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Fast Transient Thermal Simulation Based on Linear System Theory

Yongkui Han, Israel Koren, and C. Mani Krishna
Department of Electrical and Computer Engineering

University of Massachusetts,Amherst, MA 01003
E-mail:

�
yhan,koren,krishna � @ecs.umass.edu

Abstract

As power density of microprocessors is increasing rapidly
and resulting in high temperatures, thermal simulation be-
comes a necessity for CPU designs. Current thermal sim-
ulation methods are very useful, but are still inefficient
when performing thermal analysis for long simulation
times. In this paper, we propose a new transient thermal
simulation method for CPU chips at the architecture level,
which allows us to calculate transient temperatures on a
chip over long simulation times. Based on a linear system
formulation, our proposed method has the same accuracy
as that of traditional thermal simulation tools and is or-
ders of magnitude faster than previous algorithms. The
time-consuming integration computations are replaced by
simpler matrix multiplications in our method. Compared
to the HotSpot simulator, our TILTS algorithm achieves
speedups of 67 and 47 for the Pentium Pro and Alpha
processors, respectively. With some additional memory
space, our revised algorithm CTILTS is 268 and 217 times
faster than the HotSpot simulator for the Pentium Pro and
Alpha processors, respectively. A significant property of
our method is that it does not incur any accuracy loss com-
pared to the HotSpot simulator.

1 Linear System Theory Overview

A linear system is described by its state equation, where
the state variables are system internal variables. Denote
the number of state variables by � , the number of inputs
to the system by � , and the state and input vectors by�����
	 and � ���
	 , respectively:
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The linear system equation is:*�����
	�,+-�����
	/.10 � ���
	 (1)

where + is an �324� matrix, and 0 is an �526� ma-
trix. These matrices are fixed for a time-invariant linear
system.

For such a linear system, the complete response is
the sum of the zero-input response and the zero-state re-
sponse.

�����
	�,798;:<�=�?>@	/.1A :B 798DCE:<F�GIH)0 � ��JK	
L�J (2)

2 CPU Chip as a Linear System

A CPU chip is a thermal system that can be described by
its equivalent thermal circuit composed of thermal resis-
tors and capacitors. All these components are linear com-
ponents, making it a linear system. The input to this linear
system is the power dissipated by each functional unit on
the chip, and its state variables are the temperatures of the
internal nodes in the thermal circuit.

Let � be the number of functional units which dissi-
pate power, and � the number of internal nodes in the
thermal circuit ( �NM�� ). Denote the thermal resistance
between node O and P by Q9RTS , and the thermal capacitance
to the thermal ground (the ambient environment) by UIR for
node O . For convenience, let V9W9Q9R�R X> in the following
summation equation. The CPU thermal system obeys the
following differential equation:

U�RZY� R ���
	[]\ �^
S&_ � VQ R`S ��� R ���
	a\4� S ���
	&	b.dc" R ���
	%� O  V �be;��������� �

(3)
where �����
	fg���D�h���
	%�I�������&�������
	&	  is the temperature vec-
tor and i� ���
	jk��"#�h���
	����������
"D'(���
	%�b>;�I�������b>@	  , i.e., i� ���
	 is
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� ���
	 (the power vector) extended by � \ � zeros, cor-
responding to nodes which have no power dissipation as-
sociated with them (e.g., thermal interface material, heat
spreaders, heat sinks, etc.).

Let �  �?L RTS 	 ���Z� ���!!� U�RTS 	 ���Z� , where

L RTS 
� \�� � � _ � �	�
� if O  P ��	 
�� if O�� P � (4)

U�R`S 
� U R if O  P �> if O�� P � (5)

Then equation (3) can be rewritten as:� *�[���
	� � �����
	/. i� ���
	 (6)� is a diagonal matrix and thus, it is easy to compute its
inverse � F � and obtain the standard differential equation:*�����
	[�� F � � �����
	/.�� F � i� ���
	 (7)

Note that since c" R  > for O�� � , only the left �
columns of � F � are useful in the second term in (7). We
can therefore, construct an ��2 � matrix � out of the left� columns of � F � and replace i� by � . Thus, we obtain
an equation similar to (1) with+ �� F � � and 0  left � columns of � F � (8)

Therefore, a formula similar to (2) can be used to cal-
culate the transient temperature of the CPU.

The input power trace to the CPU is usually given as
a series of power vectors. In a sampling interval � � ,
the power vector � ���
	 is constant allowing us to simplify
equation (2) as follows:

��� � �
	� 7 8��a: ����>�	/.��$A �a:B 7 8DC�a:<F�GIH 0 L@J��! � (9)

We use this simplified equation to reduce the amount of
computation. Denoting

" ,7 8��a: �$#  A �a:B 7 8#C�a:<F�G H 0 L�J (10)

we obtain the equation:��� � �
	[ " ����>@	=.%# � (11)

Because the system is a time-invariant linear system,
we obtain the same equation for any interval � � with the
same matrices

"
and # :���'& � �
	[ " ���
�(& \ V 	 � �
	=.%# � �'&d\ V 	 (12)

where � �(&6\ V 	 is the power vector in the time interval) �(& \ V 	 � �%�*& � �,+ .
We will use ���(&/	 to represent ���(& � �
	 for conciseness,

resulting in:

���(&/	� " ���'& \ V 	#.-# � �'& \ V 	 (13)

3 Time Invariant Linear Thermal
System (TILTS) Method

Our transient thermal simulation method TILTS is based
on equation (13). Suppose the number of power vectors
(called data points) in the input power trace � is & , and
the initial temperature is � B .
4 A Revised Algorithm CTILTS

The performance of the TILTS algorithm can be further
improved without any loss of accuracy. Based on equation
(13),

����.�	[ "0/ ���?>@	/. / F �^
S&_ B

"1/ F � F S # � � P 	
 " / ���?>@	/. / F �^

S&_ B32 SI� ��. \ V \ P 	
(14)

where" /  " / � 2 S  " S #d� P  >K� V �I�������'.�\ V (15)

