A One’s Complement Cache Memory *

Qing Yang and Sridhar Adina
Dept. of Elec. & Computer Engineering
University of Rhode Island
Kingston, RI 02881
e-mail: qyang@ele.uri.edu

ABSTRACT

Most of today’s microprocessors have an on-chip cache
to reduce average memory access latency. These on-chip
caches generally have low associativity and small sizes.

Cache line conflicts are the main source of cache misses
which are essential to overall system performance. This

paper introduces an innovative, conflict-free cache de-
sign, called one’s complement cache. By means of par-
allel computation of cache addresses and memory ad-
dresses of data, the new design does not increase criti-
cal hit time of cache accesses. Cache misses caused by
line interferences are minimized by means of evenly dis-
tributing data items referenced by program loops across
all sets in a cache. Evenly distribution of data in the
cache is achieved by making the number of sets in the
cache a prime or an odd number thereby the chance
of related data being mapped to a same set is small.
Trace-driven simulations are used to evaluate the per-
formance of the new design. Performance results on a
set of programs from SPEC92 benchmarks show that
the new design improves cache performance over the
conventional set-associative cache by about 100% with
negligibly additional hardware cost.

1 Introduction

It has become a common practice to implement micro-
processors having several kilobytes or tens of kilobytes
on-chip instruction and/or data cache memories. Since
the speed disparity between an on-chip cache and an
off-chip memory is large, the performance of such com-
puters are very sensitive to the miss ratio of the on-chip

cache. .]]
Cache misses can be generally classified into three

categories [1]: compulsory, capacity, and conflicts. The
compulsory misses are the misses in the initial loading of
data. The capacity misses are due to the size limitation
of a cache to hold data in a working set of a running pro-
cess. The last category, conflict misses result from cache
line interferences. Conventional caches usually consists
of 2% sets for some integer s. Each set contains one or
several (d) cache lines or blocks. We call the number
of cache lines in a set, d, the degree of associativity. If
d = 1, the cache is called direct-mapped cache. A block
(line) of memory data can be placed in the cache only

*This research is supported in part by National Science
Foundation under Grant No. MIP-9208041

in one (for direct-mapped cache) or d (for d-way asso-
ciative cache) cache locations. If more than d blocks of
data referenced by a program are mapped into a same
set, cache line interference occurs. As a result, some use-
ful data may be replaced giving rise to a high miss ratio.
Most microcomputers that are available today have rel-
atively small degree of associativity or direct-mapped
cache because of its advantages of easy implementation
and fast cache access etc.[2]. Therefore, if data are un-
evenly mapped among the available cache sets, cache
line conflicts can pose a severe performance limitation
to the cache memory. A recent study on blocked ma-
trix multiply algorithm [3] shows that the cache line
interference misses in a direct-mapped cache increase
drastically and dominate cache misses after the fraction
of a 16K-word cache being used exceeds 3%.

1.1 Related Work

Realizing the importance of reducing cache line con-
flicts, extensive research has been reported in the liter-
ature aiming at minimizing cache line conflicts. The
most straightforward approach is to increase the de-
gree of associativity of a set-associative cache so that
a data item can be potentially placed in a large num-
ber of places thereby decreasing the chance of conflicts.
However, increasing the degree of associativity results
in complicated hardware for associative data search in
the cache and also possibly large cache access time as
compared to direct-mapped cache [2]. In addition, in
many situations, high degree of associativity may not
help in reducing cache line conflicts. For the same cache
size, increasing associativity results in decreased num-
ber of sets that data can be mapped to although sev-
eral cache lines can be mapped to the same set. As
an example, consider 2 alternative designs of an eight-
line cache memory: 2-way set-associative and direct-
mapped. Suppose that we want to access a row of a
matrix that is stored in column-major and the length
of a column in terms of cache lines is an even number.
No matter which one of the two designs one wishes to
consider, only four or less number of cache lines can be
placed in the cache. In other words, the number of line
interferences is the same for either case if the row has
more than 4 elements. While this example is simple,
it demonstrates a potential problem that exists in any
existing set-associative cache design except for a fully
associative cache.

