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ABSTRACT

Recent studies [5] have shown that memory system is the major bottleneck of vector computers. Per-
formance measurements on CRAY-2 computers indicate that as much as a factor of 4.4 performance
degradation results from memory latency. In this paper, we study the performance of incorporating
cache memories into vector computers. Two cache organizations are considered: direct-mapped
cache and prime-mapped cache that we proposed [22]. We analyze the caching behavior of three
typical blocked algorithms for numerical applications: matrix multiplication, Gaussian elimination
and FFT. By analyzing the algorithm structures in conjunction with system architectures, we de-
velop analytical models based on real applications rather than statistical estimate. Our performance
models give the expected value of execution time of an algorithm averaged over a wide range of
problem sizes. Performance measurements of the algorithms on a real machine are carried out to
validate our analysis. Numerical results show that the prime-mapped cache minimizes cache miss

ratio caused by line interferences that are critical for numerical applications.
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1 Introduction

As the gap between memory cycle times and processor cycle times grows, memory system design has
become a crucial challenge to supercomputer designers. High performance computers need sophis-
ticated memory hierarchies that keep memory latency minimum. Several recent vector computers
feature a cache-based memory hierarchy such as IBM 3090 [18], Alliant FX/8 [1] and Vax/600 [4].
Despite the essential importance of memory hierarchies to supercomputers, little has been done on
performance evaluation of cache memories for such systems. In [22, 23], we have proposed a new
cache design for vector computers [22] called prime-mapped cache by utilizing the special proper-
ties of a Mersenne prime. A simple probabilistic analysis assuming random stride vector accesses
has shown that the new design has a great performance potential for future supercomputers [22].
The purpose of this paper is to analyze the caching behavior of real application algorithms on the
architecture. We develop analytical models based on realistic algorithms to study the performance
of memory hierarchy for supercomputers. Performance measurements on a real machine are carried
out to validate our analysis. It is shown that our analysis is in a good agreement with the actual
measurements.

Evaluating the performance of cache-based computer systems is a difficult task because of the
complexity of program behaviors. One needs to consider the locality property of an application and
reuse factors among other things. Traditional performance evaluation techniques can be broadly
classified into three categories: trace-driven simulation|[2, 9], event-driven simulation][20] and ana-
lytical modeling [21, 7, 19]. Trace-driven simulation is based on actual traces of programs running
on a system. Therefore, it provides the most reliable and accurate performance estimates for given
programs on a given system. Since the collection of traces is a time consuming process and requires
special hardware or software supports, trace-driven simulation may not be effective in capturing
the exact performance behavior of hypothetical architectures. Moreover, trace-driven simulation
becomes prohibitively costly if one considers a wide range of problem sizes to which vector pro-
cessing performance is sensitive. It is shown in [15] that an algorithm with one problem size can
run at twice the speed of the same algorithm with a different size. Discrete-event driven simula-
tion and analytical modeling, on the other hand, assume certain stochastic work load model[8, 21].
Performance estimates of a system can be derived fairly easily based on the assumed probability
distributions of general program behaviors. However, actual program executions show, to a large
extent, locality properties. No probability distributions can capture the exact behavior of program
execution on the vector computers. Hence the probabilistic analysis may result in distorting the
execution pattern of application algorithms. Our approach here is to analyze the performance of
cache-based vector computers by considering actual algorithms running on the system. Through the

analysis of the structural and behavioral properties of an algorithm, the precise effects of different



cache parameters on the system performance can be evaluated using analytical formulas that would
otherwise be obtained from traces.

The application algorithms considered in this paper are matrix multiplication, Gaussian elimina-
tion, and FFT. The reasons for selecting these algorithms should be obvious. Matrix multiplication
is a well understood matrix algorithm and is an interesting case study for cache memories because
locality is carried in three different loops by three different variables; Gaussian elimination for solv-
ing linear systems of equations is the core of Linpack benchmark; and the Cooley and Tukey’s Fast
Fourier Transform (FFT) algorithm is a basic tool in various scientific and engineering disciplines,
ranging from oil exploration to artificial intelligence. Efficient computation of these algorithms is
desirable for any engineering/scientific computers. In order to show the potential benefits of the
new cache organization, we consider all possible problem sizes and analyze the average performance.

In the next section, we present two simple vector architecture models based on which our perfor-
mance analysis is carried out. Section 3 presents the analytical models based on the three algorithms.
Performance measurements on the IBM ES/9000 vector computer are also presented in Section 3
to validate the analysis. We will carry out performance analyses and comparisons in Section 4. Our
performance analysis on the application algorithms shows that the prime-mapped cache improves
vector processing performance by 40% to a factor of 5 over conventional cache designs. Section 5

concludes the paper.

