performance comparison, both iSCSI and 97
STICS have exactly the same CPU and RAM size. This
RAM includes read cache and write buffer used in STICS. 99
All I/O operations in both iSCSI and STICS are forced to
be remote operations to target disks through a switch.
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Fig. 4. iSCSI configuration. The host Trout establishes connection to target, and the target Squid responds and connects. Then the Squid exports hard
drive and Trout sees the disks as local.

Fig. 5. STICS configuration. The STICS cache data from both SCSI and
network.

Our experimental settings are shown in Figs. 4 and 5.1
Three PCs and a SUN workstation are involved in our ex-
periments, namely Trout, Cod, Squid, and Clam. Trout and3
Clam serves as the host and Squid as the storage target. Cod
serves as a switch console to monitor the network traffic.5
For STICS experiment, a software STICS is loaded as kernel
module. To focus on the STICS performance measurement,7
we disabled STICS2’s cache function on the target machine.
All cache function is performed by STICS1 on the initiator9
side. STICS2 only receives and forwards I/O requests in our
experiments. All these machines are interconnected through11
an 8-port Gigabit switch (Intel NetStructure 470 T) to form
an isolated LAN. Each machine is running Linux kernel13
2.4.2 with a Netgear GA622 T Gigabit NIC and an Adaptec
39160 high-performance SCSI adaptor. The network cards15
and switch can be tuned to gigabit and 100 Mbit dynami-
cally. The configurations of these machines are described in17
Table 1 and the characteristics of individual disks are sum-
marized in Table 2.19

For iSCSI implementation, we compiled and run the
Linux iSCSI developed by Intel Corporation [20]. The21
iSCSI is compiled under Linux kernel 2.4.2 and configured
as shown in Fig. 4. There are 4 steps for the two machines23
to establish communications via iSCSI. First, the host es-
tablishes connection to target; second, the target responds25
and connects; third, the target machine exports its disks and
finally the host sees these disks as local. All these steps are27
finished through socket communications. After these steps,
the iSCSI is in “full feature phase” mode where SCSI com-29
mands and data can be exchanged between the host and
the target. For each SCSI operation, there will be at least31
4 socket communications as follows: (1) the host encapsu-
lates the SCSI command into packet data unit (PDU) and33

sends this PDU to the target; (2) the target receives and
decapsulates the PDU. It then encapsulates a response into 35
a PDU and sends it back to the host; (3) the host receives
and decapsulates the response PDU. It then encapsulates 37
the data into a PDU and sends it to the target if the target
is ready to transfer; (4) the target receives the data PDU 39
and sends another response to the host to acknowledge the
finish of the SCSI operation. iSCSI supports both solicited 41
and unsolicited writes, but we found in current iSCSI im-
plementation, the performance difference between solicited 43
and unsolicited writes are less than 10%, which is very
small compared to our STICS performance gain, so in our 45
experiments, we configured iSCSI with solicited writes
which is the default setting. 47

Our STICS runs on Linux kernel 2.4.2 with target mode
support and is loaded as a kernel module as shown in Fig. 49
5. Four MB of the system RAM is used to simulate STICS
NVRAM buffer, another 16 MB of the system RAM is used 51
as the DRAM read cache in our STICS, and the log disk is
a standalone hard drive. When requests come from the host, 53
the STICS first processes the requests locally. For write re-
quests, the STICS writes the data to its write buffer. When- 55
ever the log disk is idle, the data will be destaged to the log
disk through level 1 destage. After data are written to the 57
log disk, STICS signals host write complete and moves the
data to DRAM cache. When data in the log disk exceeds a 59
threshold or the system is idle, the data in log disk will be
destaged to the remote target storage through the network. 61
The hash table and LRU list are updated. When a read re-
quest comes in, the STICS searches the hash table, locates 63
where the data are, and accesses the data from RAM buffer,
log disk, or remote disks via network. 65

In our previous discussions, all STICS are configured in
“report after complete” mode. This scheme has a good reli- 67
ability because a write is guaranteed to be stored in a disk
before the CPU is acknowledged. If the 4-MB RAM buffer 69
is nonvolatile, “immediate report” mode can be used, where
as soon as the data are transferred to the RAM buffer, STICS 71
sends an acknowledgement of “write complete” to the host.