Several other approaches have been proposed to re-
duce cache line conflicts. Jouppi presented an inter-

esting idea of adding a so-called victim cache which is
a small fully associative cache used to hold data that
are removed from a direct-mapped cache [4]. Agarwal
and Pudar proposed [5] a column-associative cache in
which a different hashing function is dynamically ap-
plied to place the data in a different set when presented
with conflicting addresses. They have shown that the
column-associative cache performs as well as a 2-way
set-associative cache while keeping the advantages of
a direct-mapped cache. It is also shown in [5] that
the column-associative cache compare favorably with
victim-cache and hash-rehash cache. But Agarwal and
Pudar remarked that the column-associative cache may
not be easily extended to high degree of associativity
since it is likely to result in high complexity in im-
plementing the design which in turn would adds little
to the performance and might even degrade it. Re-
cently, Seznec has presented a very interesting cache
design called two-way skewed-associative cache [6]. The
main idea behind the skewed-associative cache is that
two different mapping functions are used to map data
into two different cache banks (note: a set contains two
lines, one from each of the two different banks). They
claimed that different mapping functions on different
banks would not affect performance if the computa-
tions of the mapping functions were added to a non
critical path. Compared to the same size 2-way set-
associative cache, the skewed-associative data cache [6]

reduces cache miss ratios of the considered benchmarks
from about 2.6% to 2.09% for an 8Kbyte cache and from

4.2% to 3.76% for a 4Kbyte cache.

1.2 Source of Conflicts

In spite of many previous efforts in reducing cache line
conflicts as discussed above, we believe that the line
conflict problem has yet to be solved. Our belief comes
from two factors. First of all, most of existing ap-
proaches were able to achieve the cache performance
close to that of 2-way set-associative cache. It has been
shown in [3] and in the example given above that 2-way
set-associativity does little in reducing cache line con-
flicts. Secondly, our experience with vector cache de-
signs [7, 8] as well as our recent simulation experiments
indicate that in many application programs significant
conflict reduction is possible if cache is designed right.
Therefore, in order to explore the possibility of elimi-
nating cache line conflicts, we made an effort to analyze

where line conflicts come from. .)
It is a well known fact that loops constitute the main

portion of any computer program. Data accesses inside
these loops usually have some regularities. Such reg-
ularities can be characterized by the distance between
consecutive memory references to a data array. One typ-
ical example is memory references inside a loop to a row
vector of a two-dimensional matrix stored in a column-
major. The distance is the column length of the matrix.
As described in the example given above, if the column
length in terms of cache line is not relative prime to the
number of sets in the cache, conflicts may occur. We
say such conflicts are the results of uneven distribution
of data in the cache. Many application programs such
as FFT, LUD, PERFECT Club benchmarks, SPEC92
exhibit the similar behavior as evidenced by our de-

tailed analysis of data reference patterns with respect
to cache organizations and our simulation experiments
on the benchmarks as evidenced later in this paper.

1.3 Contribution of This Paper

In this paper, we propose a novel conflict-free cache de-
sign that distributes cached data evenly across all sets
in the cache, i.e. prevent cache line conflicts based on
general caching behavior of programs rather than try-
ing to do something when conflicts occur. The new
design, referred to as one’s complement cache, uses a
uniform conflict-free mapping function without adding
any additional computation time for different mapping
functions. It also allows the flexibility of chosing differ-
ent degree of associativity in cache design. The primary
idea of the design is that memory data are mapped into
cache lines according to a prime or an odd number in
the form of 2° — 1. In other words, the addresses used
to access cache memory are in one’s complement form
rather than the direct binary number.

We evaluate the performance of our new design by
means of trace driven simulation. A set of applica-
tion programs from SPEC92 benchmarks is simulated
on the one’s complement cache and the conventional

set-associative cache. Simulation results show that the
one’s complement cache performs about 100% better

than the conventional set-associative cache with the same
degree of associativity.

The paper is organized as follows. The next sec-
tion presents the details of the new design. Section 3
describes the simulation methodology and benchmark
characteristics. We evaluate and compare the perfor-
mance of one’s complement cache and the conventional
cache in Section 4. Section 5 concludes the paper.

2 One’s Complement Cache

In this section, we present the new design of the conflict-

free cache. In order to understand where cache line
conflicts come from so that a right cache design can

be made, we first carry out a thorough analysis on the
source of cache line conflicts. Based on our analysis, we
will present the one’s complement cache design which
eliminates conflicts. The trick to make such cache work
is to make sure the address computation for cache ac-

cesses adds no additional delay to the critical cache hit
time.