2 Architectural Models

2.1 Two Simple Vector Architectures

Two simplified vector processor models considered here are shown in Figures 1 and 2 which will be
referred to as MM-model and CC-model, respectively. Both models have a vector processing unit,
a set of vector registers with maximum vector length being V;, words, and a set of memory modules
(or banks) that are connected to the vector processor through three pipelined buses. Two of the
three buses are read buses and the other is write bus. Each of these buses contains separate data
bus and address bus. The second processor model (CC-model) shown in Figure 2 differs from the
first one (MM-model) only in that it has a cache memory of size C' lines between the processor and
memories. We assume that this cache memory is used purely for vector data similar to the split
vector cache of VAX /6000 [4]. The number of words in each cache line is designated by L which
is called cache line size. It is assumed that a line of data can be transferred on one of the buses
within one cycle.

There are totally M = 2™ low-order-bit interleaved memory banks. The memory access time



(reservation time) of these memory banks is assume to be t,, cycles. Memory accesses to different
banks can be carried out concurrently provided that conflicts do not occur. The cache memory
shown in Figure 2 is used to bridge the speed gap between processor and memories. In our perfor-

mance analysis, we consider two cache mapping organizations as outlined below.

2.2 Direct-Mapped cache

Direct-mapped cache is widely understood and successfully implemented in many general purpose
computers [13]. The essential idea of the direct-mapped cache is that it consists of C' = 2 lines and
a data item with address A is mapped into line # A mod 2¢ in the cache. Since the modulus is a
power of 2, the line number of a data item in the cache is a subfield of its memory address. As a
result, cache access and address generation are greatly simplified. Cache hit time is minimal since
it does not need associative search, which makes it very attractive for computer implementations.
However, as observed by Lam et al. [15], cache line interferences increase drastically and dominate
cache misses in a direct-mapped cache for numerical applications. In order to maintain a reasonable
cache performance, the cache utilization (the fraction of cache that is used to hold useful data) has

to be extremely small (about 3%).

2.3 Prime-Mapped Cache

We have recently proposed a cache design with a novel mapping scheme called prime-mapping
that attempts to minimize interference misses [22, 23]. The main idea of the prime-mapped cache
is that memory data are mapped into cache according to a Mersenne prime. The cache access logic
of the mapping scheme keeps virtually the same as direct-mapped cache, resulting in no additional
delay for cache accesses. At the meantime, the address generation takes no longer than the normal
address calculation time due to the special properties of the Mersenne number. Moreover, generating
addresses for accessing the prime-mapped cache is done in parallel with normal address calculations
resulting in no performance penalty. In other word, the prime-mapped cache does not increase
the length of the critical path of a processor. Since Mersenne number is a prime, a vector access
to the cache with this mapping scheme can be made conflict-free. Thus, it has the advantages of
both direct-mapped cache and fully associative cache if replacement is not considered. The detailed

description of the Prime-mapped scheme can be found in [22, 23].



3 Performance Analysis

3.1 Basic Model for Vector Performance

As mentioned in the introduction, we shall use analytical models to study the performance of the
two vector architecture models (MM-model and CC-model). Consider a simple SAXPY operation
on two vectors, X, Y and a scalar a:

Y =aX +Y.

Assuming that the vector length of X and Y is B, the execution time of this operation can be
expressed as [5, 12]
B

Ty (B] = [ 172

VL start + BTea;emﬁ (1)

where

B is the vector length,
T3 .m: the time for processing one vector element,

Tl?

start

the strip startup time,

V1, the vector register length of the machine.

The superscript « can be M or C to distinguish MM-model (Figure 1) and CC-model (Figure 2)
vector processors, respectively. For instance, T}, . is the time for processing one vector element

with the MM-model whereas T, , is the time needed to process one vector element with CC-model.
In addition, the execution time, 7}7[-], should also include the startup overhead for each outer loop
which will be considered latter with respect to each realistic application algorithm.

The start-up time, T

., depends on the memory access time and the type of arithmetic oper-

ations to be performed. It should not be difficult to determine its value for a given set of system
parameters. If the functional unit is fully pipelined, T7,,,; should be one in an ideal case. In reality,
T3 . 1s often greater than one because of stalls resulting from memory accesses, data dependencies
and control dependencies. Since our primary interest here is memory system performance, we will
concentrate on memory stalls only. In the following subsections, we will analyze memory stalls
precisely based on the three application algorithms. The effects of the memory stalls on the vector

i R
performance are incorporated in 77, ,.

3.2 Matrix Multiplication

Consider the multiplication of an N; x N matrix X with an N x N, matrix Y. Based on the same

blocking strategy as the one described in [15], we partition X into N/B; submatrices of size N1 x By



and Y into submatrices of size B; x By, as shown in Figure 3. Let X[i,j---j + B] designate a row
vector in the 7th row of X. It consists of B + 1 elements with the second subscript values lying
between j and j 4+ B. The same notation holds for column vectors except that the subscript range
is placed in the first subscript position. With this notation, the vectorized version of the blocked

matrix multiplication algorithm is shown below.
Blocked Matrix Multiplication Algorithm
1. j=1

2.  forjj=1to g—; do begin /* jj-loop */

3. for kk =1 to B% do /* kk-loop */

4. fori=1to Ny do  /*i-loop */

5. for k = By(kk — 1)+ 1 to kkB; do  /* k-loop */

6. Zliyj-j+Bo—1]:=Z[i,j+j+ By — 1]+ X[i,k] - Y[k, 5+ j + Bo — 1]
7. J =7+ Bs;

8. end j7j.