We can precompute the matrices
" / and 2 S � P >K� V ���������'.�\ V , and save them in a table for later use. This

is the motivation behind the revised algorithm.
The second term on the righthand side of equation (14)

is the convolution of the input power trace and the step
response of the thermal system. We call the revised algo-
rithm Convolutional TILTS (CTILTS).
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Simulation Based on 

Linear System Theory

Yongkui Han, Israel Koren, C. Mani Krishna
ARTS Lab, ECE Dept

University of Massachusetts at Amherst
2 of 10

Thermal Simulation is Important
Thermal simulation has become a necessity for 
contemporary microprocessors

Transient Thermal Simulation Models
1. Finite Elements Method (FEM)

Very accurate but computation-intensive
2. Compact thermal RC models

Less accurate but faster simulation

The HotSpot simulator
based on the compact thermal RC model - at architecture 
level
developed by LAVA group at Univ. of Virginia

3 of 10

HotSpot is Inefficient

HotSpot uses the fourth order Runge-Kutta
method (rk4) for integration

To reduce the truncation error, the step size in 
rk4 must be small
Thousands of rk4 iterations are required when 
simulating for a 1ms time interval

HotSpot becomes inefficient when attempting 
to obtain the temperature profile for a given 
benchmark

Our new method improves the simulation 
speed of HotSpot 4 of 10

Experiments
Two microprocessors
SPEC2000 benchmarks
Most recent HotSpot v3.0.2 is used

Pentium Pro processor:
16 power inputs, 58 nodes.

Alpha 21364 processor:          
18 power inputs, 97 nodes.
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CPU Chip as a Linear System

CPU chi p Temper at ur e Out put s xPower  I nput s u

The response of the linear system is:

(1)

(2)

During a time interval [(i-1)Δt, iΔt], the input power u is fixed:

(3)

Let u(i) is the input power during 
the interval [(i-1)Δt, iΔt]

The dimensions of x, u depend on specific processor analyzed.
6 of 10

Time Invariant Linear Thermal System 
(TILTS) method

TILTS
Precompute matrices A and B using rk4 method
Compute temperatures using (3)

Many rk4 iterations are replaced by simple 
matrix multiplications

TILTS does not incur any accuracy loss 
compared to the HotSpot simulator

7 of 10

Computation Reductions in TILTS

Comparing the number of Floating-Point Multiplications 
(FPM) in HotSpot and TILTS

8 of 10

Convolutional TILTS

Convolutional TILTS (CTILTS) algorithm
Precompute matrices Aj and AjB, j=1,2,…,p
Perform the convolution between the input power 
trace and the step response of the system

CTILTS reduces the number of floating-point 
multiplications (FPM) by 5 or 6 times
Small memory overhead

8
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Experimental Results

TILTS
67x for Pentium Pro, 47x for Alpha

CTILTS
268x for Pentium Pro, 217x for Alpha 10 of 10

Conclusions

Our Time Invariant Linear Thermal System 
(TILTS) method can greatly improve 
transient thermal simulation performance:

268 times faster than HotSpot for Pentium Pro 
processor
217 times faster than HotSpot for Alpha 21364 
processor

TILTS does not incur any accuracy loss 
compared to the HotSpot simulator
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I. INTRODUCTION 

As technology scales, the feature size reduces thereby 

requiring a sophisticated fabrication process. The 

manufacturing process causes variations in many 

different parameters in the device, such as the effective 

channel length Leff, the oxide thickness tox, and the 

threshold voltage Vth. These variations increase as the 

feature size reduces due to the difficulty of fabricating 

small structures consistently across a die or a wafer [1]. 

Controlling the variation in device parameters during 

fabrication is becoming therefore a great challenge for 

scaled technologies.  

The performance and power consumption of 

integrated circuits are greatly affected by these 

variations. This can cause deviation from the intended 

design parameters for a chip and severely affects the 

yield as well as performance. Thus, process variations 

must be taken into consideration while designing 

circuits and architectures. We present a new adaptive 

cache architecture design which takes into 

consideration the effect of process variations on access 

latency. Preliminary results show that our new design 

can achieve a 13% to 29% performance improvement 

on the applications studied compared to a conventional 

design.  

II. IMPACT OF PROCESS VAARIATIONS ON CACHES  

In this paper, we analyze the impact of different 

sources of process variations on low power cache 

circuits. We use a state-of-the-art low power cache that 

we have presented in the last year’s BARC as the 

start-point for our evaluation. We are interested in 

exploring delay and power consumption issues related 

to process variations and gathering insights that could 

be used in new cache designs as well as possibly in 

developing new architectural techniques for fetch units 

and load-store units in microprocessors.  

Process variations in caches affect the performance 

and power dissipation of circuits like sense amplifiers 

that require identical device characteristics, and 

SRAM cells that require near-minimum-sized cell  

 

 

 
 

stability for large arrays in embedded, low-power 

applications. Also, the delay of the address decoders 

suffer from the process variations that can result in 

shorter time left for accessing the SRAM Cells. 

In order to examine delay and power consumption 

tradeoffs under process variations, we have evaluated 

the impact of process variations at 32-nm CMOS 

process technologies. We used the HSPICE circuit 

simulator and PTM technology.  

We have found that the use of longer effective channel 

lengths (Leff) tends to increase the word-line and 

bit-line capacitances in caches, thus increasing access 

time as shown in Fig. 1. The access time can increase 

by as much as 16% per bit.  

Ef f ect i ve Channel  Lengt h Var i at i ons i n 32- nm
CMOS Technol ogy

0. 12
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0. 14
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0. 16
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la

y 
(n

s)
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Fig. 1. Effect of Leff Variation on Cache Delay (1-bit 

Read). 

A small variation in the Leff value causes a significant 

change in the power in the device: by as such as 40X 

from the nominal value (see Fig. 2). 