5.2. Benchmark programs and workload characteristics 73

It is important to use realistic workloads to drive our
STICS for a fair performance evaluation and comparison. 75

YJPDC2069



UNCORRECTED P
ROOF

ARTICLE IN PRESS

8 X. He et al. / J. Parallel Distrib. Comput. ( ) –

Table 1
Machines configurations

Processor RAM (MB) IDE disk SCSI disk

Trout PII-450 128 2 Maxtor ASO10a1 N/A
Cod PII-400 128 Maxtor ASO10a1 N/A
Squid PII-400 128 2 Maxtor ASO10a1 IBM 07N3200
Clam Ultra SPARC II 450 256 N/A SUN18G

Table 2
Disk parameters

Disk model Interface Capacity (G) Data buffer RPM Latency (ms) Transfer rate (MB/s) Seek time (ms) Manufacturer

O7N3 Ultra SCSI 36.7 N/A 10,000 3.0 29.8 4.9 IBM
AS010a1 Ultra ATA/100 10.2 2MB 7200 4.17 16.6 8.5 Maxtor
SUN18G Ultra SCSI 18.2 512KB 10,000 3.0 18 8.5 SUN

For this reason, we chose to use 3 popular benchmark pro-1
grams and a real-world trace.

The benchmarks we used to measure system throughput3
are PostMark [22] which is a popular file system bench-
mark developed by Network Appliance, IOzone [40], and5
vxbench developed by VERITAS. PostMark measures per-
formance in terms of transaction rates in an ephemeral small-7
file environment by creating a large pool of continually
changing files. “PostMark was created to simulate heavy9
small-file system loads with a minimal amount of soft-
ware and configuration effort and to provide complete re-11
producibility [22].” PostMark generates an initial pool of
random text files ranging in size from a configurable low13
bound to a configurable high bound. This file pool is of
configurable size and can be located on any accessible file15
system. Once the pool has been created, a specified number
of transactions occur. Each transaction consists of a pair of17
smaller transactions, i.e. Create file or Delete file, and Read
file or Append file. Each transaction type and its affected19
files are chosen randomly. The read and write block size can
be tuned. On completion of each run, a report is generated21
showing some metrics such as elapsed time, transaction rate,
total number of files created and so on. IOzone and vxbench23
generate and measure a variety of file operations based on a
big file. Vxbench can only run on Solaris operating system.25
We used these two benchmarks to measure the I/O through-
put in terms of KB/Sec.27

In addition to benchmark programs, we also used a real-
world trace obtained from EMC Corporation. The trace, re-29
ferred to as EMC-tel trace hereafter, was collected by an
EMC Symmetrix system installed at a telecommunication31
consumer site. The trace file contains 230,370 requests, with
a fixed request size of 4 blocks. The whole dataset size is33
900 M bytes. The trace is write-dominated with a write ratio
of 89%. The average request rate is about 333 requests/s. In35
order for the trace to be read by our STICS and the iSCSI
implementation, we developed a program called ReqGener-37
ator to convert the traces to high-level I/O requests. These

requests are then fed to our STICS and iSCSI system to 39
measure performance.