For clarity, we assume that B; divides N and By divides N,. At the beginning of each i-loop, vectors
Xli,kk---kk+ By — 1) and Z[i,j---j 4+ By — 1] are loaded to vector registers. In each iteration of
the inner most loop (k-loop), a sub-row vector of Y is loaded from the main memory into a vector

register before the calculation begins.

3.2.1 MM-Model

Let us first consider the execution time of each iteration of i-loop of the above algorithm on the
MM-model, denoted by T, which is given by

TM[B1] =T, + Bi/T}[Ba], (2)

where TM[-] is defined in Equation (1) and T, is the overhead for vector startup of i-loop. T,
includes the time needed to load X[i, kk ---kk + By — 1] and Z[i, j - - - j + By — 1], the overhead for
computing the starting addresses, setting up vector controls, and executing scalar code for strip-
mining. According to the algorithm, X and Z are loaded only once after every B; vector operations,

which is much less frequently than Y being loaded. Therefore, the effect of memory stalls of loading



X and 7 is relatively insignificant compared to the effects of loading Y. Notice also that as soon
as the first elements of X and Z are successfully loaded in the registers, the arithmetic operations
can start. Therefore, T, can be considered as the sum of memory cycle time, t,,, and the startup
cost. The total execution time of multiplying an Ny X N matrix X with an N X Ny matrix Y,
Taratriz| N1, N, N, is given by

NiNN, - Ti[Bi]

TMatriw[Nla N, N2] = B, - B, . (3)

Memory stalls due to bank conflicts when loading row vectors of Y are incorporated into the
time for processing one vector element, 722 .. The major source of memory stalls for MM-model is
memory conflicts [11, 17]. We first consider column-major storage scheme while row-major scheme
is considered later in this section. Based on the storage scheme, any two consecutive vector elements
in a row of Y are N locations apart. Let s = N mod M. Then s is the access stride in terms of
memory bank number. Since the stride is directly related to the matrix size which can be any value,
it is reasonable to assume that the stride is uniformly distributed between (1,2---, M). That is, s
takes any integer in (1,---, M) with probability ﬁ It should be noted that strides greater than M
need not be considered due to the modular operation.

Let us consider the number of possible stall cycles of accessing vector Y[k, j---j+ By — 1] from
the main memory. When the vector access stream traverses across all memory banks (one sweep)
with stride s, the number of memory banks visited by the access stream is given by M/ged(M, s),
where ged(M, s) is the greatest common divisor of M and s. M/ged(M, s) is also called return
number meaning the number of memory banks visited before the same memory bank is revisited
again. If this return number is less than both the vector length to be accessed and the memory
cycle time, memory conflicts occur. As a result, the first conflicting vector element will be delayed
by tm — M/ged(M, s) cycles. There are By/(M/ged(M, s)) such conflicts as seen by a contended
memory bank. For a special case where ged(M,s) = 2™ = M, all element requests go to a single
memory bank, and each of By elements will be delayed by t,, — 1 cycles. Since M is a 2’s power,
ged(M, s) is in the form of 2¢ for some ¢ = 0, - - -m — 1. For each 2¢, there may be a number of values
of s within M such that gcd(M, s) = 2°. In order to find the average number of conflicts, we need

to find out the number of integers within M that share the same gcd(M, s) = 2¢. This number is

M s

clearly the same as the number of values of s such that gcd(57, 57) = 1, which is Euler’s function

[16] given by
M. M -

m—1

gb(y):%“:? =, fori<m.

That is, the probability of the stride s being such a value that makes ged(M, s) = 2¢ is Qmj;;fl. For
By

each such s, 175 Sweeps are delayed by (t,, — M/2%) cycles. Therefore the average number of stall




cycles resulting from accessing a vector of length By, I} (the letter I is for memory Interference),

is given by
m—1 —1—1
2m— M. B, 1
™= (=) L Byt —1),
st ' [lgM M ( 9i )M/2Z + M 2( )
1=|lOo zm

assuming that ¢,, < M. The lower limit of the sum in the above equation is determined based on
the condition #,, > M/2¢. The second term of above expression takes care of stride being a multiple

of M. Simplifying the above equation, we have

B,

t
Iy = A [tm + EmUoggth — gliegatm]]

The time for processing one element of the vector ignoring the start-up time, 727 . can now be

expressed as

T .. = 1+ average stall cycles per element
1 t
=1+ 75 [tm + 7’" |logat,, | — 21te92tm]], (4)

Substituting Equation (4) into Equation (1) and then Equation (2), we obtain the execution time
for each i-loop which is used in Equation (3) to obtain the total execution time of the algorithm on
the MM-model.