2.1 Analysis of Cache Line Conflicts

In our following analysis, we assume that the considered

cache has S = 2% set. Each set is assumed to have d
cache lines or the degree of associativity is represented

by d. Each cache line consists of L bytes which is called
line size. The cache size is represented by C which is
equal to dL2° bytes. As discussed in the introduction,
any computer program contains loops that form the
most time-consuming part. PROFILing of large num-
ber of benchmarks [9] has shown that almost all of the
time-consuming loop nests contain at least three level
loops. Majority of these nested loops involve only one
major array which is usually two-dimensional or three-
dimensional with a small size in the third dimension[9].

Amdahl’s law tells us that one principle in computer
design is to make common case faster. We therefore
analyze the data access patterns of general loops.
Consider the following most frequent loops in a pro-
gram [9]:
For k=1 to N DO
For j =1to N DO
Fori=1to N DO
A[] = ---+A[a1i+b1j+clk+d1,
az?: + sz + Czk + dz],
END
END
END
where i, j, k, are loop variables and a, b, and ¢ are
constant integers. Consider iterations of the innermost
loop with different values of i for a given loop instance of
j and k. As a result of the loop iterations, a sequence of
memory references are issued to the following memory
locations:

B+iD, for (1)
where B and D are constant with respect to ¢ but func-
tions of j, k, a, b, ¢ and array size N. If we consider
only the memory references to different cache lines since
we are interested in line interferences, these memory lo-
cations are mapped into cache locations

for

in a _set-associative cache with 27 sets,
For the purpose of clarity, we define several terms

as follows.

7::1727"'7N7

B +iD' mod 2°, i=12---,N', (2

Definition 2.1 A cache line contention is said to oc-
cur between two data items when the two cache lines
containing respectively the two data items are mapped
to the same cache set.

A cache line contention may or may not result in a con-
flict miss depending on the degree of associativity and
the number of free line locations in a set.

Definition 2.2 A cache line conflict is said to occur
between two data items when a cache line contention
between the two data items results in a necessary re-
placement of one of the two contending cache lines.

Example 2.1 Consider a 2-way set associative cache
with 8 cache lines, i.e. there are 4 sets in the cache.
Suppose a processor issues a sequence of memory refer-
ences to siz data items, x;, in memory locations 2Li, for
i =1,---,6. Cache line contentions among x1,x3,Ts
and among x2,x4,xg occur. Cache line conflicts occur
between x1 and x5, and between x5 and xg if LRU re-
placement algorithm is assumed.

Let GCD(x,y) be the greatest common divisor of z and
y. The following theorem can be easily proved.

Theorem 2.1 In a S-line direct-mapped cache, a se-
quence of N consecutive memory references to data blocks
(lines) located in B+Di (i = 1,---, N) results in exactly

N — GC’D#(D,S) cache line conflicts.

Proof: According to the mapping function in a set-
associative cache, data in block addresses B + Di for
i=1,---,N are mapped into cache locations:

B+ Dimod S, for i=1,---,N, 3)
The number of different sets that this sequence of refer-
ences spans in the cache is the same as the return num-
ber defined in [10, 11]. This return number is given by
S/GCD(D,S). Starting from the S/GCD(D,S) + 1st
reference, repetition starts. That is, a cache line is
mapped to the set that hold a data referenced previously
in the reference sequence. All N — Cw%wﬁ) references

in the sequence will similarly be mapped to previously
mapped sets. Since each set contains only one cache line
in the direct-mapped cache, N — C;C,%wﬁ) lines of data
that are previously mapped into the S/GCD(D, S) sets
will be replaced. Therefore, there will be N —

cache line conflicts. O '
n immediate extension of the above theorem is the
following corollary.

__ S
GCD(D,5)

Corollary 2.1 If GCD(D,S) = 1, i.e. D and S are
relative prime, a sequence of any S consecutive memory
references to data items located in B+Di (i =1,---,N)
is conflict-free in a S-line direct-mapped cache

Similarly, for high degree associative cache, we have the
following theorem that can be proved in the same way
as above.

Theorem 2.2 In a d-way set-associative cache with S
sets, a sequence of N consecutive memory references to
data items located in B+ Di (i = 1,---,N) results in

exactly N — #&,’S) cache line conflicts.