Ef f ect i ve Channel  Lengt h Var i at i ons i n 32- nm
CMOS Technol ogy f or  1KB of  SRAM
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l eakage power dynami c power

 
Fig. 2. Effect of Leff Variation on Power (1-bit 

Read). 

Higher transistor threshold voltages Vth, due to 

process variations, similarly negatively impact on 

access time and leakage power due to the lower read 

current as shown in Table I. 
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Table I 

Effect of Threshold Voltage Variation  

Variation in Vth Delay  Leakage Power 

0.14 V 0.126 ns 0.801 W 

0.18 V 0.129 ns 0.280 W 

0.20 V 0.133 ns 0.167 W 

0.22 V 0.142 ns 0.094 W 

0.24 V 0.153 ns 0.055 W 

Clearly, process variation can have a significant 

impact on delay, and in the worst-case leads to timing 

violations. In addition, power dissipation, especially 

leakage power, is shown to be significantly affected by 

the parameter variations. This could have important 

ramifications to both the circuit designer and the 

architect. 

At the architectural level, process variations have an 

impact on memory hierarchy design. There are several 

ideas that could be exploited to cope with this problem. 

These could range from utilizing smaller first level 

caches (that would meet the preferred access time even 

under worst case variation) to more adaptive cache 

architectures/schemes.  

III. AN ADAPTIVE PROCESS RESILIANT CACHE 

ARCHITECTURE 

Fig. 3 shows the proposed delay resilient cache 

architecture. It consists of two phases of operation: 

classification and execution.  

The cache is equipped with a BIST circuitry, which 

tests the entire cache and a double sensing technique 

(e.g., as in [2]) to detect speed of the cells during the 

classification phase. Each cache line is tested using 

BIST when the test mode signal is on. For example, a 

block is considered fast, medium, or slow. BIST feeds 

this information into the delay storage.  

 
Fig. 3. Adaptive cache architecture during 

classification phase. 

 

 

 

  

 

 

 

 

The speed information stored in the delay storage is 

used to control sense amplifiers during regular 

operations of the circuit (see Fig. 4). 

We have conducted simulations of SPEC 

benchmarks using the adaptive cache design. 

Preliminary results on application performance are 

shown in Fig. 5. The comparison is made between 

conventional caches that require 3 cycles per access 

(worst case due to process variation) vs. our adaptive 

cache that has variable cache access time. The 

adaptive cache has 3% of 3 cycles, 12% of 2 cycles 

and 85% of 1 cycle cache line accesses. 

Our preliminary results (for one example delay 

distribution) show an improvement of up to 28% 

possible in a 4-way superscalar equipped with a 

16KB L1 data cache. Much additional work is 

required to quantify all the effects. 

 
Fig. 4. Adaptive cache architecture during the 

execution phase. 

Performance of Four Instructions Issue Machine

0
1
2
3

mcf parser vpr ammp art equake

SPEC2000 Benchmarks

IP
C

Baseline Adaptive

 
Fig. 5. Performance improvement with our 

adaptive cache vs. a cache using worst case access 

time. 

Clearly, process variation introduces new delay and 

power tradeoffs that must be considered. This talk 

will explore some of the challenges for both circuit 

designers and architects working on memory system 

architectures. 

REFERENCES 

[1] A. Chandrakasan, et al., “Design of High Performance 

Microprocessor circuits”, IEEE Press, 2001. 

[2] Q. Chen, et al. “Modeling and Testing of SRAM for New 

Failure Mechanisms due to Process Variations in 

Nanoscale CMOS”, VLSI Test Symposium, May, 2005. 
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Introduction
Process variations increase as the feature reduces due to the 
difficulty of fabricating small structures consistently across a die or 
wafer. 
In order to analyze the delay and power consumption of a cache under 
process variation, we must consider both inter-die and intra-die variation

Intra-die variations are the variations in device parameters within a 
single chip, which means different devices at different locations on a 
single die may have different device features

Inter-die variations are the variations that occur from one die to the 
other, from wafer to wafer, and from wafer lot to wafer lot

Two main sources of variation:
Physical factors
Environmental factors

3 of 16

Introduction
The physical factors are permanent and result from limitations in 
the fabrication process

Effective Channel Length (Geometric Variations):
Imperfections in photolithography 
Variations in Leff can be as high as 50% within a die

Threshold Voltage (Electrical Parameter Variation):
Variation in device geometry 
Variations in Vth can be modeled as 10% of Vth of the smallest 
device in a given technology [A. Chandrakasan et al., IEEE press 2001]

The environmental factors depend on the operation of the system 
and include variations in:

Temperature,  Power Supply, Switching Activity

4 of 16

Impact of Process Variations 
on Caches

The parameter variations are random in nature and are expected to 
be more pronounced in minimum geometry transistors commonly 
used in memories.

Caches in processors like UltraSPARC III, Itanium 2, StorngARM110, 
and Alpha 21164 can occupy more than 50% of die area.

Process variations  impact the components of a memory subsystem:
SRAM Cell
Sense Amplifier
Address Decoder

Can cause failure in data access
E.g., due to incorrect sensing or slow cell access

12
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Effect of Process Variations on  Delay Accessing 
1-bit in SRAM Column of 32 Bit Height 

The delay can increase as such 
as 16% per cell.

The Threshold voltage (Vth) 
variation can impact the delay 
by 30% per cell access

[HSPICE simulation]
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Worst-case Delay 
Ef f ect i ve Channel  Lengt h & Thr eshol d Vol t age

Var i at i ons i n 32- nm CMOS Technol ogy
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The delay can 
increase as such as 
50% combining the 
effects of Vth and 
Leff.
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Effect of Process Variations on  Power 
Consumption of 1KB SRAM

A small variation in the Leff 
value causes a change in the 
leakage power by as such as 
40X from the nominal value.