5.3. Measured results and discussions 41

5.3.1. Postmark results
Our first experiment is to use PostMark to measure the 43

I/O throughput in terms of transactions per second. In our
tests, PostMark was configured in two different ways. First, 45
a small pool of 1000 initial files and 50,000 transactions;
and second a large pool of 20,000 initial files and 100,000 47
transactions. The total sizes of accessed data are 436 MB
(151.05 MB read and 285.08 MB write) and 740 MB 49
(303.46 MB read and 436.18 MB write), respectively. They
are much larger than host system RAM (128 MB). We left 51
all other PostMark parameters at their default settings. The
network is configured as a 100 MB network. 53

In Fig. 6, we plotted two separate bar graphs corre-
sponding to the small file pool case and the large one, 55
respectively. Each group of bars represents the system
throughputs of STICS with report after complete (STICS: 57
light blue bars), iSCSI (iSCSI: dark red bars) and STICS
with immediate report (STICS-Imm: light yellow bars) for 59
a specific data block size. It is clear from this figure that
STICS shows obvious better system throughput than the 61
iSCSI. The performance improvement of STICS over iSCSI
is consistent across different block sizes and for both small 63
pool and large pool cases. The performance gains of STICS
with report after complete over iSCSI range from 60% to 65
110%. STICS with immediate report outperforms iSCSI by
a factor of 2.69–4.18. 67

To understand why STICS provides such impressive per-
formance gains over the iSCSI, we monitored the network 69
activities at the Ethernet Switch through the console machine
cod for both STICS and iSCSI implementations. While both 71
implementations write all data from the host to the remote
storage, STICS transfers dramatically less packets over the 73
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Fig. 6. PostMark measurements (100 Mb network).

Table 3
Packet distribution

No. of packets with different sizes

< 64 Bytes 65–127 128–255 256–511 512–1023 > 1024

ISCSI 7 1,937,724 91 60 27 1,415,912
STICS 4 431,216 16 30 7 607,827

Table 4
Network traffic

Total packets Full/partial packet ratio Bytes transferred Average bytes/packet

iSCSI 3,353,821 0.73 1,914,566,504 571
STICS 839,100 1.41 980,963,821 944

network than iSCSI does. Tables 3 and 4 show the mea-1
sured network activities for both STICS and iSCSI. Based
on our analysis of the numerical results, we believe that the3
performance gain of STICS over iSCSI can be attributed to
the following facts. First, the log disk along with the RAM5
buffer forms a large cache for the host and absorbs small
writes very quickly, which reduces the network traffic be-7
cause many data are overwritten in the local log disk. As
shown in Table 4, the number of total bytes transferred over9
the network is reduced from 1,914,566,504 to 980,963,821
although the total data stored in the target storage is the11
same. Secondly, STICS eliminates many remote handshak-
ing caused by iSCSI, which in turn reduce the network traf-13
fic. We noticed in Table 3 that the small size packets, which
are mainly used to transfer iSCSI handshaking messages, are15
dramatically reduced from 1,937,724 to 431,216. Thirdly,
by combining small writes into large ones, STICS increases17
the network bandwidth utilization. If we define full packet
as the packet with size larger than 1024 bytes of payload19
data, and other packets are defined as partial packets. As
shown in Table 4, STICS improves the ratio of full packets21
to partial packets from 0.73 to 1.41, and average bytes per
packet is increased from 571 in iSCSI to 944 in STICS.23

At this point, readers may wonder how many I/O requests
are satisfied by the host Linux file system cache and how25

many are satisfied by STICS cache. To answer this question,
we profile the I/O requests by adding several counters as 27
follows to record the number of requests received at each
layer.

29
• ReqVFSRcv: This counter is used to record how many

I/O requests received at Linux file system layer. This is 31
done by modifying Linux kernel file system read_write
function. 33

• ReqToRaw: This counter is used to record how many I/O
requests are forwarded to low-level block layer. This is 35
done by modifying Linux kernel block I/O ll_rw_blk func-
tion. The difference between ReqToRaw and ReqBuffer- 37
Rcv roughly reflects the number of requests satisfied by
Linux file system cache (ReqFSCache). 39

• ReqSTICSCache: These counter records the number of
requests satisfied by local STICS1 cache. 41

