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Abstract

iSCSI is one of the most recent standards that allows
SCSI protocols to be carried out over IP networks. How-
ever, to encapsulate SCSI protocol over IP requires sig-
nificant amount of overhead traffic for SCSI commands
transfers and handshaking over the Internet. In this pa-
per, we propose a caching scheme, called iCache, to im-
prove the iSCSI performance. iCache uses a log disk along
with a piece of non-volatile RAM to cache the iSCSI traf-
fic. Through efficient caching algorithm, iCache can sig-
nificantly improve performance over current iSCSI systems.
Numerical results using popular benchmark program and
real world trace have shown dramatic performance gain.

1 Introduction

Data storage plays an essential role in today’s fast-
growing data-intensive network services. New standards
and products emerge very rapidly for networked data stor-
ages. Given the mature Internet infrastructure, overwhelm-
ing preference among IT community recently is using IP
for storage networking [3, 4, 6, 10, 12] because of economy
and convenience. iSCSI is the most recent emerging tech-
nology with the goal of implementing the SAN technology
over the better-understood and mature network infrastruc-
ture: the Internet (TCP/IP).

Implementing storage over IP brings economy and con-
venience whereas it also raises issues such as performance
and reliability. Currently, there are basically two existing
approaches: one encapsulates SCSI protocol in TCP/IP at
host bus adapter (HBA) level [13] and the other carries out
SCSI and IP protocol conversion at a specialized switch
[2]. Both approach have severe performance limitations.
To encapsulate SCSI protocol over IP requires significant
amount of overhead traffic for SCSI commands transfers
and handshaking over the Internet. Converting protocols
at a switch places special burden to an already-overloaded

switch and creates another specialized networking equip-
ment in a SAN. On a typical iSCSI implementation, we
have measured around 58% of TCP/IP packets being less
than 127 bytes long, implying an overwhelming quantity of
small size packets to transfer SCSI commands and status
(most of them are only one byte). Majority of such small
packet traffic over the net lowers the network bandwidth uti-
lization.

This paper introduces a cache scheme called iCache
(iSCSI cache) aimed to speedup current iSCSI performance.
Based on our previous DCD [7] technology, we use a small
amount of non-volatile RAM (NVRAM) and a log disk to
form a two-level hierarchical cache for iSCSI requests as
shown in Figure 1. iCache converts small requests into large
ones (logs) before writing data into remote storage though
the network, and utilizes the Log-structured file system to
quickly write data into log disks for caching data. iCache
can also improve the reliability of the system because both
meta data and user data are cached in a log disk that is much
more reliable than RAM. Moreover, iCache is completely
transparent to the OS. It does not require any changes to the
OS nor does it need accesses to the kernel source code. Fur-
thermore, iCache also localizes SCSI commands and hand-
shaking operations to reduce unnecessary traffic over the
Internet. In this way, it acts as a storage filter to discards
a fraction of the data that would otherwise move across the
Internet, reducing the bottleneck imposed by limited Inter-
net bandwidth and increasing storage data rate.

To quantitatively evaluate the performance potential of
iCache in real world network environment, we have imple-
mented the iCache prototype under the Linux OS as a load-
able kernel driver. We have used PostMark [9] benchmark
and EMC’s trace to measure system performance. Post-
Mark results show that iCache provides 53% to 78% perfor-
mance improvement over iSCSI implementation in terms of
average system throughput. An order of magnitude perfor-
mance gain is observed for 90% of I/O requests under the
EMC’s trace in terms of response time.

The paper is organized as follows. Next section



presents the design and implementation of iCache. Section
3 presents our initial experiments and performance evalua-
tions. We discuss the related research work in Section 4 and
conclude our paper in Section 5.

2 Design and Implementation

This section describes the data structures and algo-
rithms used to implement our iCache driver. The cache
organization in iCache consists of two level hierarchies: a
RAM cache and a log disk. Frequently accessed data re-
side in the RAM that is organized as LRU cache as shown
in Figure 2. Whenever the newly written data in the RAM
are sufficiently large or whenever the log disk is free, data
are written into the log disk. There are also less frequently
accessed data kept in the log disk. Data in the log disk are
organized in the format of segments similar to that in a Log-
structured File System [14]. A segment contains a number
of slots each of which can hold one data block. Data blocks
in segments are addressed by their Segment IDs and Slot
IDs.

Figure 1. iCache Architecture

2.1 RAM Cache Structure

The RAM used in iCache is a set of continuous mem-
ory locations reserved and allocated from the system non-
paged pool upon loading of the iCache driver. It consists of

Figure 2. RAM buffer organization

two main parts, RAM Headers and Segment buffers. RAM
headers are in-memory copies of the segment header of the
log disk which will be discussed shortly. Each segment
buffer consists of a buffer header and several slots. Each
segment has its own unique Segment Buffer ID. Our driver
makes the segment buffers appear infinite by reusing it cir-
cularly while guaranteeing that it does not overwrite useful
information. A slot is the basic caching unit (Figure 2). In
our implementation, a segment buffer is 64KB and a slot
can store 1KB data. Therefore, our 1 MB RAM buffer con-
tains 16 segment buffers and each segment buffer consists
of 64 slots.