The Threshold voltage (Vth) 
variation can impact the 
power consumption by 65X 

[HSPICE simulation]
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Cache Access Failure?
A failure in a cell can occur due to:

Access Time Failure (due to 
increase in the access time) 
Read Stability Failure
Write Stability Failure
Hold Failure

Failure Probability of a Read
E.g., the minimum differential 
voltage required for correct 
sensing (Taccess in figure) needs 
to be < Tmax for a correct read 

Threshold voltage distributions 
are approximated as Gaussian

[Classification is take from S. Mukhopadhyay, et al. Symposium on VLSI Circuits, June 2004 ]
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Failure in Sense Amplifiers 
Circuits like differential sense amplifiers  are affected

Changing offset voltage may lead to erroneous behavior (e.g., due 
to access Transistors MN3 and MN3B).

10 of 16

What About Application Performance? 

Performance Of four insructions issue machine

0
0.5

1
1.5

2
2.5

3

bzip mcf gcc vpr ammp00 art equake

SPEC2000 Benchmarks

IP
C

1 Cycle 2 Cycles 3 Cycles

To account for the 
worst case 
scenario we might 
need to increase 
the cache access 
time
Performance 
impact as much as 
30-40% in the 
example on the 
left[simplescalar simulations]
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Possible Architectural Directions
How do we design caches that work in face of these 
problems?
We can select a cache design using worst case 
assumptions

ALL VARIATIONS and ALL COMPONENTS on the critical path

Alternatively, we need to design circuits and architectures 
that would work adaptively depending on actual delay

Process variation resilient design
Resilience against delays in different parts of the cache

12 of 16

Our Choice: An Adaptive Process 
Resilient Cache Architecture

Two phases of operation: classifying and execution

Classifying phase

The cache is equipped with a built-in-self-test (BIST) to detect speed 
difference due to process variation.

Each cache line is tested using BIST when the test mode signal is on. 
A block is considered fast, medium, or slow (this is for the sake of an 
example).

14
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An Adaptive Process Resilient
Cache Architecture  

Since the speed  of the accessed cells (cache lines) changes depending 
on operating condition (e.g., supply voltage, frequency), such tests are 
conducted whenever there is a change in operating condition.

BIST feeds this information into the delay storage.

Execution phase

The speed information stored in the delay storage is used to control 
sense amplifiers during regular operations of the circuit.

14 of 16

Circuit Level Support: Double Sensing  
We need a mechanism to avoid sensing prematurely
The basic idea of double sensing is to have parallel sense amplifiers to 
sample the bitline twice during a read cycle. This is required in an 
adaptive cache design with different cache line latencies.
The first sensing is performed as the conventional one. The second 
sensing is delayed and has to be fired as late as required. 

[K. Roy , et al. VLSI Test Symposium, May, 2005 ]
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Preliminary Results
Baseline: 3 cycle D-cache. Out of order issue.
Adaptive caching scheme: e.g., 

3% 3 cycle, 12% 2 cycle. 85% 1 cycle cache line access.
Results below show performance is improved by 13% to 29%!

Per f or mance of  Four  I nst r uct i ons I ssue Machi ne

0
0. 5

1
1. 5

2
2. 5

mcf  par ser vpr ammp ar t  equake
SPEC2000 Benchmar ks

IP
C

Basel i ne Adapt i ve
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Conclusion 
Parameter variations will become worse with technology 
scaling.
Robust variation tolerant circuits and architectures 
needed.
We have shown that process variation can have a 
significant impact on delay (expected > 2X with all 
factors included), and in worst-case leads to timing 
violations. 
In addition, power dissipation, especially leakage power 
has been shown to be significantly affected (>60X) by 
the parameter variations.
Shown new resilient cache architecture
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1. Introduction

Front-end instruction delivery accounts for a signif-
icant fraction of energy consumption in dynamically
scheduled superscalar processors. Different front-end
throttling techniques have been introduced to reduce
the chip-wide energy consumption caused by redun-
dant fetching. The techniques can be categorized as
hardware-based runtime [1, 3] and software-based sta-
tic [2, 4] techniques.

Hardware-based techniques assume the program
state is stable and use the current history informa-
tion to predict future behavior. These can catch dy-
namic behavior such as cache misses but cannot catch
irregular situations such as abrupt phase changes.

Software-based throttling techniques can estimate
the instruction-level parallelism (ILP) based on
compile-time program analysis and provide indica-
tions of sharp changes in ILP (or ILP bursts). Static
techniques may however, produce inaccurate predic-
tions due to their inability to capture dynamic effects
such as branch mispredictions and cache misses. Pre-
vious research [4] employed compiler techniques to es-
timate the IPC and used the estimated IPC to drive
its fine-grained fetch-throttling energy-saving heuris-
tic. A fetch will be stalled in the following cycle if the
estimated IPC is lower than a predefined threshold.
Throttling using a low threshold will have a small ef-
fect on performance but yield relatively small energy
savings.

There are two potential problems using a fixed low
value of the IPC-threshold to drive fetch throttling.
The first one is that it limits the throttling opportuni-
ties at high IPC values. If there are many instructions
left unexecuted in the previous cycle, we can throttle
at a higher IPC-threshold with probably no perfor-
mance decrease. The second problem is that the fixed
IPC-threshold technique may throttle at an inappro-
priate time, resulting in a performance loss. Assume
for example, that the estimated IPC in the following
cycle is 2, but if there are no instructions left in the is-
sue queue from the previous cycle; a throttling at this
time is inappropriate and will result in a performance
loss. If we can drive fetch throttling using adaptive

IPC-thresholds instead of a fixed one, we could in-
crease the throttling opportunities and achieve higher
energy savings.

In this paper, we present a new approach called
Compiler-based Adaptive Fetch Throttling (CAFT),
which allows changing the throttling IPC-threshold
adaptively at runtime. Our technique is based on
compile-time static IPC estimation, but we use the
Decode/Issue Difference (DID) to assist the fetch
throttling decision based on the statically estimated
IPC. DID is the difference between the numbers of
decoded and issued instructions in the previous cy-
cle, which can be considered as recent history infor-
mation. The IPC-threshold is changed dynamically
according to the DID value, making it possible to
throttle at a higher estimated IPC. This increases the
throttling opportunities and thereby results in larger
energy savings.

