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Introducing SCSI-To-IP Cache for Storage Area 
Networks 

  
 

Abstract 
 
Data storage plays an essential role in today’s fast-growing data-intensive network services. New 
standards and products emerge very rapidly for networked data storages. Given the mature 
Internet infrastructure, overwhelming preference among IT community recently is using IP for 
storage networking because of economy and convenience. iSCSI is one of the most recent 
standards that allow SCSI protocols to be carried out over IP networks. However, there are many 
disparities between SCSI and IP in terms of protocols, speeds, bandwidths, data unit sizes, and 
design considerations that prevent fast and efficient deployment of SAN (Storage Area Network) 
over IP. This paper introduces STICS (SCSI-To-IP Cache Storage), a novel storage architecture 
that couples reliable and high-speed data caching with low-overhead conversion between SCSI 
and IP protocols. A STICS block consists of one or several storage devices such as disks or RAID, 
and an intelligent processing unit with CPU and RAM. The storage devices are used to cache and 
store data while the intelligent processing unit carries out caching algorithm, protocol 
conversion, and self-management functions. Through the efficient caching algorithm and 
localization of certain unnecessary protocol overheads, STICS can significantly improve 
performance, reliability, and scalability over current iSCSI systems. Furthermore, STICS can be 
used as a basic plug-and-play building block for data storage over IP. Analogous to “cache 
memory” invented several decades ago for bridging the speed gap between CPU and memory, 
STICS is the first-ever “cache storage” for bridging the gap between SCSI and IP making it 
possible to build efficient SAN over IP. We have implemented software STICS prototype on Linux 
operating system. Numerical results using popular PostMark benchmark program and EMC’s 
trace have shown dramatic performance gain over the current iSCSI implementation. 
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1. Introduction 
 
As we enter a new era of computing, data storage has changed its role from “secondary” 
with respect to CPU and RAM to primary importance in today’s information world. 
Online data storage doubles every 9 months [6] due to ever-growing demand for 
networked information services [19, 39]. In general, networked storage architectures have 
evolved from network-attached storage (NAS) [9, 12, 28], storage area network (SAN) 
[17, 29, 31], to most recent storage over IP (iSCSI) [12, 15, 33,37]. NAS architecture 
allows a storage system/device to be directly connected to a standard network, typically 
via Ethernet. Clients in the network can access the NAS directly. A NAS based storage 
subsystem has built-in file system to provide clients with file system functionality. SAN 
technology, on the other hand, provides a simple block level interface for manipulating 
nonvolatile magnetic media. Typically, a SAN consists of networked storage devices 
interconnected through a dedicated Fibre Channel (FC-4 protocol) network. The basic 
premise of a SAN is to replace the “point-to-point” infrastructure of server to storage 
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communications with one that allows “any-to-any” communications. A SAN provides 
high connectivity, scalability, and availability using a specialized network protocol: FC-4 
protocol. Deploying such a specialized network usually introduces additional cost for 
implementation, maintenance, and management. iSCSI is the most recently emerging 
technology with the goal of implementing the SAN technology over the better-
understood and mature network infrastructure: the Internet (TCP/IP). 
 
Implementing SAN over IP brings economy and convenience whereas it also raises 
performance issues. Currently, there are basically two existing approaches: one carries 
out SCSI and IP protocol conversion at a specialized switch [29] and the other 
encapsulates SCSI protocol in TCP/IP at host bus adapter (HBA) level [33]. Both 
approaches have severe performance limitations. Converting protocols at a switch places 
special burden to an already-overloaded switch and creates another specialized 
networking equipment in a SAN. Such a specialized switch not only is costly as 
compared to off-the-shelf Ethernet switches but also complicates installation, 
management, and maintenance. To encapsulate SCSI protocol over IP requires significant 
amount of overhead traffic for SCSI commands transfers and handshaking over the 
Internet. On a typical iSCSI implementation, we have measured around 58% of TCP/IP 
packets being less than 127 bytes long, implying an overwhelming quantity of small size 
packets to transfer SCSI commands and status (most of them are only one byte). Majority 
of such small packet traffic over the net is not necessary because of the reliable and 
connection-oriented services provided by underlying TCP/IP. Our experiments using 
PostMark benchmark [16] have shown that efficient caching can reduce total number of 
packets transferred over the net from 3,353,821 to 839,100 for same amount of remote 
storage data, a 4 times reduction! 
 
In addition to the above-mentioned protocol disparities between SCSI and IP, packet 
transfer latency exists over the network, particularly over long distances. Such latency 
does not reduce linearly with the increase of network bandwidth. For example, we 
measured average network latencies over 100Mbit and 1Gigabit Ethernet switches to be 
128.99 and 106.78 microseconds, respectively. These results indicate that even though 
Ethernet switches increase their bandwidth to gigabit or tens of gigabits due to 
technology advances, network latencies resulting from packet propagation delays are still 
there. 
 