3.2.2 Direct-Mapped CC-Model

Observing the blocked matrix multiplication algorithm, we find that a sub-row of Y is loaded
at each iteration of the inner most loop. These memory accesses are the most time consuming
part of the algorithm. Therefore, we can expect substantial speedup by putting a block of Y,
Y[kk---kk+B;—1,j---j+ By —1], in the vector cache memory. Once the block is loaded into the
vector cache, it should be reused for /NV; times according to the algorithm in an ideal situation. In
reality, however, cache misses may occur. These cache misses may have significant effect on system
performance since each cache miss results in %, stall cycles.

In general, cache misses can be classified into three categories [12]: compulsory, capacity, and
conflicts. The compulsory misses are the misses in the initial loading of data, which can be properly
pipelined in a vector computer. The capacity misses are due to the size limitation of a cache to hold
data between references. If application algorithms are properly blocked as mentioned previously,
the capacity misses can be attributed to the compulsory misses for the initial loading of each block
of data provided that the block size is less than cache size. The last category, conflict misses, plays
a key role in the vector processing environment. Conflicts can occur when two or more elements of
the same vector are mapped to the same cache line or elements from two different vectors compete

for the same cache line. We call such conflicts cache line interferences.



Now let us consider the CC-model of Figure 2 that has a direct-mapped cache of size C' = 2°¢
sets. Assuming that Y is stored in column-major, then element Y[i, j] is stored in memory location
Y, + (j —1)N + (i — 1), where Y} is the starting address of the matrix. With the column-major
storage scheme, elements of a column of Y are in consecutive memory locations. As a result, a cache
line of size L words contains an L-element subcolumn of Y. We will use this subcolumn length as
one blocking factor By (see Figure 3), i.e. the cache line size L equals B;.

At the beginning of each kk-loop (i = 1), the processor loads a subblock of Y into the cache
while finishing the first ¢-loop for + = 1. The process of the initial cache loading will take the
amount of time given by Equation (2). After the block of Y is loaded into the cache, the remaining
N; — 1 iterations of i-loop are expected to be performed in the cache if miss does not occur. The

total execution time of the matrix multiplication algorithm on the CC-model (Figure 2) is given by

C _ NQN M C
Tiuris = 5 T BU + Ny = 1) - (T, + BT [Bu))} )

where TM[B;] (given in Eq.(2)) covers the effects of compulsory and capacity misses as discussed
above. The interference misses will be taken care of by T.S,,., in T,’[Bs).

Suppose that the processor tries to load B, cache lines of B; words each into the vector cache.
Based on the storage scheme, any two cache lines (any two consecutive columns of a subblock of
Y') are separated by N memory locations. Let s = N mod C. Then s is the access stride in terms
of cache line number. The number of cache lines occupied as a result of the load sequence is given
by C/gcd(C, s), where ged(C, s) is the greatest common divisor of C' and s. If the vector length
B, is greater than C'/ged(C, s), cache line conflicts (interference) occur. The number of cache line-
interferences is clearly By — C/gcd(C,s). In order to be able to reuse the C/ged(C, s) line data
that remain in the cache, we suppose that the cache is lockup free meaning that cache accesses and
memory accesses can be done concurrently. In this case, the data already in the cache can be loaded
to a register before they are overwritten by new conflicting cache lines. Thus, every cache access to
a vector of length By will result in By — C/ged(C, s) cache misses based on the access pattern of
the algorithm.

The number of cache misses is clearly dependent on the relative value of cache size C' and and
access stride s. We again assume that the stride is uniformly distributed between (1,---C'). That
is, s takes any integer in (1,- - - C') with probability 1/C. Similarly, strides greater than C need not
be considered due to the modular operation. Because C is a 2’s power, ged(C, s) is in the form
of 2! for some 7 € (0,1,---,¢ — 1). For each 2!, there may be a number of values of s within C
such that gcd(C,s) = 2!. The number of integers within C that share the same gcd(C,s) = 2!
is the same as the number of values of s such that ged(%, £) = 1, which is Euler’s function [16]
given by ¢(5) = 55 = 2771, for i < c. For each such s, B, — C/2 line interferences occur.




If ged(C,s) = C, then there would be By — 1 conflicts. Therefore the average number of stall

cycles resulting from accessing a vector of length B, IS, is given by (STalls due to Cache line

st

Interference),
1 ¢ C )
IS== Y (Bo— )2+ By — 1] - t, (6)
C" o 2t
i=[log> &1

assuming that the cache is lockup free. The lower limit of the above summation is determined in
such a way that By — C/2¢ is always positive. For every line-interference miss the processor stalls
for t,, cycles. Simplifying the above expression, we have

1
I§ = %(3B2QLIngB2J — 2. 2llogB2] _ 1y (7)

For By being a power of 2, we have

1
I§ = %(Bg —1) - tp.

Thus, the time for processing one vector element is given by

c I
Telemt =1+ E (8)

Substituting Equation (8) into Equation (1) and then Equation (5), we obtain the total execution
time of the matrix multiplication algorithm on the direct-mapped CC-model.