Data blocks stored in the RAM cache are addressed by
their Logical Block Addresses (LBAs) and organized by a
hash table. The Hash Table contains location information
for each of the valid data blocks in the cache and uses LBAs
of incoming requests as search keys. The buffer header de-
scribes the contents and the status of the corresponding seg-
ment buffer. It contains:

1. A Buffer ID which is used to identify a segment buffer.

2. A Slot bitmap which is used to describe the status (free
or used) of each slot within the segment buffer.

3. A Status field to describe the status of the segment
buffer. A segment can be in one of 3 states: free which
means no data on this segment; dirty which means that
the segment contains changed data that has not been
written to the log disk yet; valid which means that the
segment contains data which has already been written
to the log disk.



4. A SlotLBA table. Each slot in the segment has a cor-
responding entry in the table. Each entry is an integer
representing the target Logical Block Address (LBA)
of the data in the slot.

Initially all Segment Buffers are free. When a write
request arrives, the driver picks a free Segment Buffer to
become the Current Segment Buffer. Meanwhile the driver
also obtains a free disk segment from the Free-Segment-
List to become the current Disk Segment. The driver then
p̈airsẗhe RAM segment buffer and the disk segment together
by writing the Segment Buffer ID to the corresponding field
in the RAM header. From this point until the current Seg-
ment Buffer is written into the current Disk Segment on the
cache-disk, incoming write data are written into the slots of
this Segment Buffer.

2.2 Log-disk organization

The entire log disk is divided into a number of fixed-
size segments (clusters). The iCache driver always writes
an entire segment to the log disk. The organization of the
log disk is similar to that of the RAM image. The log disk
consists of segments, each of which also has a header (seg-
ment header) and several slots. The segment and slot sizes
are 64KB and 1KB, respectively, so the log disk contains
320 segments and each segment consists of 64 slots. The
segment header contains the following information:

1. A Segment ID which identifies the segment.

2. A Buffer ID, which associates the segment with the
RAM segment buffer.

3. A Slot bitmap which is used to describe the status (free
or used) of each slot within the segment.

4. A Time Stamp which records the time when the seg-
ment is written into the log disk. During a crash recov-
ery period, the time stamps help the iCache driver to
search for segments.

5. A SlotLBA table same as the SlotLBA table in the
Buffer header of RAM cache.

2.3 Basic operations

2.3.1 Write

After receiving a write request, the iCache first searches the
Hash Table by the LBA address. If an entry is found, the en-
try is overwritten by the incoming write. Otherwise, a free
slot entry is allocated from the Free List, the data are copied
into the corresponding slot, and its address is recorded in the
Hash table. The relevant data structures are then updated.

When enough data slots (64 in our preliminary implemen-
tation) are accumulated or when the log disk is idle, the
data slots are written into log disk sequentially in one large
write. After the log write completes successfully, iCache
signals the host that the request is complete.

2.3.2 Read

After receiving a read request, the iCache searches the Hash
Table by the LBA to determine the location of the data. Data
requested may be in one of three different places: the RAM
buffer, the log disk(s), and iSCSI storage device. If the data
is found in the RAM buffer, the data are copied from the
RAM buffer to the requesting buffer. The iCache then sig-
nals the host that the request is complete. If the data is found
in the log disk, the data are read from the log disk. Other-
wise, the iCache encapsulates the request including LBA,
and destination IP into an IP packet and forwards it to the
remote iSCSI storage device.

2.3.3 Destages

The operation of moving data from a higher-level storage
device to a lower level storage device is defined as destage
operation. There are two levels of destage operations in
iCache: destaging data from the RAM buffer to the log
disk (Level 1 destage) and destaging data from log disk
to a iSCSI storage device (Level 2 destage). We imple-
ment a separate kernel thread, LogDestage, to perform the
destaging tasks. The LogDestage thread is registered dur-
ing system initialization and monitors the iCache states.
The thread keeps sleep at most of the time, and is activated
when one of the following events occurs: 1) the number of
slots in the RAM buffer exceeds a threshold value, 2) the
log disk is idle, 3) the iCache detects an idle period, 4) the
iCache RAM buffer and/or the log disk becomes full. Level
1 destage has higher priority than Level 2 destage. Once
the Level 1 destage starts, it continues until a log of data in
the RAM buffer is written to the log disk. Level 2 destage
may be interrupted if a new request comes in or until the log
disk becomes empty. If the destage process is interrupted,
the destage thread would be suspended until the iCache de-
tects another idle period.