2. The CAFT framework

2.1. Compiler-based IPC Estimation

We use compile-time static IPC-estimation to drive
throttling, which is similar to what has been proposed
by Unsal et al. [4].

Our implementation considers only true data de-
pendencies (Read-After-Write or RAW). We stati-
cally determine true data dependencies using data
dependency analysis at the assembly-code level. We
identify data dependencies at both registers and
memory accesses. Register analysis is straightfor-
ward. However, for memory accesses, we performed
an approximate and speculative alias analysis by in-
struction inspection that provides ease of implemen-
tation and sufficient accuracy. In this scheme, we
distinguish between different classes of memory ac-
cesses such as static or global memory, stack and
heap. We also consider indexed accesses by analyz-
ing the base register and offset values to determine if
different memory accesses are referenced.

We use SUIF/MachSUIF as our compiler frame-
work. We added new passes to both SUIF and
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Figure 1. Energy Delay Product (EDP) savings

MachSUIF to annotate and propagate the static IPC-
estimation. Our IPC-estimation is at the basic block
or loop level: loop beginnings and ends serve as nat-
ural boundaries for the estimation. The high-level
loop annotation pass works with expression trees and
traverses the structured control flow graph (CFG)
of each routine. The other added pass, the IPC-
prediction pass, is a lower-level MachSUIF pass that
runs just prior to assembler code generation.

2.2. CAFT: Compiler-Based Adaptive
Fetch Throttling

As mentioned above, we will use the instruction
Decode/Issue Difference (DID) to assist the IPC-
estimation throttling technique to throttle at change-
able thresholds. If the instruction decoding rate
matches the instruction issuing rate (i.e., the DID
value is zero), no fetch throttling is needed. Addi-
tional fetching will introduce the possibility of miss-
fetching and increase the number of Icache accesses,
resulting a waste of energy. If the DID value in the
last cycle is greater than zero, which means that re-
dundant instructions were decoded, there exist op-
portunities to throttle the fetch at the following cy-
cle. For example, if DID in the previous cycle is 3
and the IPC estimate in the next cycle is less than 3,
we can safely throttle for one cycle during instruction
fetching. If the instructions left unused in the pre-
vious cycle can provide the needs of the next cycle,
stopping fetching for one cycle will not decrease the
performance. For different DID values, we will throt-
tle for all the estimated IPCs up to the DID value.

Dynamic effects such as cache misses and branch
mispredictions are captured by the DID value. In con-
trast, if only compiler-based fetch throttling is used,
these dynamic effects cannot be considered, forcing
the technique to use a low fixed IPC-threshold.

3. Results

Compared to the previous fixed threshold ap-
proach (CFT), the total number of throttling cycles
increases substantially because CAFT can throttle
fetching at higher estimated IPC values. The in-
crease in the number of throttling cycles results in
a considerable reduction in energy consumption. We
show in Figure 1 that CAFT achieves a 3.7% addi-
tional Energy-Delay Product (EDP) saving compared
to CFT and 6.7% overall EDP reduction. In compari-
son with a previous hardware dependence-based fetch
throttling scheme (DEP), CAFT has a lower perfor-
mance degradation, achieving a 3.2% additional EDP
reduction.
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A. González. “Software Directed Issue Queue Power
Reduction”. In Proceedings of the 11th International
Symposium on High-Performance Computer Architec-
ture, HPCA-11, pages 144–153, 2005.

[3] T. Karkhanis, J. E. Smith, and P. Bose. “Saving En-
ergy with Just in Time Instruction Delivery”. In Pro-
ceedings of the 2002 international symposium on Low
power electronics and design, ISLPED ’02, pages 178–
183, 2002.

[4] O. S. Unsal, I. Koren, C. M. Krishna, and C.A.Moritz.
“Cool-fetch: Compiler-enabled Power-aware Fetch
Throttling”. In IEEE Computer Architecture Letters,
volume 1, 2002.

17



Compiler-Based Adaptive Fetch 
Throttling for Energy-Efficiency

Huaping Wang, Yao Guo, 
Israel Koren and C. Mani Krishna

ECE Dept, UMass at Amherst

2 of 11

Introduction
Power consumption increases significantly 
in modern computer architecture.
Fetch throttling can reduce executions of 
miss-fetched instructions and number of 
Icache accesses.
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Fetch throttling techniques
Hardware-based runtime techniques

Use past behavior to predict future behavior.
Can not catch irregular situations such as abrupt 
program phase changes.
Cause substantial performance degradation.

Software-based static techniques
Estimate Instruction Level Parallelism (ILP) based on 
compile-time program analysis.
Can not capture dynamic effects, such as cache misses. 
Use fixed low IPC threshold for throttling - to avoid high 
performance loss.
Energy savings is small if IPC threshold is low.

4 of 11

Potential problems of fixed low IPC threshold

Limits throttling opportunities at high IPC 
values:

If estimated IPC (e.g., 3) is less than number of 
instructions left unexecuted in previous cycle (e.g., 5), 

we can throttle fetch even at a high IPC value.

May throttle at an inappropriate time 
resulting in a performance loss:

If estimated IPC is low (e.g.,2) but no instructions left in 
the issue queue (from previous cycle), throttling results 
in performance loss.