To this point, one may argue that Y can be stored in row-major so that the cache would do
better. The fact is, however, row-major storage will end up with the similar performance behavior
as the column-major storage because the data stored in the cache is a two dimensional subarray.
With row-major storage, a cache line will contain a subrow of Y. A subblock of Y will then have a
number of subrows that are separated by the row length of Y, which will not make any difference
as far as the number of line conflicts is concerned since we consider random matrix size. Although
it may appear that row-major storage results in less number of loads from the main memory per
vector operation, the data mapped to cache lines with potential conflicts can never be reused making
the cache virtually useless. This fact is evidenced by our performance measurements on the IBM
ES/9000 vector computer. We run the algorithm for two different matrix sizes of ¥Y: 512 by 512
and 511 by 511. The former gives memory access stride of 512 and the latter gives the stride of 511
which is relative prime to the number of sets in the cache. By interchanging the two inner most
loops, we obtain vectorized code either along columns or along rows of Y. As shown in Figure 4,
we see performance difference between the two problem sizes no matter how we pick up vectors.
The reason why we consider column-major will be evidenced shortly in the next subsection when

we analyze the performance of the Gaussian elimination algorithm.
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3.2.3 Prime-Mapped CC-Model

Since the modulus in the prime-mapped cache is a prime number, interference misses are minimum.
For a random stride, the line-interference misses occur only when the stride is an integral multiple
of the cache size. Therefore, IS is simply given by

(B2 —1)

IS = 5 tm,s

(9)

assuming that the stride is uniformly distributed between 1 and C. Substituting Equation (9) into
Equation (8) we obtain the time for processing one vector element with prime-mapped cache. The

total execution time is calculated using Equation (5).

3.3 Model Validation Through Performance Measurements

In order to verify the accuracy of our analytical model presented here, we carry out performance
measurements of the algorithm on the IBM ES/9000 vector computer that has cache memories. The
function CPUTIME is used to measure the execution times of a program. All the system parameters
used in the analytical formulas are chosen empirically based on our experiments. Memory cycle
time t,, is assumed to be 30 CPU cycles. The start up times, Ty, and T,, are fixed at 9.5 usec.

The blocked matrix multiplication algorithm of Section 3.2 was written in Fortran. The inner
most loop of the Fortran code spans a subrow vector of Z and Y so that the vectorized code will
have the same structure as the one presented here. We run the program for two different matrix
sizes: one with column length of Y being 512 and the other with the column length being 511 which
is relative prime to the number of sets in the cache. Since exhausting all possible matrix sizes in
our experiments is impractical, we use the above two representative sizes to obtain approximate
average (weighted-average) performance for the purpose of comparison with the analytical model for
direct-mapped cache. Notice that the effect of having prime-mapped cache is equivalent to having
a problem size (stride) that is relative prime to the number of sets in the cache. The details of the
experiments can be found in [14]

Figure 5 shows the comparison between our analytical model and actual measurements for the
matrix multiplication algorithm. The execution times measured in terms of second are plotted
as functions of blocking factor B;. It is shown in this figure that our analytical models for both
direct-mapped cache and prime-mapped cache match excellently with the measurement results. Not
surprisingly, when we change blocking factor By while fixing B, similar agreements between analysis
and measurements are observed as shown in Figure 6. In general, our analytical models agree well
with all measurement results with different sample problem sizes (such as 128 x 128, 1k x 1k, etc.)
[14].

11



3.4 Gaussian Elimination

In order to make efficient use of memory hierarchy, a number of blocked LU decomposition algo-
rithms stands out in the literature. We consider here the block algorithm described in [3] which is
similar to the BLAS3. Suppose the matrix A to be factorized is dimensioned N x N and is stored
in a column-major. The block LU factorization algorithm consists of the following two steps. First,
the algorithm computes the subblocks B; and B, (see Figure 7). Then B; and By are used in the
main algorithm as black blocks to do factorization.

Let the current stage of the reduction be £ and the block size p which is equal to the cache line
size L. We assume that p divides N for the sake of discussion. The main loop for computing B,
and B, is executed for j = k,---k+p—2. For each j, b; and b} are computed as follows (see Figure
7)

bii=b — B{ lusy bh=0h— 1, BT,
where blocks B; and B, at stage j can be mathematically expressed as follows

j—1
uj+1 By

B=[Btn] =) "0

as shown in Figure 7. The following vectorized algorithm computes B; = Alk+p--- N, k---k+p—1]
and By = Alk---k+p—1,k+p---N| that will be used in the main algorithm.

Subroutine Computing B; and B,

1. Pivot for stage k- primer for the algorithm

2. for j =k to k+ p— 2 do begin

3. s == 1/Alj, j;

4. Alj+1---N,jl:=s-A[j+1---N,j];

5. fori=ktojdo /*compute by :=b; — B u; 4 */

6. Alj+1---N,j+1]:=Aj+1---N,j+1]—A[j+1---N,i| - A[i,j + 1];
7. Pivot for stage j + 1;

8. fori=Fktojdo /*compute b :=0by— 1t B] " */

9. Alj+1,j+2---Nl:=A[j+1,j+2---N|—A[j+1,i - A[i,j + 2--- N];
10. end j

12



11. s:==1/Alk+p—1,k+p—1];
12.  Alk+p---Nk+p—1]:=s-Alk+p---N,k+p—1];

The execution time of this subroutine at stage k, T, ,[], is given by

k+p—2 J
Tp, k] = Tyiw+ T [N—k—p+1]+ > {Tpin+ T3 [N —jl+Y_ (T, + T[N —j]+ T[N - j—1])},
j=k i=k

(10)

where

Tpiv is the time for pivoting and scalar operations such as statements 1 and 11, or
statements 3 and 7.