Table 5 shows the detail breakdown of I/O requests. It is
obvious that during the STICS test, 39.58% I/O requests are 43
satisfied by the host file system cache, and additional 29.2%
requests are satisfied by STICS cache. We also found that 45
compared to original iSCSI, the reservation of 20 MB system
RAM for STICS did not dramatically reduce the hit ratio of 47
file system cache (39.58% vs. 39.84%). The reason is that
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Table 5
Requests breakdown

ReqVFSRcv ReqToRAW ReqFSCache (percentage) ReqSTICSCache (percentage)

ISCSI 3,104,257 1,867,529 1,236,728 (39.84%) N/A
STICS 3,069,438 1,854,554 1,214,884 (39.58%) 896,582 (29.21%)

more requests are satisfied by STICS cache, the replacement1
possibility is reduced in the file system cache.

Besides the above requests, we have also measured the3
number of major SCSI commands [55] received on the target
side as shown below in Table 6 . We have observed dramatic5
reduction of data transfer commands (READ and WRITE).
STICS filters out most READ commands (from 237,659 to7
94,502) because many reads are satisfied by local STICS
cache. We have also observed a reduction in the number of9
INQUIRY command (from 2009 to 1278) because of less
number of data transfer commands (the host does not have11
to inquiry the storage device so often as seen in original
iSCSI implementation).13

Above results are measured under 100 MB network, when
we configured the switch and network cards as gigabit net-15
work, we observed similar results as shown in Fig. 7. The
performance gains of STICS with report after complete over17
iSCSI range from 51% to 80%. STICS with immediate re-
port outperforms iSCSI by a factor of 2.49–3.07. The reason19
is as follows. When the network is improved from 100 MB
to 1 GB, the network latency is not decreased linearly. In our21
test, we found the average latencies for 100 MB and 1 GB
network are 128.99 and 106.78 �s. The network performance23
is improved less than 20% in terms of latency from 100 MB
to GB network.25

5.3.2. IOzone results
Above experiment shows that STICS outperforms iSCSI27

for workloads consisting of a lot of small files. Our next
experiment is to use IOzone to measure the behavior of29
STICS and iSCSI under a huge file. The network is con-
figured to a 100 MB network. All I/O operations are set to31
“Synchronous” mode, which means the host is not acknowl-
edged until data is written to a disk. The data set is 512 M33
bytes in our test.

In Fig. 8, we plotted bar graphs for random read and ran-35
dom write operations against request size for STICS and
iSCSI, seperately. The request sizes range from 1 KB to37
32 KB. In all scenarios, STICS outperforms iSCSI. The per-
formance gain of STICS over iSCSI ranges from 51% to a39
factor of 4.3.

5.3.3. Vxbench results41
In order to verify that STICS works well under different

host platforms, our next experiment is to test STICS un-43
der Solaris operating systems. In this test, we use vxbench
to measure the performance, which is a popular file system45
benchmark program developed by VERITAS Corp. The net-

work is configured to a 100 MB network. The data set is set 47
to 512 M bytes.

We measured the system throughput and host CPU uti- 49
lization for two workload patterns: random write and mixed
I/O as shown in Figs. 9 and 10, respectively. Under STICS, 51
the host CPU utilization increased dramatically, which im-
proved the system throughput as in Fig. 9. The performance 53
gain of STICS over iSCSI ranges from 52% to a factor of 1.9.

5.3.4. Response times 55
Our next experiment is to measure and compare the re-

sponse times of STICS and iSCSI under EMC trace. The 57
network is configured as a Gigabit network. Response times
of all individual I/O requests are plotted in Fig. 11 for STICS 59
with immediate report (Fig. 11a), STICS with report after
complete (Fig. 11b) and iSCSI (Fig. 11c). Each dot in a fig- 61
ure represents the response time of an individual I/O request.
It can be seen from the figures that overall response times of 63
STICS are much smaller than that of iSCSI. In Fig. 8b, we
noticed 4 requests take up to 300 ms. These few peak points 65
drag down the average performance of STICS. These exces-
sive large response times can be attributed to the destaging 67
process. In our current implementation, we allow the level 2
destaging process to continue until the entire log segment is 69
empty before serving a new storage request. It takes a long
time to move data in a full log segment to the remote data 71
disk. We are still working on the optimization of the destage
algorithm. We believe there is sufficient room to improve 73
the destaging process to avoid the few peak response times
of STICS. 75