Protocol disparities and network latencies motivate us to introduce a new storage 
architecture: SCSI-To-IP Cache Storage, or STICS for short.  The purpose of STICS is to 
bridge the disparities between SCSI and IP so that efficient SAN can be built over the 
Internet. A typical STICS block consists of a disk and an intelligent processing unit with 
an embedded processor and sufficient RAM. It has two standard interfaces: one is SCSI 
interface and the other is standard Ethernet interface. The disk is used as a nonvolatile 
cache that caches data coming from possibly two directions: block data from SCSI 
interface and network data from Ethernet interface. In addition to standard SCSI and IP 
protocols running on the intelligent processing unit, it also implements a special caching 
algorithm controlling a two level cache hierarchy that writes data very quickly. Besides 
caching storage data in both directions, STICS also localizes SCSI commands and 
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handshaking operations to reduce unnecessary traffic over the Internet. In this way, it acts 
as a storage filter to discards a fraction of the data that would otherwise move across the 
Internet, reducing the bottleneck problem imposed by limited Internet bandwidth and 
increasing storage data transfer rate. Apparent advantages of the STICS are: 
 

• It provides an iSCSI network cache to smooth out the traffic and improve overall 
performance. Such a cache or bridge is not only helpful but also necessary to 
certain degree because of the different nature of SCSI and IP such as speed, data 
unit size, protocols, and requirements. Wherever there is a speed disparity, cache 
helps. Analogous to “cache memory” used to cache memory data for CPU [27], 
STICS is a “cache storage” used to cache networked storage data for server host. 

• It utilizes the techniques in Log-structured file system [34,40] to quickly write 
data into magnetic media for caching data coming from both directions. Because a 
disk is used in caching, it is nonvolatile, which is extremely important for caching 
storage data reliably since once data is written to a storage, it is considered to be 
safe. 

• By localizing part of SCSI protocol and filtering out some unnecessary traffic, 
STICS can reduce the bandwidth requirement of the Internet to implement SAN. 

• Active disks [1,23,32] are becoming feasible and popular. STICS represents 
another specific and practical implementation of active disks. 

• It is a standard plug-and-play building block for SAN over the Internet. If 
ISTORE [6] is standard “brick” for building storage systems, then STICS can be 
considered as a standard “beam” or “post” that provides interconnect and support 
for construction of SANs. 

 
Overall, STICS adds a new dimension to the networked storage architectures. To 
quantitatively evaluate the performance potential of STICS in real world network 
environment, we have implemented the STICS under the Linux OS over an Ethernet 
switch. We have used PostMark [16] benchmark and EMC’s trace to measure system 
performance. PostMark results show that STICS provides up to 4 times performance 
improvement over iSCSI implementation in terms of average system throughput. For 
EMC’s trace measurement, our STICS shows up to 6 times as fast as the iSCSI in terms 
of average response time.  
 
The paper is organized as follows. Next section presents the STICS architecture, followed 
by detailed descriptions of the design and implementation in Section 3. Section 4 presents 
our performance evaluation methodology and numerical results. We discuss previous 
related research work in Section 5 and conclude our paper in Section 6. 

2. Architecture 
 
The idea of STICS is very simple. It is just a cache that bridges the protocol and speed 
disparities between SCSI and IP. Figure 1 shows a typical SAN implementation over IP 
using STICS. Any number of storage devices or server computers can be connected to the 
standard Internet through STICS to form a SAN. Instead of using a specialized network 
or specialized switch, STICS connects a regular host server or a storage device to the 
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standard IP network. Consider STICS 1 in the diagram. It is directly connected to the 
SCSI HBA of Host 1 as a local storage device. It also acts as a cache and bridge to allow 
Host 1 to access, at block level, any storage device connected to the SAN such as NAS, 
STICS 2, and STICS 3 etc. In order to allow a smooth data access from Host 1 to the 
SAN, STICS 1 provides SCSI protocol service, caching service, naming service, and IP 
protocol service.  
 

The basic structure of STICS is shown in Figure 2. It consists of five main components: 
1) A SCSI interface: STICS supports SCSI communications with hosts and other 

extended storage devices. Via the SCSI interface, STICS may run under two different 
modes: initiator mode or target mode [42]. When a STICS is used to connect to a host, 
it runs in target mode receiving requests from the host, carrying out the IO processing 
possibly through network, and sending back results to the host. In this case, the 
STICS acts as a directly attached storage device to the host. When a STICS is used to 
connect to a storage device such as a disk or RAID to extend storage, it runs in 
initiator mode, and it sends or forwards SCSI requests to the extended storage device. 
For example, in Figure 1, STICS 1 runs in target mode while STICS 2 runs in initiator 
mode. 

2) An Ethernet interface: Via the network interface, a STICS can be connected to the 
Internet and share storage with other STICS’s or network attached storages (NAS).  

3) An intelligent processing unit: This processing unit has an embedded processor and a 
RAM. A specialized Log-structured file system, standard SCSI protocols, and IP 
protocols run on the processing unit. The RAM consists of a regular DRAM for read 
caching and a small (1-4MB) NVRAM (nonvolatile RAM) for write caching. The 
NVRAM is also used to maintain the meta data such as hash table, LRU list, and the 
mapping information (STICS_MAP). Alternatively, we can also use Soft Updates [8] 
technique to keep meta data consistency without using NVRAM. 

 

Figure 1: System overview. A STICS connects to the host via SCSI interface and connects to 
other STICS’ or NAS via Internet. 
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4) A log disk: The log disk is a sequential accessed device. It is used to cache write data 
along with the NVRAM above in the processing unit. The log disk and the NVRAM 
form a two-level hierarchical cache. 

5) Storage device: The regular storage device can be a disk, a RAID, or JBOD (Just-
Bunch-Of-Disks). This storage device forms the basic storage component in a 
networked storage system. From point of view of a server host to which the STICS is 
connected through the SCSI interface, this storage device can be considered as a local 
disk. From the point of view of the IP network through the network interface, this 
storage can be considered as a component of a SAN with an IP address as its ID.  