T, the vector startup overhead which is the same as the one used in Equation (2).

T[] the basic processing time for a column vector defined in Equation (1).

T7°"[-] the basic processing time for a row vector defined in Equation (1).

We distinguish processing time for a column vector from processing time for a row vector here
because of the different memory access times due to stride difference. A column vector can be
accessed conflict free from memory banks while a row vector accessed from the main memory may
result in bank conflicts depending on the access stride which is related to the size of the original
matrix.

The main algorithm is as follows
1. 1:=N/p
2. k:=1

3. fori=1toldo

4. Compute B; and Bs;
5. A, = A, — B By;

6. k:=k+p

7. end i

The total execution time of the blocked LU decomposition algorithm can now be expressed as
N N/p
TLU[N] = (5 + 2)Tscal + Z(T31,2 [k] + TMam-w[m,p, m] + meCOl [m]), (11)

=1
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where k = 14 (i — 1)p and m = N — ip. The first term in the above equation gives the execution
time of scalar operations in statements 1, 2, and 6 of the main algorithm, and the second term
gives the execution time of the main i-loop. In the main i-loop, By and B, are first computed
for each 7, and then multiplied, followed by a matrix subtraction. The processing time for these
three steps are specified by the three terms in the summation. Averaging over all possible values

of N € (p,2p,---,pC), we have the average execution time

C

n=1

Both Equations (10) and (11) contain the basic vector processing time T¢%[-] and T7°“[-] that
may differ depending on the architecture model (MM-model or CC-mode). With the MM-model,
operand vectors are first loaded from the main memory to registers before the operations start.
Since the matrix is stored in column-major, T4 . used in calculating 7¢° can be considered to be
one whereas the T4 . used in calculating T7°*[-] is given by Equation (4). The second term in
the summation of Equation (11), Thsariz, can be calculated using Equation (3) by setting Ny = m,
N = B; =pand By, = Ny =m.

Now let us consider the execution time of the algorithm on the direct-mapped CC-model. Similar
to the analysis of matrix multiplication, suppose that the subblock B, is loaded into the vector cache
while the factorization is in progress. As a result, the term 77°“[-] in Equation (10) is replaced by
T -] defined by Equations (1), (7) and (8) with B and B, being substituted by N — j — 1. The

term Thratriz[m, p,m] in Equation (11) is replaced by T';,;.+, defined in Equation (5) by setting
Ny =m, N = B; =p and By = N, = m. For the prime-mapped CC-model, the execution time is
estimated in the same way as for the direct-mapped CC-model except that all IG’s are calculated

using Equation (9).

3.5 Fast Fourier Transform

While the FFT algorithm performs well on scalar computers, it does not perform as well on vector
computers because the access stride changes after each stage of computation. Moreover, other than
the final stage all strides are 2’s powers, which results in line conflicts in a direct-mapped cache.
The FFT in its original form can only keep a very small amount of data in the cache if the data
size that has to be a power of 2 is greater than the cache size. A tremendous amount of efforts has
been made during the past 20 years to optimize the performance of FFT on vector machines [6].
One way to implement the FF'T algorithm in a memory hierarchical system is to map the input
data into a two dimensional array [6]. Suppose an N-point data array to be transformed can be

represented as N = B; x By. Then the input data can be considered to be a matrix of B; rows and
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By columns stored in a column-major as shown in Figure 8. The algorithm proceeds by first doing
Bs-point row FFTs. A group of L rows are transformed simultaneously with the vector length of L
elements along the columns. Each row FFT contains Log, By computation stages. Each stage has
By /2 butterflies. The first stage loads data from the main memory, which takes amount of time
given by

LTM

TbM[L] = [V —| start + LT elemt> (13)

where T}! . is derived as follows. Since each butterfly loads two vectors from the main memory
with stride 1, there is no memory bank conflict among elements of the same vector. Memory stalls
are mainly due to bank conflicts between elements of different vectors. Assuming that the starting
elements of the two vectors are randomly placed in the memory, the probability that the two vectors
collide is 2L. If such collision occurs, the average distance of the first element of one vector from the
first element of the other vector is 5 resulting in ¢, — 5 stalls. The average number of stall cycles
is therefore given by %(tm — %) if ¢t,, > L. if t,, < L, memory stalls occur only when the distance
between the first elements of the two vectors is less than ¢,,, which occurs with the probability th.
Agaln the average distance is tM in this case giving rise to the average number of stall cycles belng
m for ¢,, < L. Therefore, Tlemt is given by TH . =1+ % (t ) ift,,>Land TX . =1+ ML
1f tm < L. After L rows are loaded into the cache, the remaining Logy B; — 1 stages are expected to

be done within the local cache. Each of these stages takes the following amount of time