As for Level 1 destage, the data in the RAM buffer are
written to the log disk sequentially in large size (64KB).
The log disk header and the corresponding in-memory slot
entries are updated. All data are written to the log disk in
”append” mode, which ensures that every time the data are
written to consecutive log disk blocks. For Level 2 destage,
we use a l̈ast-write-first-destageälgorithm according to the
LRU list. Each time 64KB data are read from the consecu-
tive blocks of the log disk and written to the remote iSCSI
storage device.



Figure 3. iSCSI configuration. The host Oyster establishes connection to target, and the target Mermaid
responds and connects. Then the Mermaid exports hard drive and Oyster sees the disks as local.

Table 1. Machines configurations
Processor RAM IDE disk SCSI disk

Oyster PII-450 128MB Maxtor 91366u4 x2 N/A
Mermaid K6-500 128MB Maxtor 91020D6 IBM DNES-318350

3 Performance Evaluations

3.1 Experimental Setup

For the purpose of performance evaluation, we have
implemented iCache prototype and deployed a software
iSCSI. For a fair performance comparison, both iSCSI and
iCache have exactly the same CPU and RAM size. This
RAM includes RAM buffer used in iCache. All I/O oper-
ations in both iSCSI and iCache are forced to be remote
operations to target disks through a switch.

Our experimental settings for the purpose of evaluating
the performance of iSCSI and iCache are shown in Figure
3. Two PCs are involved in our experiments, namely Oys-
ter and Mermaid. The Oyster serves as the host and the
Mermaid as the iSCSI target. We load our iCache driver on
the machine Oyster for iCache testing. These two machines
are interconnected through a 100Mbps switch to form an
isolated LAN. Each machine is running Linux kernel 2.4.2
with a 3c905 TX 100Mbps network interface card (NIC)
and an Adaptec 39160 high performance SCSI adaptor. The
configurations of these machines are described in Table 1
and the characteristics of individual disks are summarized
in Table 2.

For iSCSI implementation, we compiled and run the
Linux iSCSI developed by Intel Corporation [1]. The iSCSI
is compiled under Linux kernel 2.4.2 and configured as
shown in Figure 3. For iCache testing, we use 4 MB of

the system RAM to simulate iCache NVRAM buffer, and
the log disk is a standalone hard drive. A hash table and a
LRU list are maintained in the NVRAM.

3.2 Benchmark program and workload

It is important to use realistic workloads to drive our
iCache for a fair performance evaluation and comparison.
For this reason, we chose to use real world trace and bench-
mark program.

The benchmark we used to measure system throughput
is PostMark [9] which is a popular file system benchmark
developed by Network Appliance. It measures performance
in terms of transaction rates in an ephemeral small-file en-
vironment by creating a large pool of continually chang-
ing files. P̈ostMark was created to simulate heavy small-
file system loads with a minimal amount of software and
configuration effort and to provide complete reproducibility
[9].P̈ostMark generates an initial pool of random text files
ranging in size from a configurable low bound to a config-
urable high bound. This file pool is of configurable size and
can be located on any accessible file system. Once the pool
has been created, a specified number of transactions occur.
Each transaction consists of a pair of smaller transactions,
i.e. Create file or Delete file and Read file or Append file.
Each transaction type and its affected files are chosen ran-
domly. The read and write block size can be tuned. On
completion of each run, a report is generated showing some



Table 2. Disk parameters
Disk Model Interface Capacity Data buffer RPM Latency Transfer rate Seek time Manufacturer

(ms) (MB/s) (ms)
DNES-318350 Ultra SCSI 18.2G 2MB 7200 4.17 12.7-20.2 7.0 IBM
91366U4 ATA-5 13.6G 2MB 7200 4.18 Up to 33.7 9.0 Maxtor
91020D6 ATA-4 10.2G 256KB 5400 5.56 18.6 9.0 Maxtor

Figure 4. Postmark measurements

metrics such as elapsed time, transaction rate, total number
of files created and so on.

In addition to PostMark, we also used a real-world trace
obtained from EMC Corporation. The trace, referred to as
EMC-tel trace hereafter, was collected by an EMC Sym-
metrix disk array system installed at a telecommunication
consumer site. The trace file contains 230370 requests,
with a fixed request size of 4 blocks. The trace is write-
dominated with a write ratio of 89%.

3.3 Numerical Results

3.3.1 Throughput

Our first experiment is to use PostMark to measure the I/O
throughput in terms of transactions per second. In our tests,
PostMark was configured in two different ways as in [9].
First, a small pool of 1,000 initial files and 50,000 trans-
actions; and second a large pool of 20,000 initial files and
100,000 transactions. The total sizes of accessed data are
330MB (161.35MB read and 168.38MB write) and 740MB
(303.46 MB read and 436.18MB write) respectively. They
are much larger than the system RAM (128MB). The block

sizes change from 512 bytes to 4KB. The IO operations are
set to synchronous mode. We left all other PostMark pa-
rameters at their default settings.