 
 
 
 
 
 
 
 
 
 
 
 

3. Design and Implementation 
 
3.1 STICS naming service 
 
To allow a true “any-to-any” communication between s
global naming is necessary. In our design, each STICS 
number (GLN) which is unique for each STICS. Curren
each STICS and use this IP as the GLN.  
 
3.2 Cache Structure of STICS 
 
Each STICS has a read cache consisting of a large DRAM
a 2 levels hierarchy with a small NVRAM on top of a log
reside in the DRAM that is organized as LRU cache for 
first stored in the small NVRAM. Whenever the newly w
sufficiently large or whenever the log disk is free, a log of 
sequentially. After the log write, the NVRAM becomes 
write data. At the same time, a copy of the log is plac
possible read operations of the data that have just been wri
log disk are organized in the format of segments similar 
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System [34]. A segment contains a number of slots each of which can hold one data 
block. Data blocks in a segment are addressed by their Segment IDs and Slot IDs.  
 
Figure 3 shows the data structure in both DRAM and NVRAM. A Hash table is used to 
locate data in the RAM cache including DRAM and NVRAM. DRAM and NVRAM can 
be differentiated through their addresses. A LRU list and a Free List are used to keep 
tracks of the most recently used data and the free slots respectively.  
 

# L B A  lo c a t io n  h a s h _ p re v  h a s h _ n ex t p r e v  n e x t S lo t N o  

L R U  L is t  

# L B A  lo c a t io n  h a s h _ p re v  h a s h _ n ex t p r e v  n e x t S lo t N o  

# L B A  lo c a t io n  h a s h _ p re v  h a s h _ n ex t p r e v  n e x t S lo t N o  
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# L B A  lo c a t io n  h a s h _ p re v  h a s h _ n ex t p r e v  n e x t s l o t N o  G L N  
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G L N  

G L N  

 Figure 3: RAM buffer layout. RAM buffer consists of slot entries and slots. The hash table, LRU list and 
Free list are used to organize the slot entries. 

 
Data blocks stored in the RAM cache are addressed by their Logical Block Addresses 
(LBAs). The Hash Table contains location information for each of the valid data blocks in 
the cache and uses LBAs of incoming requests as search keys.  The slot size is set to be 
the size of a block. A slot entry consists of the following fields: 
• An LBA of a cache line. It serves as the search key of hash table; 
• Global Location Number (GLN) if the slot contains data from or to other STICS.  
• A location field is divided into 2 parts: 

1) A state tag (2 bits), used to specify where the slot data is: IN_RAM_BUFFER, 
IN_LOG_DISK, IN_DATA_DISK or IN_OTHER_STICS; 

2) A log disk block index (30 bits), used to specify the log disk block number if the 
state tag indicates IN_LOG_DISK. The size of each log disk can be up to 230 
blocks. 

• Two pointers (hash_prev and hash_next) are used to link the hash table;  
• Two pointers (prev and next) are used to link the LRU list and FREE list; 
• A Slot-No is used to describe the in-memory location of the cached data. 
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3.3 Basic operations 
 
3.3.1 Write 
 
Write requests may come from one of two sources: the host via SCSI interface and 
another STICS via the Ethernet interface.  
 
Write requests from the host via SCSI interface: After receiving a write request, the 
STICS first searches the Hash Table by the LBA address. If an entry is found, the entry is 
overwritten by the incoming write, and is moved to the NVRAM if it is in DRAM. If no 
entry is found, a free slot entry in the NVRAM is allocated from the Free List, the data 
are copied into the corresponding slot, and its address is recorded in the Hash table. The 
LRU list and Free List are then updated. When enough data slots (128 in our preliminary 
implementation) are accumulated or when the log disk is idle, the data slots are written 
into log disk sequentially in one large write. After the log write completes successfully, 
STICS signals the host that the request is complete and the log is moved from the 
NVRAM to DRAM.  
 
Write requests from another STICS via Ethernet interface: A packet coming from the 
network interface may turns out to be a write operation from a remote STICS on the 
network. After receiving such a write request, STICS gets a data block with GLN and 
LBA. It then searches the Hash Table by the LBA and GLN. The same writing process as 
above is then performed.  
 
3.3.2 Read 
 
Similar to write operations, read operations may also come either from the host via SCSI 
interface or from another STICS via the Ethernet interface.  
 
Read requests from the host via SCSI interface: After receiving a read request, the 
STICS searches the Hash Table by the LBA to determine the location of the data. Data 
requested may be in one of four different places: the RAM buffer, the log disk(s), the 
storage device in the local STICS, or a storage device in another STICS on the network. 
If the data is found in the RAM buffer, the data are copied from the RAM buffer to the 
requesting buffer. The STICS then signals the host that the request is complete. If the 
data is found in the log disk or the local storage device, the data are read from the log 
disk or storage device into the requesting buffer. Otherwise, the STICS encapsulates the 
request including LBA, current GLN, and destination GLN into an IP packet and 
forwards it to the corresponding STICS.  
 