18
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Compiler-based Adaptive Fetch Throttling (CAFT)

IPC estimate using compile-time analysis.
A large Decode/Issue Difference (DID) 
means that many instructions were left 
unexecuted.
DID value can be used as recent history 
information to change the IPC threshold 
adaptively

IF Estimated_IPC ≤ DID

THEN throttle for one cycle

6 of 11

Compiler-level implementation
Used SUIF/MachSUIF as our compiler 
framework
Added new passes to both SUIF and 
MachSUIF to annotate and propagate the 
static IPC-estimation
Compiler-based IPC estimate

Consider only true data dependencies.
Identify data dependencies for both registers and 
memory accesses.
Use approximate and speculative alias analysis for 
memory accesses.
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Experiments
Setup

SimpleScalar/Wattch
SPEC2000 and Mediabench benchmarks

Examined several existing throttling 
techniques

Hardware dependence-based (DEP)
Just-In-Time instruction delivery (JIT)
Compiler-based fixed IPC threshold (CFT)

Compared CAFT to above techniques
Throttling cycles and IPC threshold distribution
Execution Time and Energy
Energy Delay Product (EDP)

8 of 11

Number of throttling cycles and IPC distribution
Number of 
throttling cycles 
increases 
significantly 
compared to 
fixed low IPC-
threshold

Percent of 
throttling                  
cycles above 
IPC-threshold of 
2 is larger than 
50% in most             
benchmarks
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Execution time and energy

CAFT keeps the advantage of low performance decrease of 
CFT, and has a good energy savings as hardware-based 
techniques.
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Energy Delay Product (EDP)

Compared to fixed threshold technique (CFT), 
CAFT achieves a 3.7% additional EDP saving and 
6.7% overall EDP reduction.
Compared to DEP, CAFT achieves a 3.2% 
additional EDP reduction.
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Conclusion
CAFT has a better EDP savings than 
software- or hardware-only fetch throttling 
techniques.
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Experiment setup (Backup)
Skip the initialization stage and simulate 
next 500M instructions for SPEC; run 
Mediabench to completion.

Processor Speed
Process Parameters
Issue
Fetch,Issue,Decoded,Commit
Fetch Queue Size
Instruction Queue Size
Branch Prediction
Int.Functional Units
FP Functional Units
L1 D-cache
L1 I-cache
Combined L2 cache
L2 Cache hit time
Main memory hit time

5GHz
0.18µm, 2V
Out-Of-Order
8-way
32
128
2K entry bimodal
4 ALUs, 1Mult./Div.
4 ALUs, 1 Mult./Div.
128Kb, 4-way, writeback
128Kb, 4-way, writeback
1Mb, 4-way associative
20 cycles
100 cycles
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Energy consumption is an increasingly important is-
sue in multiprocessor design. The need for energy-aware
systems is obvious for mobile systems, where low en-
ergy consumption translates to longer battery life, but it
is also important for desktop and server systems, where
high energy consumption complicates power supply and
cooling.

While energy consumption in uniprocessors has been
the focus of a substantial body of research, energy con-
sumption in multiprocessors has received less attention.
This issue is becoming increasingly important as mul-
tiprocessor architectures migrate from high-end plat-
forms into everyday platforms such as desktops, laptops,
and servers. In particular, the increasing availability of
multi-threaded and multi-core machines means that we
can expect multiprocessors to replace uniprocessors in
many low-end systems. Past studies have estimated that
on-chip caches are responsible for at least 40% of the
overall processor power (e.g., [1]). However, the domi-
nant portion of energy consumption in the memory hier-
archy is due to off-chip caches, resulting from their sig-
nificantly larger size, and the higher capacitance board
buses.

The principal way in which multiprocessors differ
from uniprocessors is in the need to provide program-
mers the ability to synchronize concurrent access to
memory. When multiple threads access a shared data
structure, some kind of synchronization is needed to en-
sure that concurrent operations do not interfere. The
conventional way for applications to synchronize is by
locking [2]: for each shared data structure, a designated
bit in shared memory (the lock) indicates whether the
structure is in use.

Nevertheless, conventional synchronization tech-
niques based on locks have substantial limitations [4].
Coarse-grained locks, which protect relatively large data
structures, simply do not scale. Threads block one an-
other even when they do not really interfere, and the lock
itself causes memory contention. Fine-grained locks
are more scalable, but they are difficult to use. In par-
ticular, they introduce substantial software engineering
problems, as the conventions associating locks with ob-

jects become more complex and error-prone. Locks are
also vulnerable to thread failures and delays; if a thread
holding a lock is delayed by a cache miss, page fault, or
context switch, other running threads may be blocked.

Transactional memory [5] is a synchronization archi-
tecture that addresses these limitations. A transaction is
a finite sequence of memory reads and writes executed
by a single thread. Transactions are atomic (each trans-
action either completes and commits, or aborts) and are
serializable. Hardware transactional memory proposals
(e.g., [3], [5], [6], [8], [9], [10], [11]) exploit hardware
mechanisms such as speculative execution and on-chip
caching. Hardware optimistically executes a transac-
tion and locally caches memory locations read or writ-
ten on behalf of the transaction, marking them transac-
tional. The hardware cache coherence mechanism com-
municates information regarding read and write opera-
tions to other processors. A data conflict occurs if mul-
tiple threads access a given memory location via simul-
taneous transactions and at least one thread’s transaction
writes the location. A transaction commits and atomi-
cally updates memory if it completes without encoun-
tering a synchronization conflict.

Transactional memory was originally proposed as a
means of increasing throughput and improving ease of
programming relative to locks. Although it seems plau-
sible that transactions may be more energy-efficient than
locks, the precise tradeoffs are not clear, especially un-
der high rates of conflict. In this paper, we consider
the energy/performance tradeoffs associated with these
two approaches to multiprocessor synchronization. We
conclude that transactional models are a promising ap-
proach to low-power synchronization, but that further
work is needed to fully understand how transactions
compare to locks when synchronization conflict rates are
high.

To compare our hardware transactional memory to
a baseline system that uses locks, we started by run-
ning the SPLASH-2 benchmark suite [12] since it is the
most commonly used benchmark suite for parallel ap-
plications. We arbitrarily selected a few benchmarks,
ran each benchmark after its initialization stage for 200
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Figure 1. Energy consumption of a splash2
benchmarks using locks vs. transactions.
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locks, and then ran it again with locks replaced by trans-
actions. When replacing the lock with a transaction, the
critical section defines the bounds of a transaction.