L
TbC[L] = [V ]T.‘sct’art + LTe?emti (]‘4)
where TS, ,,.; is calculated by taking into account interference misses. Obviously, if By > C/gcd(By, C),

then line conflicts occur in the direct-mapped cache and cache lines are replaced before they are
reused due to the FFT access pattern. In case of prime-mapped cache, no line interference occurs
as long as By < C'. Taking into account the outer loop overheads, the total execution time for the

By row FFTs is given by
B B B
Tity = [T+ T (L] + (logs By — 1) 2TE(L]). (15)

After all B; row FFTs are done, we multiply twiddle factors and perform column FFTs for

o8
B1

held in cache without line conflict for both direct-mapped cache and prime-mapped cache. Vector

B, times. Since the matrix is stored in column-major, several (| = |) consecutive columns can be
operations are done along the rows of length (|_B%J) The total execution time for column FFTs is

calculated in the same way as for row FFTs and is given by

B B,

Titr = 1575 W+ SO/ Bl + (logaBy = 1)

T [LC/Bl} (16)
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where TM[-] is given by Equation (13), and T,’[] is given by Equation (14) with T.9,,., being 1.

The total execution time of this algorithm on the CC-model is the summation of Equation
(15) and Equation (16). The execution time on the MM-model is the sum of the following two
expressions.

row M Bl BQ M
Tper = [ HTo + (log2 B2) =T, [V ]},
Vi 2

B

=[—

2 By M
VL]{TO + (509231)7% [Vi]}-

col M
TFFT

4 Numerical Results and Discussions

In this section, we present some numerical results based on the performance models developed in the
previous section and compare the performance of the direct-mapped cache with that of the prime-
mapped cache. Cache miss ratio has been used by many researchers as a performance measure
to evaluate cache performance. However, it is not a very good performance measure in vector
processing environment due to pipelining of memory accesses as mentioned earlier. We will use
speedup resulting from adding cache memories into the MM-model vector computer. The speedup is
defined as the ratio of the execution time of a given algorithm on the MM-model to the execution
time of the same algorithm on the CC-model. Except where indicated otherwise, all of the following
figures are for the case Vi = 64, Ty = 15, Tsews = 1, T, = ty, + 15, and T4 = ¢, + 15. These
parameters were chosen to be close to the commonly accepted values appeared in the literature
[12]. The cache size is assumed to be 8K lines in our discussion although many larger cache sizes
are available in commercial computers. The actual cache performance is dependent on the relative
values of cache size, problem size and blocking factors. What is important is to keep the blocking
factors less than cache size in order for the vector cache to be useful.

Figure 9 shows the speedup as a function of memory access time in terms of processor cycles.
If memory access time is small, it can be seen from the figure that adding a direct-mapped cache
memory does not help. The performance of the MM-model performs even better than the CC-model
that has a cache memory, particularly when blocking factor is large. This is primarily due to the
fact that any one of irregularly distributed cache misses results in a memory access that takes %,
cycles. The interleaved memory with pipelining may well satisfy the bandwidth requirement of the
processor. However, as the speed gap between processor and memory increases, i.e. the number of
cycles needed for accessing memory increases, the performance of the CC-model takes over. With
the blocking factor of 1K, the speedup of the CC-model over the MM-model is about 1.6 for memory
access time being 32 cycles. It is clear from the figure that adding the prime-mapped cache memory

triples the vector performance of the matrix multiplication algorithm after the memory time exceeds
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28 cycles.

Now let us consider Figures 5 and 6 again. These figures show the effects of blocking factors
(B1, By) on the vector performance. Recall that matrix Y is blocked into submatrices of size
By x Bs. During the matrix multiplication, we wish to store in the cache a submatrix which needs
By cache lines. With direct-mapped cache organization, some of the B, columns of a submatrix
may be mapped to a same cache line resulting cache line interferences. With the prime-mapped
cache, on the other hand, all By subcolumns will be mapped to B, different cache lines without any
cache line conflicts. As a result, the prime-mapped cache performs about 3 times better than the
direct-mapped cache for all values of By as shown in Figure 5.

We noted in Figure 5 that the two performance curves remain relative flat when we change the
blocking factor B; (note that B; = L). This is because matrix Y is stored in column-major, i.e.
elements along any column are in consecutive memory locations. As a result, changing subcolumn
size (cache line size) does not change number of line conflicts as long as B; keeps the same. However,
when Bj is fixed while B, changes, the execution time of the algorithm on the direct-mapped cache
organization increases drastically as shown in Figure 6. This increase in execution time results
mainly from the increase of the number of cache line conflicts as more lines are loaded into the
cache. The prime-mapped cache shows great performance advantage over the direct-mapped cache
in this case. The performance keeps unchanged as long as the submatrix size is less than the cache
size