Read requests from another STICS via Ethernet interface: When a read request is 
found after unpacking an incoming IP packet, the STICS obtains the GLN and LBA from 
the packet. It then searches the Hash Table by the LBA and the source GLN to determine 
the location of the data. It locates and reads data from that location. Finally, it sends the 
data back to the source STICS through the network. 
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3.3.3 Destages 
 
The operation of moving data from a higher-level storage device to a lower level storage 
device is defined as destage operation [38]. There are two levels of destage operations in 
STICS: destaging data from the NVRAM buffer to the log disk (Level 1 destage) and 
destaging data from log disk to a storage device (Level 2 destage). We implement a 
separate kernel thread, LogDestage, to perform the destaging tasks. The LogDestage 
thread is registered during system initialization and monitors the STICS states. Level 1 
destage activates whenever the log disk is idle and there are data to be destaged in the 
NVRAM. Level 2 destage activates whenever one of the following events occurs: 1) the 
STICS detects a CPU idle period; 2) the size of data in the log disk exceeds a threshold 
value. Level 1 destage has higher priority than Level 2 destage. Once the Level 1 destage 
starts, it continues until a log of data in the NVRAM buffer is written to the log disk. 
Level 2 destage may be interrupted if a new request comes in or until the log disk 
becomes empty. If the destage process is interrupted, the destage thread would be 
suspended until the STICS detects another idle period. For extreme burst writes, where 
the log disk is full, Level 1 destage forces subsequent writes to the addressed network 
storage to bypass the log disk to avoid cache overflow [38].  
 
As for Level 1 destage, the data in the NVRAM buffer are written to the log disk 
sequentially in large size (64KB). At the same time, the data are moved from NVRAM to 
DRAM. The log disk header and the corresponding in-memory slot entries are updated. 
All data are written to the log disk in “append” mode, which ensures that every time the 
data are written to consecutive log disk blocks. 
 
For Level 2 destage, we use a “first-write-first-destage” algorithm according to the LRU 
List. Each time 64KB data are read from the consecutive blocks of the log disk and 
written to the addressed network storage. The LRU list and free list are updated 
subsequently.  
 
3.4 Cache Coherence 
 
There are three ways to configure a distributed storage system using STICS, placing 
STICS near the host, target storage, or both. If we place a STICS near the host, the 
corresponding STICS building block is a private cache. If we place a STICS near the 
storage, we have a shared cache system. There are tradeoffs between shared cache and 
private cache configurations. From the point of view of cache efficiency, we would like 
to place cache as close to a host as possible to minimize latency. Such a private cache 
system allows multiple copies of a shared storage data to reside in different caches giving 
rise to the well-known cache coherence problem [2,3,5,7,11,18,20,22,30]. Shared caches, 
on the other hand, do not have such cache coherence problem because each cache is 
associated with target storage. However, each request has to go through the network to 
obtain data at the target storage side. In order to guide designers to make design 
decisions, we have considered both private and shared cache configurations. Shared 
cache configuration is relatively simple. For private cache configuration, we have 
designed the following coherence protocol. 
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Our cache coherence protocol in private cache system is based on the local consistency 
(LC) model [3], which helps to minimize meta-data network traffic pertaining to 
coherence protocol. The cache coherence granularity is configurable ranging from 32KB 
to 256KB to avoid false sharing [36]. We use shared-read/exclusive-write locks (tokens) 
to implement the necessary synchronization [4, 35]. Associated with each shared storage, 
there is a lock server that keeps track of lock status of shared data. The lock server is 
responsible for passing correct data to a requesting STICS cache together with the 
corresponding lock upon request. There are four types of messages for lock operations: 
request, grant, revoke, and release. Lock upgrade and downgrade operations are also 
handled with these four message types. The rule of lock service is as follows: 

• A shared-read lock allows a STICS cache to read the shared data and cache it in 
the LRU Cache. If a STICS cache is asked to release its read lock, it must 
invalidate its cache entry before complying. 

• An exclusive-write lock allows a STICS cache to read and write the single valid 
data copy and cache it in the NVRAM and the log disk. At this time, the cached 
data can be different from the original data in the shared storage since the STICS 
cache is the only one that holds the exclusive write lock. If the STICS cache is 
asked to release its write lock or downgrade the lock to read, it must write the 
dirty data to the shared data storage before complying. The STICS cache can 
retain its cache entry if it is downgrading the lock, but must invalidate the cache 
entry if releasing the lock. 

 
To hold meta-data related to cache coherence protocol, each lock server and private cache 
(lock owner) maintains a lock status (LS) table. The LS table keeps track of lock 
information for each shared disk segment. The size of LS table is configurable. At a lock 
server, each entry in the LS table is 9 bytes long containing three fields: disk segment ID 
(4 bytes), lock owner’s GLN (4 bytes), and lock information (1 byte). For 1 Terabyte data, 
the total size of the LS table is 36MB, about 0.004% overhead. The LS table at a private 
cache has the same structure as the one at a lock server, except that the GLN field records 
a lock server’s GLN (4 bytes) instead of a lock owner’s GLN. 
 
In the protocol above, there is a possibility of deadlock or livelock when two operations 
need the same set of locks at the same time. A two-phase approach is designed to avoid 
such situation: 

• Phase 1: A STICS tries to get all the locks it needs for an operation and is willing 
to release any lock it has acquired immediately.  

• Phase 2: The STICS re-checks the locks and re-acquires locks if lost in Phase 1. If 
any data that was covered by a lock in Phase 1 has been modified since the lock 
was released, the STICS releases the lock, aborts the operation and rolls back to 
repeat Phase 1. Otherwise, it performs its serialized operation locally. This “abort 
and retry” mechanism is necessary to maintain serialization for each contending 
operation. 