Figure 1 shows the energy consumption resulting
from cache and memory accesses when synchroniza-
tion was handled with either locks or transactions. We
see that in most cases replacing locks with transactions
reduced the number of cache and memory accesses,
thereby reducing the energy consumption. With this
initial analysis, it appears that transactions do indeed
have a large benefit over locks in terms of energy con-
sumption. However, we have found that the SPLASH-2
benchmarks do not test our assumptions well when the
system is operating under high contention. We show that
these initial results do not allow for a complete compar-
ison.

Synchronization conflicts cause transactions to abort
and restart, causing the system to consume energy do-
ing useless work. Motivated by this tradeoff, in this pa-
per we propose a serial execution mode for transactional
memory in which transactions are adaptively serialized
at the hardware level with the intent of decreasing energy
consumption at the possible cost of degraded through-
put. We note that in previous work [7] we presented
an initial investigation of this topic and showed a sin-
gle case of using locks vs. transactions as a motivation
for the advantage of transactions over locks for energy
consumption. Here we extend that work by providing a
more detailed analysis into the various tradeoffs.
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Synchronization of Accesses 
to Shared Memory
Lock

Represented by 
field in memory
Repetitive accesses 
until free
Coarse/Fine-grain
Disadvantages:

High contention 
Low throughput
High energy 
consumption

Transaction
Lock-free execution
Speculative, optimistic
Ease of programming
Disadvantages:

Requires HW support
Roll-back and reissue 
if conflict detected 
(wasted cycles and 
energy)
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During a Transaction

Lookup in both DL1 and transactional cache
If the line is found in DL1, 
move it to transactional cache
If a miss, bring from L2 to transactional 
cache

Tag       Data          Status

Tag    Data            Status   Trans.TagInvalid
12                         Exclusive

12                         Exclusive Xcommit
12                         Exclusive Xabort

4 of 15
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Considerations

In the past designers only considered
ease of programming and throughput
Synchronization has a cost in terms of 
throughput and energy
We take a first look at tradeoffs for

Ease of programming
Throughput
Energy

5 of 15

Energy Consumption per Access

33nJ
256MB; 64-bit bus; 
200 cycle latency;

Shared Memory

0.9nJ128KB 4-way; 32B line;
10 cycle latencyL2 Cache

0.12nJ64-entry;
fully associative

Transactional 
Cache

0.47nJ8KB 4-way; 32B line; 
3 cycle latencyL1Data Cache

Sources:  Micron SDRAM power calculator
CACTI
Private industrial communication
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Standard Transactions
start_transaction

end_transaction

access
critical section

other work

done

valid

yes
no

yes

no
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Standard Transactions
start_transaction

end_transaction

access
critical section

other work

done

valid

yes
no

yes

serializer
no

no
yes
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Serializer

Only impacts conflicting transactions
Small overhead in hardware
Reduce useless execution
Reduce energy consumption 
Potentially negative impact on throughput
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Standard Benchmarks Results
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Synthetic Benchmarks

Standard benchmarks have little contention
Realistic applications include intervals of 
high contention
Synthetic benchmarks 

High contention
Various conflict scenarios

Parallel accesses to a shared array 
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Energy Consumption
Locks vs. Transactions
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Performance
Locks vs. Transactions
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Conclusion

Throughput and energy need to be balanced
Speculative approach has a clear advantage 
in both energy and throughput in low 
contention
Speculative approach needs modification in 
high contention for energy efficiency: 

serialized transactions

14 of 15

Future Work

Simulate a wider range of applications
Various memory configurations
Compare alternative locking schemes
Consider longer running transactions 

A trace-based analysis
Software transactions

15 of 15
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Abstract 

Uniprocessor studies have shown that wrong-path 
memory references pollute the caches by bringing in data 
that are not needed for the correct execution path and by 
evicting useful data or instructions. Additionally, they also 
increase the amount of cache and memory traffic. On the 
positive side, however, they may have a prefetching effect 
for loads and instructions on the correct path. While the 
wrong-path effects are well studied for uniprocessors, 
there is no work on its effects on multiprocessor systems. In 
this paper, we explore the effects of wrong-path memory 
references on the memory system behavior of shared-
memory multiprocessor (SMP) systems with broadcast 
(snoop-based) and directory-based cache coherence. We 
show that in contrast to uniprocessor systems, these 
wrong-path memory references can increase the amount of 
cache-to-cache transfers by 32%, invalidations by 8% and 
20% for broadcast and directory-based SMPs, 
respectively, and the number of write-backs by up to 67% 
for both systems. In addition to the extra coherence traffic, 
wrong-path memory references also increases the number 
of cache line state transitions by 21% and 32% for 
broadcast and directory-based SMPs, respectively.  
 
1 Introduction 
 

Shared-memory multiprocessor (SMP) systems are 
typically built around a number of high-performance out-
of-order superscalar processors, each of which employs 
aggressive branch prediction techniques in order to achieve 
high issue rate. During execution, these processors 
speculatively execute the instructions following the 
direction and target of a predicted branch instruction.  If 
later detected incorrect, these wrong-path memory 
references do not change the processor’s architectural state, 
however, they do change the data and instructions that are 
in the memory hierarchy, which can affect the processor’s 
performance. 

Several authors have studied the effects that 
speculatively executed memory references have on the 
performance of out-of-order superscalar processors [2, 3, 
4] and have shown that wrong-path memory references 
may function as indirect prefetches by bringing data into 
the cache that are needed later by instructions on the 
correct execution path [1, 3, 4].  However, these wrong-
path memory references also increase the amount of 

memory traffic and can pollute the cache with cache blocks 
that are not referenced by instructions on the correct path 
[1, 3].   