2.2 Implementation

From the analysis presented in the previous subsection,
we know that the larger the GCD(D, S) is, the more line
conflicts there will be. Therefore, to reduce conflicts, we
want to minimize GCD(D, S). The GCD is minimum
if the two numbers are relative prime. Our main objec-
tive here is to make D and S relative prime. Notice that
D is program dependent and its value is unpredictable.
To increase the chance that D and S are relative prime,
we make S a prime or an odd number. This is the
fundamental idea behind the one’s complement cache.
As a result, for any given set of memory accesses the
one’s complement cache maximizes the number of dif-
ferent congruence classes and minimize the number of
data items that fall into a same congruence class.

2.2.1 Line Placement

The one’s complement cache generally consists of 2° —
1 sets for some integer s. Each set in a cache has a
unique identification number in one’s complement form
! ranging from 0 through 2° — 2 which are called set

! Actually, s-bit one’s complement number has the range
from —2¢~1 41 t0 2°~! — 1. But sign bit has no significance

numbers. There are two different 0’s: positive 0 (s 0’s
in binary form) and negative 0 (s 1’s in binary form, i.e.
2% — 1 =0). Both of these two 0’s represent one logical
data. Each set number in the one’s complement form
represents a unique remainder resulting from a memory
address divided by 2% — 1, i.e. memory address modulo
2% — 1. Therefore, given a line address A of a memory
data and a cache that has 2% — 1 sets, the cache mapping
function is defined as

A modulo (2° —1); (4)

for some integer s,

instead of A modulo 2°.

2.2.2 Identifying a Line in the Cache

Each memory address, same as conventional cache-based
computer system[2], is partitioned into three fields: [=
logs(L) bits of byte address in a line (offset); s bits of in-
dex; and the remaining tag bits of tag. The access logic
of the one’s complement cache consists of three compo-
nents: data memory, tag memory, and matching logic.
Same as a set-associative cache, the data memory con-
tains a set of address decoders and cached data; the tag
memory stores tags corresponding to the cached lines;
and the matching logic checks if the tag in an issued ad-
dress matches the tag in the cache. The cache lookup
process is exactly the same as the set-associative cache
and hence takes the same amount of time as the set-
associative cache. A data item in the cache is identified
by using the index field of a memory address (in one’s
complement) that activates a set where the requested
data is potentially located. However, the index field
used to access the data memory is not just a subfield of
the original address word issued by the processor since
the modulus for cache mapping is not a power of 2 any
more. It is the residue of the line address modulo 2% —1.

2.2.3 Cache Address Calculation

For generating a cache address, the tag field and the
word (offset) field are the same as that for memory
address. It is only the index field (s bits) that needs
to be calculated in a one’s complement form. Since
the mapping function is defined as an integer modulo
2% —1, only one’s complement arithmetic operations are
needed. Suppose that the binary representation of a line
address A contains i s-bit subfields: A;,--- A;. Then re-
duction of A modulo 2° — 1 can be done very easily by
noting that 2° = 1, which is given by

k=i
A modulo (2° - 1) = Z Ag. (5)
k=1

Therefore, only 1’s complement additions are needed
to calculate the index field of a cache address. It is
important to note that such one’s complement address

in this context. We consider the sign bit as one more binary
bit. e.g. instead of calling 1101 as -2, we call it 13 which is
the remainder of a number modulo 15. The main reason why
we call one’s complement is that all arithmetic operations
performed on the index fields are done in one’s complement
arithmetic as explained shortly.

Instruction Register

!

sbit sbit
adder adder

Register Files

s-hit
adder

W
Tag Index | offset

One's Complement
Cache

Figure 1: Block diagram of the one’s complement
cache design.

calculation does not increase the critical path length of
a processor since it can be done in parallel to the nor-
mal address calculation as evidenced in the following
discussion.

Figure 1 shows the block diagram of the address
computation logic for a RISC processor. We take the
MIPS R2000/R3000 [12] as an example to describe the
details of the design. The execution of a single R2000
instruction consists of five pipelined stages: IF, RD,
ALU, MEM and WB. Memory operations are per-
formed by Load/Store instructions which are I-type
instructions containing a base-register name and an 16-
bit immediate displacement. The only addressing mode
directly supported is base register plus 16-bit displace-
ment. At the ALU stage, memory addresses are calcu-
lated using the ALU unit for all Load/Store instruc-
tions. It is at this stage where one’s complement in-
dex for cache access is computed. The 16-bit displace-
ment and the source register (base register) are con-
verted to one’s complement form by performing addi-
tion between designated index field and the remaining
high order bits. The two sums are added again to ob-
tain the final index field for cache access. These op-
erations are done in parallel to other normal machine
operations. Because these additions are performed on
an s-bit field which is a portion of a memory word, this
process should take no longer than the normal address
calculation process. Two addresses are therefore gener-
ated concurrently: one for cache access and the other
for memory access in case of a cache miss.