We also plotted histogram of request numbers against
response times in Fig. 12. In this figure, X-axis represents 77
response time and Y-axis represents the number of storage
requests finished at a particular response time. For exam- 79
ple, a point (X, Y) = (10, 2500) means that there are 2500
requests finished within 10 ms. As shown in Fig. 12a, for 81
the STICS with immediate report, most requests are fin-
ished within 2 ms, because STICS signals the complete of 83
requests when the data are transferred to NVRAM buffer
for write requests. The average response time is 2.7 ms. For 85
the STICS with report after complete as shown in Fig. 12b,
the response times of the majority of requests fall within 87
the range of 2–5 ms. The rest of requests take longer time
to finish but very few of them take longer than 40 ms. The 89
average response time is 5.71 ms.

The iSCSI, on the other hand, has obvious larger response 91
time. The response times of the majority of requests fall
within the range of 6–28 ms as shown in Fig. 9c. No requests 93
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Table 6
Major SCSI commands breakdown

READ WRITE INQUIRY READ_CAPACITY TEST_UNIT_READY

iSCSI 237,659 309,182 2009 3 53
STICS 94,502 200,531 1278 3 47
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Fig. 7. PostMark measurements (gigabit network).
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Fig. 10. vxbench Results (CPU utilization).

Fig. 11. Response times for EMC-tel trace. Each dot in this figure shows the response time of an individual I/O request. (a) STICS with
immediate report (b) STICS with report after complete. (c) iSCSI.

are finished within 5 ms. Some of them even take up to1
400 ms. The average response time is 16.73 ms, which is
2.9 times as much as STICS with report after complete and3

6.2 times as much as STICS with immediate report. Such a
long responses time can be mainly attributed to the excessive 5
network traffic of iSCSI.
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Fig. 12. Histograms of I/O response times for trace EMC-tel. (a) STICS with immediate report (b) STICS with report after complete. (c) iSCSI.

5.4. Costs, reliability, and scalability analysis1

As shown in the last subsection, STICS presents
significant performance gains over the standard iSCSI im-3
plementation. One obvious question to ask is whether such
performance improvement comes at extra hardware cost. To5
answer this question, we have carried out cost analysis as
compared to iSCSI. In our experimental implementations,7
all hardware components such as CPU, RAM, cabling and
switches are exactly the same for both iSCSI and STICS9
except for an additional disk in STICS for caching. With
rapid dropping of disk prices, such an additional disk is11
easily justifiable. Typical cost of a 20 GB disk is just around
$50 while a typical SAN costs over tens of thousands dol-13

lars, implying a very small fraction of additional cost of
STICS. 15

Table 7 lists the practical cost of building a small (480 GB)
SAN configuration with 6 servers using iSCSI and STICS, 17
respectively.2 As shown in this table, the cost difference
between the two is just around 5%. Considering software 19
cost ($22,059) and maintenance cost ($8,676) for the even
smaller SAN system (200 GB) [31], the cost difference be- 21
tween the two is much less than 2%. We believe trading 2%
of additional cost for six folds performance gain is certainly 23
worthwhile.

2 Prices are as of 12/12/2003 at www.dell.com.
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Table 7
Hardware costs comparison

ISCSI STICS

Qty Cost Total Qty Cost Total

HBA card 12 $336.95 $4043.40 12 $336.95 $4,043.40
Switch 1 $1803.95 $1803.95 1 $1803.95 $1803.95
GB NIC 12 $185.95 $2231.40 12 $185.95 $2231.40
OS HDD 12 $52.16 $625.92 12 $52.16 $625.92
SCSI storage HDD 6 $573.26 $3439.56 6 $573.26 $3439.56
Log disks 12 $52.16 $625.92
Total $12,144.23 $12770.15