 
In a STICS-based SAN, a STICS cache or a lock server may be unreachable because of 
host/storage offline, STICS failure, or network disconnection. To deal with this situation, 
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we use a 30-second timeout [36] function with an unreachable location (UL) table with 
entries being GLN of unreachable lock owners or lock servers. When a lock server or a 
lock owner becomes unreachable, the corresponding UL table and LS table are updated 
accordingly. Similarly, when unreachable lock owner or lock server is recovered, the 
appropriate changes in corresponding UL table and LS table are made. 
 
3.5 Implementation  
 
There are several ways to implement STICS. A software STICS is a device driver or 
kernel module that controls and coordinates SCSI host bus adaptor (HBA) and network 
interface card (NIC). It uses a part of host’s system RAM and part of disk to form the 
cache. STICS can also be implemented at HBA controller level as a STICS card. Such a 
card has sufficient intelligence with RAM, IDE or SCSI interface, and Ethernet interface. 
The IDE or SCSI interface is used to connect to a log disk for caching. Finally, STICS 
can be implemented as a complete cache box with built-in controller, log disks, and local 
storage. 
 
Currently we have implemented a software prototype of STICS on Linux kernel 2.4.2, 
and it is implemented as kernel module which can be loaded and unloaded dynamically. 
Our implementation uses a part of system RAM and an additional hard disk for caching 
function. There is no local storage and all I/O operations are remote operations going 
through the network. 

4. Performance Evaluations 
 
4.1 Methodology 
 
For the purpose of performance evaluation, we have implemented STICS prototype and 
deployed a software iSCSI. For a fair performance comparison, both iSCSI and STICS 
have exactly the same CPU and RAM size. This RAM includes read cache and write 
buffer used in STICS. All I/O operations in both iSCSI and STICS are forced to be 
remote operations to target disks through a switch. 

Our experimental settings are sh
experiments, namely Trout, Cod
storage target. Cod serves as a sw
experiment, a software STICS 

 Processor R
Trout PII-450 12
Cod PII-400 12

Squid PII-400 12

Disk Model Interface Capac

O7N3200 Ultra SCSI 36.7
91366U4 ATA-5 13.6
AS010a1 Ultra ATA/100 10.2
Table 1: Machines configurations 
AM IDE disk SCSI disk 
8MB 2 Maxtor AS010a1 N/A 
8MB Maxtor AS010a1 N/A 
8MB 2 Maxtor AS010a1 IBM O7N3200 
ow
 a
i

is

ity

G 
G 
G 
 
Table 2: Disk parameters 

 Data 
buffer 

RPM Latency 
(ms)  

Transfer rate 
(MB/s) 

Seek time 
(ms) 

Manufact
urer 

N/A 10000 3.0 29.8 4.9 IBM 
2MB 7200 4.18 Up to 33.7 9.0 Maxtor 
2MB 7200 4.17 16.6 8.5 Maxtor 
10 

n in Figures 4 and 5. Three PCs are involved in our 
nd Squid. Trout serves as the host and Squid as the 
tch console to monitor the network traffic. For STICS 
 loaded as kernel module. All these machines are 
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interconnected through an 8-port Gigabit switch (Intel NetStructure 470T) to form an 
isolated LAN. Each machine is running Linux kernel 2.4.2 with a Netgear GA622T 
Gigabit network interface card (NIC) and an Adaptec 39160 high performance SCSI 
adaptor. The network cards and switch can be tuned to Gigabit and 100Mbit dynamically. 
The configurations of these machines are described in Table 1 and the characteristics of 
individual disks are summarized in Table 2. 

  
For iSCSI implementation, we compiled and run the Linux iSCSI developed by Intel 
Corporation [15]. The iSCSI is compiled under Linux kernel 2.4.2 and configured as 
shown in Figure 4. There are 4 steps for the two machines to establish communications 
via iSCSI. First, the host establishes connection to target; second, the target responds and 
connects; third, the target machine exports its disks and finally the host sees these disks 
as local.  All these steps are finished through socket communications. After these steps, 
the iSCSI is in “full feature phase” mode where SCSI commands and data can be 
exchanged between the host and the target. For each SCSI operation, there will be at least 
4 socket communications as follows: 1) The host encapsulates the SCSI command into 
packet data unit (PDU) and sends this PDU to the target; 2) The target receives and 
decapsulates the PDU. It then encapsulates a response into a PDU and sends it back to the 
host; 3) the host receives and decapsulates the response PDU. It then encapsulates the 
data into a PDU and sends it to the target if the target is ready to transfer; 4) the target 
receives the data PDU and sends another response to the host to acknowledge the finish 
of the SCSI operation.   
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Figure 4: iSCSI configuration. The host Trout establishes connection to
target, and the target Squid responds and connects. Then the Squid exports
hard drive and Trout sees the disks as local. 
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Our STICS is running on Linux kernel 2.4.2 with target mode support and is loaded as a 
kernel module as shown in Figure 5. Four MB of the system RAM is used to simulate 
STICS NVRAM buffer, another 16MB of the system RAM is used as the DRAM read 
cache in our STICS, and the log disk is a standalone hard drive. When requests come 
from the host, the STICS first processes the requests locally. For write requests, the 
STICS writes the data to its write buffer.  Whenever the log disk is idle, the data will be 
destaged to the log disk through level 1 destage. After data is written to the log disk, 
STICS signals host write complete and moves the data to DRAM cache. When data in the 
log disk exceeds a threshold or the system is idle, the data in log disk will be destaged to 
the remote target storage through the network. The hash table and LRU list are updated. 
When a read request comes in, the STICS searches the hash table, locates where the data 
are, and accesses the data from RAM buffer, log disk, or remote disks via network.  
 