2.2.4 Virtual Memory System

In a processor that supports virtual memory system,
cache design presented above can be directly applied if
the cache is accessed before address translation is done,
i.e. the cache is accessed using virtual addresses. Virtu-
ally addressed cache requires special attention to keep
data consistency or to avoid synonyms problem. De-

pending on whether physical address or virtual address
are used for index and tag, there are 4 different types
of caches. A good discussion of various cache types and
their advantages and disadvantages can be found in [13].
Some changes may be necessary in the cache design for
physically addressed caches, which is one of our cur-
rent research topics. In this situation, optimization of
pipeline cache designs as suggested in [14] is one feasi-
ble way to go. In addition, our new design can also be
applied to onchip TLB for fast address translations. It
is well known that conflicts in TLB degrade system per-
formance to a large extent. Avoiding conflicts in TLB
is essential to a good processor design.

3 Simulation

In order to quantitatively evaluate the performance po-
tential of the new cache design, trace-driven simulation
experiments have been carried out. The Mips Pixie and
XSIM tools have been used to generate address traces to
feed to the Dinero [15] cache simulator. Benchmark pro-
grams are first compiled and run on DECstations that
contain the Mips R3000 processors running version 4.2a,
of the DEC Ultrix operating system. Version 2.0 of the
C compiler is used to compile C programs while version
3.6.20 FORTRAN compiler is used to compile floating
point programs that are written in FORTRAN.

The benchmark programs chosen in this paper for
our performance evaluation are selected from the SPEC92

benchmarks that have been considered to be such an
important measure of CPU performance that some ma-

chine designers and compiler writers are parameteriz-
ing their designs to maximize SPEC benchmark perfor-
mance. SPEC benchmarks consist of a selection of non-
trivial programs particularly suitable for intersystem
comparisons. Due to their realistic nature and accept-
able portability, SPEC benchmarks have been widely
used for benchmarking purpose. There are both in-
teger and floating point programs in the SPEC92. It
has been shown in [16] that several integer and floating
point programs exhibit poor cache performance. Since
our main purpose here is to show that the new cache
design minimize cache misses caused by cache line con-
flicts, we have selected the set of benchmark programs
that have high cache miss ratios. Other programs in
the benchmarks that have less than 1% miss ratio are
not considered here due to the time limits. However,
it should be pointed out that the programs which show
good cache performance in conventional set-associative
cache will show as good or better cache performance in
the one’s complement cache for obvious reasons. The
selected programs are Gee, Compress, Eqntott, Su2cor,
Hydro2d, Swm256, Tomcatv and NASA7 which have
high miss ratios as shown in [16].

4 Performance Results

We present numerical results from our simulation ex-
periments in this section. Cache miss ratios are used as
the performance measure in our following discussions.
Figure 2 shows the cache miss ratio of program GCC
as a function of cache size. The degree of associativity
is assumed to be one for both conventional cache and

SPEC 92, GCC : Data miss ratio vs Cachesize
14 T T T T

Block size = 16 bytes, Assc. =1

101 q

.. -> conventional 4

Data miss ratio

- ->1's complement

. .
15 20
Cachesize in Kbytes

10 25 30 35

Figure 2: Data miss ratio of GCC vs cache size.