In Figure 4, we plotted two separate bar graphs corre-
sponding to the small file pool case and the large one, re-
spectively. Each pair of bars represents the system through-
puts of iCache (light bars) and iSCSI (dark bars) for a spe-
cific data block size. It is clear from this figure that iCache
shows obvious better system throughput than the iSCSI.
The performance improvement of iCache over iSCSI is con-
sistent across different block sizes and for both small pool
and large pool cases. The performance gain of iCache over
iSCSI ranges from 53% to 78%.

3.3.2 Response times

Our next experiment is to measure and compare the re-
sponse times of iCache and iSCSI under EMC trace. In
Figure 5a, we plotted histogram of request numbers against
response times, i.e. X-axis represents response time and
Y-axis represents the number of storage requests finished
within a particular response time. For example, a point (X,
Y)=(1000, 25000) means that there are 25,000 requests fin-



(a)

(b)

Figure 5. Response time distributions

ished within 1000 microseconds. The lighter (blue) part of
the figure is for iCache whereas the darker (red) part for
iSCSI. To make it clearer, we also draw a bar graph repre-
senting percentage of requests finished within a given time
as shown in Figure 5b. It is interesting to note in this figure
that iCache does an excellent job in smoothing out the speed
disparity between SCSI and IP. With iCache, over 80% of
requests are finished within 1000 microseconds and most of
them are finished within 500 microseconds. For iSCSI with
no iCache, more than 99% of requests take over 4000 mi-
croseconds, where about 46% take over 8000 microseconds,
and almost no request finishes within 1000 microseconds.
These measured data are very significant and represent dra-
matic performance advantages of iCache.

While iCache improves the iSCSI performance by an
order of magnitude for 90% of storage requests, the average
speedup of iCache is only about 85%. The average response
time of iCache is 3652 whereas the average response time
of iSCSI is about 6757. Figure 6 shows average response
times of groups of 1000 requests each, i.e. we average the
response times of every 1000 requests as a group and show
the average response times for all groups. In our experi-
ments, we noticed that around 10% of requests take over
8000 microseconds for iCache. Some requests even take up
to 120,000 microseconds. These few peak points drag down
the average performance of iCache. These excessive large
response times can be attributed to the destaging process. In
our current experiment, we allow the level 1 destaging pro-



Figure 6. Average response time of iCache and iSCSI

cess to continue until the entire RAM buffer is empty before
serving a new storage request. It takes a long time to move
data in a full RAM to the log disk. We are still working on
the optimization of the destage algorithm. We believe there
is sufficient room to improve the destaging process to avoid
the few peak response times of iCache.

4 Related Work

The idea of using a disk-based log to improve system
performance or to improve the reliability of RAM has been
used in both file system and database systems for a long
time. For example, the Log-structured File System (LFS
[14, 15]), Disk Caching Disk (DCD [7]), and other simi-
lar systems all use disk-based data/metadata logging to im-
prove file system performance and speed-up crash recov-
ery. Several RAID systems have implemented the LFS al-
gorithm at the RAID controller level [8, 11, 16]. LFS col-
lects writes in a RAM buffer to form large logs and writes
large logs to data disks. Our previous research, STICS [5],
introduces a SCSI-to-IP cache for storage area networks.
iCache differs from STICS in two ways. Firstly, iCache
is used to cache data on the iSCSI host end, while STICS
aims at building storage area networks by coupling reliable
and high-speed data caching with low-overhead conversion
between SCSI and IP protocols. Secondly, iCache is used
together with iSCSI, while STICS can be used alone. While
many implementation techniques are borrowed from exist-
ing work, our contributions are as follows. iCache speedups
the performance of iSCSI, which is a new concept to smooth
the disparities between SCSI and IP protocols. iCache is

implemented as a device driver layer, where we need neither
modify the operating system nor the existing file systems.

5 Conclusions

In this paper, we have introduced a cache scheme called
iCache to improve the iSCSI performance. Using a two-
level hierarchical cache consisting of a small amount of
NVRAM and a log disk, iCache smoothes out the storage
data traffic between SCSI and IP. We have carried out a pro-
totype implementation of iCache under the Linux operat-
ing system. We measured the performance of iCache as
compared to a typical iSCSI implementation using a pop-
ular benchmark (PostMark) and a real world I/O workload
(EMC’s trace). PostMark results have shown that iCache
outperforms iSCSI by 53%-78% in terms of average sys-
tem throughput. Numerical results under EMC’s trace show
an order of magnitude performance gain for 90% of storage
requests in terms of response time.
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