In our previous discussions, all STICS are configured in “report after complete” mode. 
This scheme has a good reliability because a write is guaranteed to be stored in a disk 
before the CPU is acknowledged. If the 4-MB RAM buffer is nonvolatile, “immediate 
report” mode can be used, where as soon as the data are transferred to the RAM buffer, 
STICS sends an acknowledgement of “write complete” to the host.   
 
4.2 Benchmark program and workload characteristics 
 
It is important to use realistic workloads to drive our STICS for a fair performance 
evaluation and comparison. For this reason, we chose to use real world trace and 
benchmark program. 
 
The benchmark we used to measure system throughput is PostMark [16] which is a 
popular file system benchmark developed by Network Appliance. It measures 
performance in terms of transaction rates in an ephemeral small-file environment by 
creating a large pool of continually changing files. “PostMark was created to simulate 
heavy small-file system loads with a minimal amount of software and configuration effort 
and to provide complete reproducibility [16].” PostMark generates an initial pool of 
random text files ranging in size from a configurable low bound to a configurable high 
bound. This file pool is of configurable size and can be located on any accessible file 
system. Once the pool has been created, a specified number of transactions occur. Each 
transaction consists of a pair of smaller transactions, i.e. Create file or Delete file, and 
Read file or Append file. Each transaction type and its affected files are chosen randomly. 
The read and write block size can be tuned. On completion of each run, a report is 
generated showing some metrics such as elapsed time, transaction rate, total number of 
files created and so on.  
 
In addition to PostMark, we also used a real-world trace obtained from EMC Corporation. 
The trace, referred to as EMC-tel trace hereafter, was collected by an EMC Symmetrix 
system installed at a telecommunication consumer site. The trace file contains 230370 
requests, with a fixed request size of 4 blocks. The whole dataset size is 900M bytes. The 
trace is write-dominated with a write ratio of 89%. The average request rate is about 333 
requests/second. In order for the trace to be read by our STICS and the iSCSI 
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implementation, we developed a program called ReqGenerator to convert the traces to 
high-level I/O requests. These requests are then fed to our STICS and iSCSI system to 
measure performance. 
 
4.3 Measured results and discussions 

4.3.1 Throughput 
 
Our first experiment is to use PostMark to measure the I/O throughput in terms of 
transactions per second.  In our tests, PostMark was configured in two different ways. 
First, a small pool of 1,000 initial files and 50,000 transactions; and second a large pool 
of 20,000 initial files and 100,000 transactions. The total sizes of accessed data are 
436MB (151.05MB read and 285.08MB write) and 740MB (303.46 MB read and 
436.18MB write) respectively. They are much larger than host system RAM (128MB). 
We left all other PostMark parameters at their default settings. The network is configured 
as a 100Mbit network.  
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Figure 6: PostMark measurements (100Mbit network). 

 
In Figure 6, we plotted two separate bar graphs corresponding to the small file pool case 
and the large one, respectively. Each group of bars represents the system throughputs of 
STICS with report after complete (STICS: light blue bars), iSCSI (iSCSI: dark red bars) 
and STICS with immediate report (STICS-Imm: light yellow bars) for a specific data 
block size. It is clear from this figure that STICS shows obvious better system throughput 
than the iSCSI. The performance improvement of STICS over iSCSI is consistent across 
different block sizes and for both small pool and large pool cases. The performance gains 
of STICS with report after complete over iSCSI range from 60% to 110%. STICS with 
immediate report outperforms iSCSI by a factor of 2.69 to 4.18. 
 
To understand why STICS provides such impressive performance gains over the iSCSI, 
we monitored the network activities at the Ethernet Switch through the console machine 
cod for both STICS and iSCSI implementations. While both implementations write all 
data from the host to the remote storage, STICS transfers dramatically less packets over 
the network than iSCSI does. Tables 3 and 4 show the measured network activities for 
both STICS and iSCSI. Based on our analysis of the numerical results, we believe that 
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the performance gain of STICS over iSCSI can be attributed to the following facts. First, 
the log disk along with the RAM buffer forms a large cache for the host and absorbs 
small writes very quickly, which reduces the network traffic because many data are 
overwritten in the local log disk. As shown in Table 4, the number of total bytes 
transferred over the network is reduced from 1,914,566,504 to 980,963,821 although the 
total data stored in the target storage is the same. Secondly, STICS eliminates many 
remote handshaking caused by iSCSI, which in turn reduce the network traffic. We 
noticed in Table 3 that the small size packets which are mainly used to transfer iSCSI 
handshaking messages are dramatically reduced from 1,937,724 to 431,216. Thirdly, by 
combining small writes into large ones, STICS increases the network bandwidth 
utilization. If we define full packet as the packet with size larger than 1024 bytes of 
payload data, and other packets are defined as partial packets. As shown in Table 4, 
STICS improves the ratio of full packets to partial packets from 0.73 to 1.41, and average 
bytes per packet is increased from 571 in iSCSI to 944 in STICS. 