SPEC 92, GCC : Data miss ratio vs Cachesize
12 T T T T

11 b

10+ Block size = 16 bytes, Assc. = 2 4

.. -> conventional

Data miss ratio

- ->1's complement

. .
15 20
Cachesize in Kbytes

10 25 30 35

Figure 3: Data miss ratio of GCC vs cache size.

the one’s complement cache. It is shown in [16] that
different cache line sizes have a little effect on cache per-
formance for this program. We therefore fix the cache
line size at 16 bytes. As the cache size increases from
4 Kbytes to 32 Kbytes, the miss ratio of both cache
organizations reduces. However, the cache miss ratio
of the one’s complement cache is constantly lower than
the conventional cache. For all the cache sizes consid-
ered in this figure, the cache miss ratios of the one’s
complement cache are less than half of the miss ratio of
the conventional direct-mapped cache. In other words,
the performance improvement of the one’s complement
cache over the conventional cache is more than 100%.
When we increase the degree of associativity for
both caches, similar performance improvements are ob-
served as shown in Figure 3. In this figure, the degree
of associativity is increased to 2. The performance im-
provements are still over 100% for the cache size range

considered.))
Figure 4 shows the data miss ratios of program
Compress which is a C program for data compression.

SPEC 92, COMPRESS : Datamiss ratio vs Cachesize
18 T T T T T

Block size = 16 bytes, Assc. = 1

.. -> conventional

-
N
T
L

Data miss ratio

=
o
T
L

- ->1's complement

. .
0 5 10 15 20 25 30 35
Cachesize in Kbytes

Figure 4: Miss ratio of COMPRESS vs cache size.

SPEC 92, COMPRESS : Data miss ratio vs Cachesize
18 T T T T T

Block size = 16 bytes, Assc. = 2
16 B

.. -> conventional
14f 1

-

N
T
L

Data miss ratio

=

o
T
L

- ->1's complement

. .
0 5 10 15 20 25 30 35
Cachesize in Kbytes

Figure 5: Miss ratio of COMPRESS vs cache size.

The miss ratios are plotted against cache sizes with line
size fixed at 16 bytes and associativity 1. As shown
in the figure, the one’s complement cache has signifi-
cantly lower miss ratios than the conventional cache.
The performance improvement for this program ranges
from 80% to 90%. Similarly for associativity 2, the
performance improvements ranges from 76% to 88% as
shown in Figure 5.

Eqntott is a C program which translates a boolean
equation into a truthtable. Figure 6 plots the data
miss ratio for two different degree of associativities of
program Eqntott. It is shown in the figure that the
one’s complement cache significantly improve cache per-
formance. The performance improvements varies from

84% to 97%.
Remarks: It is important to note that all the above

three integer programs show fairly high miss ratio on
the conventional cache. The numerical results collected
by Gee et al. [16] show that high degree of associa-

tivity does not significantly reduce cache miss ratio of
these programs, particularly for the cache parameters

SPEC 92, EQNTOTT : Data miss ratio vs Cachesize

10 ; : — , ;
Block size = 16 bytes, Assc. = 1
e}
8k o 4
o o : -> conventional
s
8%]
£
g4 G\Swmllem%m
a
2
0 5 10 15 20 25 30 35
Cachesize in Kbytes
SPEC 92, EQNTOTT : Data miss ratio vs Cachesize
8 T T T T T
© o Block size = 16 bytes, Assc. = 2
m © :-> conventional
Sel 4
g 6
3 5
E
o
©Aat i
a G\9\9\--->M1M59m
3
0 5 10 15 20 25 30 35
Cachesize in Kbytes
Figure 6: Miss ratio of EQNTOTT vs cache size.
SPEC 92, HYDROZ2D : Data miss ratio vs Blocksize
18 T T T T
16 1
Cache size = 32 Kbytes, Assc. = 2
14f 1
121 B
210 T
s
2
E 8 1
ol
© : -> conventional
a)
6l 4
s - ->1's complement 4
2l 4

. . . .
0 50 100 150 200 250 300
Blocksize in bytes

Figure 7: Miss ratio of HYDRO2D vs line size.

considered above. One mistaken conclusion that could
be drawn from this phenomenon would be that cache

miss ratios of these programs are not caused by cache
line conflicts. Our simulation results together with the
new cache design unveiled an important fact which has

been unclear before: cache line conflicts exist even in
set-associative cache memories with high degree of as-

sociativity. Therefore, it may be misleading to use miss
ratio difference between direct-mapped cache and 2-way
set-associative cache as a performance indicator to show
the percentage of cache line conflicts being removed by
a new cache design. Achieving similar performance to
the 2-way set-associative cache does not mean the con-
flicts are minimum. All above results and the results
that follow show that the new cache design significantly
reduces cache line conflicts from 2-way set-associative
cache. Both our theoretical analysis presented in the
previous sections and the experimental results presented
here prove this fact.