We have also considered the cost of implementing iSCSI1
and STICS in hardware. For the same SAN configuration
with 6 servers, iSCSI would need an iSCSI to SCSI converter3
costing $5083 [31] or iSCSI cards. The additional hardware
for each STICS would include an I/O processor with 4-MB5
NVRAM. We can conservatively estimate the total cost in
addition to Table 6 for 12 STICS to be under $5000. While at7
the same time, the cost of a Dell entry level SAN (CX200LC)
with 360 GB is $25,604.9

High reliability of STICS is obvious as compared to tradi-
tional storage cache using large RAM because STICS uses11
disks for caching. The small NVRAM in our cache hierar-
chy is only up to 4 MB. Transient data stay in this NVRAM13
less than a few hundreds milliseconds. Majority of cached
data are in disks that are made extremely reliable today with15
the mean time to failure of millions of hours. RAM, on the
other hand, has much higher failure rate with mean time to17
failure of a few thousands hours. In addition, RAM cache is
also vulnerable to hardware failures such as board failure,19
CPU failure, and so forth. Disks can be unplugged from a
failed system and plugged to another good system with data21
intact. In addition, log disks can be mirrored to further in-
crease the reliability.23

STICS-based SAN systems are also highly scalable. Off-
the-shelf Ethernet Switches can be used to connect as many25
STICS as possible without obvious bottleneck. Furthermore,
the LAN connecting STICS can be a completely separate27
network from the LAN interconnecting servers. This is in
contrast to NAS that is attached to the same LAN where29
servers are connected, competing for the same network re-
sources with servers that access the NAS.31

To show the scalability of STICS, we built a larger sys-
tem as shown in Fig. 13, where STAR1 is the initiator, and33
STAR2 through 5 are targets. STAR6 is the network traf-
fic monitor. STICS are installed in STAR1..5, where only35
STICS on the initiator is cache enabled. We also deployed
an iSCSI system using the same 5 nodes, where STAR1 is37
the iSCSI initiator and STAR2 through 5 are iSCSI targets.

We measured the performance of both STICS with re-39
port after complete and iSCSI using PostMark benchmark
under similar configuration as Section 5.3.1 under Gigabit41
network. The measurement results in terms of transactions43

Fig. 13. A larger system area network utilizing STICS.

per second are shown in Table 8 . We observed performance
gains ranging from 52% to 74% for different block sizes, 45
indicating a good scalability of STICS.

6. Conclusions 47

In this paper, we have introduced a new concept “SCSI-to-
IP cache storage” (STICS) to bridge the disparities between 49
SCSI and IP in order to facilitate implementation of SAN
over the Internet. STICS adds a new dimension to networked 51
storage architectures allowing any server host to efficiently
access a SAN on Internet through a standard SCSI inter- 53
face. Using a nonvolatile “cache storage”, STICS smoothes
out the storage data traffic between SCSI and IP very much 55
like the way “cache memory” smoothes out CPU-memory
traffic. We have implemented a prototype STICS under the 57
Linux operating system. We measured the performance of
STICS as compared to a typical iSCSI implementation us- 59
ing popular benchmarks (PostMark, IOzone, and vxbench)
and a real world I/O workload (EMC’s trace). PostMark, 61
Iozone, and vxbench results have shown that STICS en-
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Table 8
Performance comparison between STICS and iSCSI with 5 nodes (20,000 initial files and 10,0000 transactions)

Block Size (bytes)

512 1024 2048 4096

iSCSI 318 367 354 283
STICS 552 589 537 432
STICS/iSCSI 1.74 1.61 1.52 1.53

hances performance of iSCSI by a factor of 4.18, 4.3, and1
1.9, respectively, in terms of average system throughput.
Numerical results under EMC’s trace show a factor of3
2.9–6.2 performance gain in terms of average response
time. Furthermore, STICS is a plug-and-play building block5
for storage networks.
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