Table 3: packet distribution 
# Of packets with different sizes  

<64 Bytes 65-127 128-255 256-511 512-1023 >1024 
iSCSI 7 1,937,724 91 60 27 1,415,912 
STICS 4 431,216 16 30 7 607,827 

 
Table 4: Network traffic 

 Total Packets Full/Partial Packet Ratio Bytes Transferred Average Bytes/Packet 
iSCSI 3,353,821 0.73 1,914,566,504 571 
STICS 839,100 1.41 980,963,821 944 

 
Above results are measured under 100Mbit network, when we configured the switch and 
network cards as Gigabit network, we observed similar results as shown in figure 7. The 
performance gains of STICS with report after complete over iSCSI range from 51% to 
80%. STICS with immediate report outperforms iSCSI by a factor of 2.49 to 3.07. The 
reason is as follows. When the network is improved from 100Mbit to 1 Gigabit, the 
network latency is not decreased linearly. In our test, we found the average latencies for 
100Mbit and 1Gigabit network are 128.99 and 106.78 microseconds. The network 
performance is improved less than 20% in terms of latency from 100Mbit to Gigabit 
network.  
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Figure 7: PostMark measurements (Gigabit network). 
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4.3.2 Response times 
 
Our next experiment is to measure and compare the response times of STICS and iSCSI 
under EMC trace. The network is configured as a Gigabit network. Response times of all 
individual I/O requests are plotted in Figure 8 for STICS with immediate report (Figure 
8a), STICS with report after complete (Figure 8b) and iSCSI (Figure 8c). Each dot in a 
figure represents the response time of an individual I/O request. It can be seen from the 
figures that overall response times of STICS are much smaller than that of iSCSI. In 
Figure 8b, we noticed 4 requests take up to 300ms. These few peak points drag down the 
average performance of STICS. These excessive large response times can be attributed to 
the destaging process. In our current implementation, we allow the level 2 destaging 
process to continue until the entire log segment is empty before serving a new storage 
request. It takes a long time to move data in a full log segment to the remote data disk. 
We are still working on the optimization of the destage algorithm. We believe there is 
sufficient room to improve the destaging process to avoid the few peak response times of 
STICS. 
 

   
a) STICS with immediate report b) STICS with report after 

complete. 
c) iSCSI. 

Figure 8: Response times for EMC-tel trace. Each dot in this figure shows the response time of an 
individual I/O request. 

 

a) STICS with immediate report b) STICS with report after 
complete. 

c) iSCSI. 

Figure 9: Histograms of I/O response times for trace EMC-tel. 
 
We also plotted histogram of request numbers against response times in Figure 9. In this 
figure, X-axis represents response time and Y-axis represents the number of storage 
requests finished at a particular response time. For example, a point (X, Y)=(10, 2500) 
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means that there are 2,500 requests finished within 10 milliseconds. As shown in Figure 
9a, for the STICS with immediate report, most requests are finished within 2 milliseconds, 
because STICS signals the complete of requests when the data are transferred to 
NVRAM buffer for write requests. The average response time is 2.7 milliseconds. For the 
STICS with report after complete as shown in Figure 9b, the response times of the 
majority of requests fall within the range of 2-5 milliseconds. The rest of requests take 
longer time to finish but very few of them take longer than 40ms. The average response 
time is 5.71 ms.  
 
The iSCSI, on the other hand, has obvious larger response time. The response times of 
the majority of requests fall within the range of 6-28 milliseconds as shown in Figure 9c. 
No requests are finished within 5 milliseconds. Some of them even take up to 400ms. The 
average response time is 16.73ms, which is 2.9 times as much as STICS with report after 
complete and 6.2 times as much as STICS with immediate report. Such a long responses 
time can be mainly attributed to the excessive network traffic of iSCSI. 
 
4.4 Costs, Reliability, and Scalability Analysis  
 
As shown in the last subsection, STICS presents significant performance gains over the 
standard iSCSI implementation. One obvious question to ask is whether such 
performance improvement comes at extra hardware cost. To answer this question, we 
have carried out cost analysis as compared to iSCSI. In our experimental 
implementations, all hardware components such as CPU, RAM, cabling and switches are 
exactly the same for both iSCSI and STICS except for an additional disk in STICS for 
caching. With rapid dropping of disk prices, such an additional disk is easily justifiable. 
Typical cost of a 10 GB disk is well under $100 while a typical SAN costs over tens of 
thousands dollars, implying a very small fraction of additional cost of STICS. Table 5 
lists the practical cost of building a minimum SAN configuration with 6 servers and 200 
GB using iSCSI and STICS, respectively (all the list prices are as of January 2001). As 
shown in this table, the cost difference between the two is well under 7%.  Considering 
software cost ($22,059) and maintenance cost ($8,676) for the same SAN system [24], 
the cost difference between the two is much less than 3%. We believe trading 3% of 
additional cost for 6 folds performance gain is certainly worthwhile. 