Data miss ratios of HYDRO2D which is a floating
point Fortran program are plotted in Figure 7. Previous

SPEC 92, SWM256 : Data miss ratio vs Blocksize
14 T T T T

12r Cache size = 32 Kbytes, Assc. = 2]

10r 1

.. -> conventions| i

Data miss ratio
(2]
T

- ->1's complement

I I
150 200
Blocksize in bytes

I
0 50 100 250 300

Figure 8: Miss ratio of SWM256 vs line size.

simulation results reported in [16] indicate that cache
performance of this program is more sensitive to cache
line sizes than to degree of associativity. We therefore
plotted the miss ratios as a function of cache line sizes
while fixing associativity at 2 and the cache size at 32
Kbytes. From Figure 7, we can see that the miss ratios
of both cache organizations drop quickly as the cache
line size increases from 16 bytes to 256 bytes. The one’s
complement cache shows better cache performance for
all cache line sizes considered here. The performance
gain of the one’s complement cache over the conven-
tional cache is 75% for cache line size being 32 bytes
and 68% for cache line size being 256 bytes.

Similar to HYDRO2D, cache performance of Swm256
keeps virtually unchancged while the degree of associa-
tivity varies from 1 to 8 [16]. But, it changes drastically
with the change of cache line size. Miss ratios of this
program for different cache line sizes are shown in Fig-
ure 8. Still the one’s complement, cache presents bet-
ter cache performance than the conventional cache. In
other words, cache line conflicts do exist in this program
although high degree of associativity does not reduce
cache miss ratio. The one’s complement cache elimi-
nates the cache line conflicts that can not be reduced
by increasing the degree of associativity.

Gee et al. [16] noted in their study that there are
some anomalies in their results for the effect of associa-
tivity on miss ratio. That it, miss ratio can increase
as the associativity increases for certain data reference
patterns. Tomcatv is one of such programs that exhibit
these anomalies. With the analysis and the experiments
presented in this paper, we are able to explain this phe-
nomenon. Figure 9 shows the miss ratio of Tomcatv
program as a function of cache line sizes. It can be
seen from this figure that cache line conflicts exist in
this program because the miss ratios of the one’s com-
plement cache are less than half of that of conventional
cache. The reason why higher degree of associativity
may give high miss ratio in the conventional cache is
the following. With the same cache size, increasing the
associativity decreases the number of sets in the cache.
This reduction in set number may result in a large GCD

SPEC 92, TOMCATYV : Data miss ratio vs Blocksize
12 T T T T

Cache size = 32 Kbytes, Assc. = 2

Data miss ratio

: -> conventional

I
150
Blocksize in bytes

I
100

0 50 300

Figure 9: Miss ratio of TOMCATYV vs line size.

SPEC 92, SU2COR : Data miss ratio vs Cachesize
18 T T T T

16 Block size = 16 bytes, Assc. = 2 il

141 B

12F q

=
o
T

: -> conventional

Data miss ratio
o]
T

-- ->1's complement

| I I
150 200 250
Cachesize in Kbytes

I
100 300

Figure 10: Miss ratio of SU2COR vs cache size.

of the set number and the address difference of consecu-
tive data accesses as describe in Section 2 of this paper.

However, the one’s complement cache prevents this kind
of line conflicts from occurring. The result is 90% to
130% performance improvements over the conventional

cache.))
Compared to the above three floating point For-

tran programs, cache performance of program Su2cor
is more sensitive to cache size change in the medium
cache size range. For example, miss ratios of Tomcatv
change from 7.9% to 7.3% and miss ratios of Swm256
keep unchanged while cache size changes from 32Kbytes
to 256Kbytes for d = 2 and L = 16 bytes [16]. The miss
ratio of Su2cor, on the other hand, changes from 15.9%
t0 3.9% in the same size range and same other cache pa-
rameters. Based on this observation, we plotted cache
miss ratios of the Su2cor program versus cache size as
shown in Figure 10. Although the shape of the one’s
complement cache is similar to the conventional cache,

miss ratio of the former is much lower than the miss
ratio of the latter.

SPEC 92, NASA : Data miss ratio vs Blocksize
T T T T T T

Block size = 64 bytes, Assc. = 2

.. -> conventional

Data miss ratio
»
&
|

3.5F b
3N

25 I I I I I I I I I
60 80 100 120 140 160 180 200 220 240 260

Cachesize in Kbytes

Figure 11: Data miss ratio of NASA7 vs cache size.