Figure 10 shows the vector speedup of the Gaussian elimination algorithm as a function of
memory access time, t,,. It can be seen from the figure that the performance difference between
the two cache mapping schemes is dramatic. The direct-mapped CC-model does not improve the
vector performance but worsens the performance, i.e. the speedup is less than 1. The main reason
for this is the following. When we analyze the performance of the matrix multiplication algorithm,
we noticed that the blocking factor has significant impact on the cache miss ratio. After the
blocking factor exceeds certain value, the cache performs very poorly. In the Gaussian elimination
algorithm, the submatrix size changes after every reduction step starting from the maximum size
which is dimensioned p x (N —p). Therefore it is unavoidable that the cache has to hold a subblock
of bad size during the course of factorization of a sufficiently large matrix. In addition, both
column and row accesses are needed in the algorithm, which makes it virtually impossible to have a
good access tride. Furthermore, as mentioned previously, the fact that cache misses are not easily
pipelined makes the performance of direct-mapped CC-model worse than that of MM-model. The
prime-mapped cache, on the other hand, performs up to 5 times better than the MM-model for
large memory cycle times as evidenced in Figure 10.

The effects of cache line size on performance are shown in Figure 11. It is interesting to note that
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the situation here is quite different from that of matrix multiplication (compare with Figure 5). As
the line size changes, so does the performance of the Gaussian elimination algorithm. Recall that
line size L is also the blocking factor p of the algorithm. For small line sizes, the locality is not very
strong resulting in lower cache benefit. For very large line sizes or blocking factors, on the other
hand, we end up with more arithmetic operations [10], which implies that the unenhanced portion
of the execution time is increased. As a result, speedup reduces according to Amdahl’s law. The
optimal cache line size or blocking factor is at about 64 words that gives a factor of 5.5 performance
improvement. Notice, however, that we observe a factor of 3 performance improvement even with
line size of one word as shown in the figure. In other words, the proposed cache organization can
triple the vector performance even for level 1 BLAS subroutines as long as the column or row length
is less than cache size which is 8K-1 in our discussion.

The performance for the FFT algorithm is shown in Figure 12 as a function of memory cycle time.
When memory access time is small (less than 6 cycles), adding cache memory does not improve
vector performance. Notice that on the MM-model, all vector operations utilize the maximum
vector register length (V;, = 64) while on the CC-model vector operations for row FFTs only use
half of the maximum register length (32 words). The latter results in more strips as compared
to the former. This is why the CC-model does not perform better than the MM-model for small
memory cycle time. When the memory cycle time becomes larger, the CC-model takes over. The
performance improvement of both mapping schemes increases as the memory time increases. As
shown in the figure, the prime-mapped cache performs better than the direct-mapped cache The
maximum performance improvement observed for the parameters considered here is about 40%.

Figure 13 shows how the performance changes with the change of blocking factor B;. Initially,
the speedup increases gradually with the increase of the blocking factor. However, when the blocking
factor exceeds about 128, the speedup drops down. Recall that B; is the number of rows or the
column length of the input data array. As the column length increases, the number of columns that
can be placed in the cache is reduced for a given cache size. As a result, the vector length of each
vector operation at the second step of the algorithm becomes small, implying more strips and more
startup overheads. For B; being 1K, less than 8 columns can be placed in the cache and a vector
strip contains only 8 elements as compared to 64 in the MM-model.

Notice that the FFT algorithm used in our analysis is the two dimensional, cache-optimized
vector code developed in [6]. A lot of efforts has been made in optimizing the algorithm. If By is
greater than the cache size, it is unknown whether the algorithm is still optimal. With the prime-
mapped cache, the FFT algorithm can be implemented very easily by means of multi-dimensional
FFT. The cache access is conflict free for all stages of the transform. Optimization is guaranteed

as long as the block size is less than the cache size.
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5 Conclusions

In this paper, we have presented a comparative performance analysis of alternative cache designs for
vector processing. Since the performance benefits from adding a direct-mapped cache into vector
computers is limited, we consider an innovative cache mapping scheme, called prime-mapped cache.
Analytical performance models have been developed for the vector computer architectures with
or without cache memory based on three numerical algorithms: matrix multiplication, Gaussian
elimination and FFT. By analyzing the algorithm structures in conjunction with the architecture
models, execution times of the three algorithms on the architectures are precisely expressed in
analytical formulas. Our analytical models are validated through actual performance measurements
on a real vector machine. It is shown that analytical results and measurement results are in a
good agreement. Numerical results that are averaged over all problem sizes show that vector
computers with a prime-mapped cache (CC-model) outperform both the vector computer without
cache (MM-model) and the vector computer with a direct-mapped cache for all three algorithms.
The performance improvement of the prime-mapped CC-model over the MM-model goes up to a
factor of 3.4 for matrix multiplication, a factor of 5.5 for Gaussian elimination which is the core
of Linpack benchmark, and 70% for cache optimized FFT. Similar performance improvements are
observed as compared to the direct-mapped CC-model.

Our conclusion is that cache memory can improve the performance of vector processing provided
that application programs can be blocked. With the new mapping scheme, the cache memory can
provide significant performance improvement which will become larger as the speed gap between

processor and memory increases.
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