 
Table 5: Hardware costs comparison 

 iSCSI STICS 
 Qty Cost Total Qty Cost Total 
HBA card 12 $339 $4,068 12 $339 $4,068 
Switch 1 $1,229 $1,229 1 $1,229 $1,229 
GB NIC 12 $319 $3,828 12 $319 $3,828 
OS HDD 12 $85 $1,020 12 $85 $1,020 
SCSI Storage HDD 6 $799 $4,794 6 $799 $4,794 
Log Disks    12 $85 $1,020 
Total $14,939 $15,959 
 
We have also considered the cost of implementing iSCSI and STICS in hardware. For the 
same SAN configuration with 6 servers, iSCSI would need an iSCSI to SCSI converter 
costing $5,083 [24] or iSCSI cards. The additional hardware for each STICS would 
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include an I/O processor with 4-MB NVRAM. We can conservatively estimate the total 
cost in addition to Table 5 for 12 STICS to be under $5,000. 
 
High reliability of STICS is obvious as compared to traditional storage cache using large 
RAM because STICS uses disks for caching. The small NVRAM in our cache hierarchy 
is only up to 4MB. Transient data stay in this NVRAM less than a few hundreds 
milliseconds. Majority of cached data are in disks that are made extremely reliable today 
with the mean time to failure of millions of hours. RAM, on the other hand, has much 
higher failure rate with mean time to failure of a few thousands hours. In addition, RAM 
cache is also vulnerable to hardware failures such as board failure, CPU failure, and so 
forth. Disks can be unplugged from a failed system and plugged to another good system 
with data intact.  
 
STICS-based SAN systems are also highly scalable. Off-the-shelf Ethernet Switches can 
be used to connect as many STICS as possible without obvious bottleneck. Furthermore, 
the LAN connecting STICS can be a completely separate network from the LAN 
interconnecting servers. This is in contrast to NAS that is attached to the same LAN 
where servers are connected, competing for the same network resources with servers that 
access the NAS. 

5. Related Work 
 
Existing research that is most closely related to STICS is Network Attached Storage 
(NAS) [9,10,32], a research project at Carnegie Mellon University. The NAS technology 
provides direct network connection for hosts to access through network interfaces. It also 
provides file system functionality. NAS-based storage appliances range from terabyte 
servers to a simple disk with Ethernet plug. The main difference between NAS and SAN 
is that NAS provides storages at file system level while SAN provides storages at block 
device level. Another difference is that NAS is attached to the same LAN as the one 
connecting servers accessing storages, while SAN has a dedicated network connecting 
storage devices without competing for network bandwidth with the servers. STICS 
provides a direct SCSI connection to a server host to allow the server to access at block 
level a SAN implemented over the Internet. In addition to being a storage component of 
the SAN, a STICS performs network cache functions for a smooth and efficient SAN 
implementation over IP network.  
 
Another important work related to our research is Petal [21, 36], a research project of 
Compaq’s Systems Research Center. Petal uses a collection of NAS-like storage servers 
interconnected using specially customized LAN to form a unified virtual disk space to 
clients at block level. iSCSI (Internet SCSI) [12,15,33] emerged very recently provides an 
ideal alternative to Petal’s customized LAN-based SAN protocol. Taking advantage of 
existing Internet protocols and media, it is a nature way for storage to make use of 
TCP/IP as demonstrated by earlier research work of Meter et al of USC, VISA [26] to 
transfer SCSI commands and data using IP protocol. iSCSI protocol is a mapping of the 
SCSI remote procedure invocation model over the TCP/IP protocol [33]. STICS 
architecture attempts to localize some of SCSI protocol traffic by accepting SCSI 
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commands and data from the host. Filtered data block is sent to the storage target using 
Internet. This SCSI-in Block-out mechanism provides an immediate and transparent 
solution both to the host and the storage eliminating some unnecessary remote 
synchronization. Furthermore, STICS provides a nonvolatile cache exclusively for SCSI 
commands and data that are supposed to be transferred through the network. This cache 
reduces latency from the host point of view as well as avoids many unnecessary data 
transfer over the network, because many data are frequently overwritten. 
 
The idea of using a disk-based log to improve system performance or to improve the 
reliability of RAM has been used in both file system and database systems for a long time. 
For example, the Log-structured File System (LFS [34,40]), Disk Caching Disk (DCD 
[13]), and other similar systems all use disk-based data/metadata logging to improve file 
system performance and speed-up crash recovery. Several RAID systems have 
implemented the LFS algorithm at the RAID controller level [14,25,41]. LFS collects 
writes in a RAM buffer to form large logs and writes large logs to data disks. While many 
implementation techniques are borrowed from existing work, the novelty of STICS is the 
new concept of caching between SCSI and IP. 

6. Conclusions 
 
In this paper, we have introduced a new concept “SCSI-To-IP cache storage” (STICS) to 
bridge the disparities between SCSI and IP in order to facilitate implementation of SAN 
over the Internet. STICS adds a new dimension to networked storage architectures 
allowing any server host to efficiently access a SAN on Internet through a standard SCSI 
interface. Using a nonvolatile “cache storage”, STICS smoothes out the storage data 
traffic between SCSI and IP very much like the way  “cache memory” smoothes out 
CPU-memory traffic.  We have implemented a prototype STICS under the Linux 
operating system. We measured the performance of STICS as compared to a typical 
iSCSI implementation using a popular benchmark (PostMark) and a real world I/O 
workload (EMC’s trace). PostMark results have shown that STICS outperforms iSCSI by 
up to 4 times in terms of average system throughput. Numerical results under EMC’s 
trace show a factor of 3 to 6 performance gain in terms of average response time. 
Furthermore, STICS is a plug-and-play building block for storage networks. 
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