For program NASA7, previous research [16] has shown 8]

that cache line size of 64 bytes exhibits the best cache
performance for medium cache sizes. By fixing the cache
line at 64 bytes, we plotted the cache miss ratios of the
NASAY7 as a function of cache size as shown in Figure
11. The performance improvement of the one’s comple-

ment_cache over the conventional caches exceeds 90%
for all cache sizes considered.

5 Conclusions

In this paper, an innovative cache design for micropro-
cessors has been presented. The main idea behind the
new cache design is to map memory data evenly into
cache memory to prevent cache line conflicts from occur-
ring. Through parallel computation of cache addresses
and memory addresses, the new design does not increase
cache hit time. Since the cache address computation is
done in one’s complement arithmetic, the new cache is
called one’s complement cache. In terms of reducing
cache line conflicts, this design is shown to be the best
cache design so far since it doubles the cache perfor-
mance of 2-way set associative cache which has been
used as a reference for evaluating conflict reductions.
We have also shown in this paper that cache line con-
flicts of many application programs can not be reduced
by increasing the degree of set-associativity. The one’s
complement cache, however, can solve this type of cache
line conflicts. Address traces of programs from SPEC92
are used to evaluate the performance of the new design.

Numerical results show that the miss ratios of the one’s
complement cache are generally half as much as miss

ratios of conventional set-associative caches.

References

[1] J. L. Hennessy and D. A. Patterson, Computer
Architecture, A Quantitative Approach. Morgan
Kaufmann, 1990.

[2] M. D. Hill, “A case for direct-mapped caches,”
IEEE Computer, pp- 25-40, Dec. 1988.

[3] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The
cache performance and optimizations of blocked al-
gorithms,” in Proc. of Arch. Supp. for Prog. Lang.
and Opr. Sys., pp. 63—74, April 1991.

[4] N. P. Jouppi, “Improving direct-mapped cache
performance by the addition of a small fully-
associative cache and prefetch buffers,” in 17th
Annu. Symp. on Comput. Arch., 1990.

[5] A. Agarwal and S. D. Pudar, “Column-associative
caches: a technique for reducing the miss rate
of direct-mapped caches,” in The 20th Ann. Int.
Symp. on Comp. Arch., pp. 179-190, May 1993.

[6] A. Seznec, “A case for two-way skewed-associative
caches,” in The 20th Ann. Int. Symp. on Comp.
Arch., pp. 169-178, May 1993.

[7] Q. Yang and L. W. Yang, “A novel cache design
for vector computers,” 19th Ann. Int’l Symp. on
Computer Architectures, May 1992. Queensland,
Australia.

Q. Yang, “Performance of cache memories for vec-
tor computers,” Journal of Parallel and Distributed
Computing 19, pp. 163-178, 1993.

[9] J. Fang and M. Lu, “A solution of cache ping-pong
problem in risc based parallel processing systems,”
in Proc. of Int. Conf. on Parallel Processing, pp-
1-238-245, 1991.

P. Budnik and D. J. Kuck, “Organization and use
of parallel memories,” IEEE Trans. on Computers,
pp. 1566-1569, Dec. 1971.

W. Oed and O. Lange, “On the effective band-
width of interleaved memories in vector processor
systems,” IEEE Trans. on Computers, vol. C-34,
pp. 949-957, Oct. 1985.

G. Kane, MIPS RISC Architecture. Prentice Hall,
1989.

C. E. Wu, Y. Hsu, and Y.-H. Liu, “A quanti-
tative evaluation of cache types for high perfor-

mance computersystems,” IEEE Tran. on Com-
put., vol. 42, pp. 1154-1162, Oct. 1993.

K. Olukotun, T. Mudge, and R. Brown, “Perfor-
mance optimization of pipelined primary caches,”
19th Ann. Int’l Symp. on Computer Architectures,
pp. 181-190, May 1992. Queensland, Australia.

M. D. Hill, “Dinero cache simulator,”. Copyright
1985, 1989, Univ. of Wisconsin.

J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, and
A. J. Smith, “Cache performance of the SPEC92
E)Sgghmark suite,” IEEE Micro, pp. 1727, Aug.

[15]

[16]