In this paper, we focus on the effect that wrong-path 
memory references have on the memory system behavior 
of SMP systems, in particular, broadcast-based and 
directory-based SMP systems.  For these systems, not only 
do the wrong-path memory references affect the 
performance of the individual processors, they also affect 
the performance of the entire system by increasing the 
number of coherence transactions, the number of cache line 
state transitions, the number of write-backs and 
invalidations due to wrong-path coherence transactions, 
and the amount of resource contention (buffer usage, 
bandwidth, etc.).  
 

2 Evaluating Wrong-Path Effects 
In this section, we discuss the potential effects that 

wrong-path memory references can have on the memory 
behavior of SMP systems. To measure the various wrong-
path effects, we track the speculatively generated memory 
references, and mark them as being on the wrong-path 
when the branch misprediction is known. Due to the space 
limitation, we only give a subset of the effects. For a 
complete version refer to [5]. 

2.1 L1 and L2, and Coherence Traffic 

We observe that wrong-path loads increase the total 
number of memory references issued to the memory 
system on average by 17% and 14%, respectively, for 
broadcast and directory-based SMPs.  Additionally, these 
loads increase the percentage of L2 cache accesses by 23% 
and 21% for broadcast and directory-based SMP systems, 
respectively.  Our results also show that wrong-path loads 
increase the number of coherence transactions by an 
average of 32%. 

2.2 Replacements and Write-backs 

A speculatively-executed (i.e., later detected as wrong-
path) load instruction may bring a cache block into 
processor’s data cache that replace another block that may 
be needed later by a correct-path load.  Due to this 
replacement, these wrong-path load can cause extra cache 
misses i.e. pollution [3].  Wrong-path replacements may 
also cause extra write-backs that would not occur 
otherwise. For example, if the requested wrong-path block 
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has been modified by another processor, i.e., its cache 
coherence state is M, a shared copy of that block is sent to 
the requesting processor’s cache, which subsequently may 
cause a replacement.  When the evicted block has a cache 
coherence state of M (exclusive, dirty) or O (shared, dirty) 
state, this also causes a write-back.  

Figure 1 shows the percentage increase in the number 
of E (for directory MOESI) and S line replacements.  E I 
transitions – which increased by 2% to 63% –  are 
particularly important since the processor loses the 
ownership of a block and the ability to silently upgrade its 
value, potentially significantly increasing the number of 
invalidations for write upgrades.  The number of S line 
replacements account for a significant fraction of the total 
number of the replacements due to wrong-path load in 
broadcast SMPs; in directory-based SMPs, they are 
relatively insignificant.  

In Figure 2, we observe that wrong-path reads increase 
the number of write-backs from 4% to 67%.   
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Figure 1 Percentage increase in the number of replacements due to 
wrong-path references in broadcast and directory-based SMPs. 
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Figure 2 Percentage increase in the number of write-backs due to 
wrong-path references in broadcast and directory-based SMPs. 
 
2.3 Cache Line State Transitions 

Finally, Figure 3 shows the impact of wrong-path 
memory references on the number of cache line state 
transitions.  The results show that the number of cache line 
state transisionts increases by 20% to 24% for broadcast 
SMPs and by 27% to 44% for directory-based SMPs. 

An exclusive cache block (modified or clean) loses its 
ownership when another processor attempts to load that 
cache block.  In order to gain ownership again, that 
processor has to first invalidate all other copies of that 
cache block, i.e., Shared Invalidate for all other 
processors.  In Figure 4, we can see that for broadcast 

SMPs, there is 8% to 11% increase in the number of write 
misses, each of which subsequently causes an invalidation. 
This percentage is higher, 15% to 26%, for the directory 
SMPs. 
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Figure 3 Percentage increase in the number cache line transitions for 
MOSI broadcast and MOESI directory SMPs 
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Figure 4 Increase in the write misses and extra invalidations due to 
wrong-path references. 

3 Conclusion 
In this paper, we evaluate the effects of executing 

wrong-path memory references on the memory behavior of 
cache coherent multiprocessor systems. Our evaluation 
reveals the following conclusions: (1) Modeling wrong-
path memory references in a cache coherent shared 
memory multiprocessor is important and not modeling 
them may result in wrong design decisions, especially for 
future systems with longer memory interconnect latencies 
and processors with larger instruction windows. (2) In 
general, wrong-path memory references are beneficial 
because they prefetch data into caches. However, there can 
be significant amount of pollution caused by these 
references. (3) For a workload with many cache-to-cache 
transfers, the coherence actions can be significantly 
affected by wrong-path memory references. 
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Wrong-Path Memory 
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Motivation
Wrong-path (WP) effects in Uniprocessors

Negative Effects: Pollution
L1 and L2 cache pollution

Positive Effects: Prefetching
Up to 20% better performance for mcf

Important to simulate WP for some applications

No work on WP effects in Multiprocessors
In contrast to uniprocessor effects, WP cause:

Extra coherence traffic: 
Data, invalidations, write-backs, acknowledgements 

Additional cache state transitions

University of Rhode Island 3 of 162/3/2006

Outlines
Wrong Path Effects on Shared-Memory 
Multiprocessor Systems (SMPs)

Broadcast (snoop-based) and directory-based 
SMPs
Simulation Methodology

Evaluation Results
Summary

University of Rhode Island 4 of 162/3/2006

Wrong-path effects on SMPs
Same issues in uniprocessors apply

Pollution effect
Evicts blocks needed later by correct-path execution

Prefetching effect
Brings blocks, which may later be requested down the 
correct-path, closer to the processor hiding the latency

Extra cache/memory traffic

Besides, extra effects may occur on SMPs
Coherence Traffic (extra requests/data 
communication)
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Wrong-path effects on SMPs (Cont’d)
Replacements A speculatively replaces B

A is a Wrong-path Block ! University of Rhode Island 6 of 162/3/2006

Wrong-path effects on SMPs (Cont’d)
Write-backs Write-back dirty copy of B

Write-back dirty copy of A
Only for MESI (or MSI)

University of Rhode Island 7 of 162/3/2006

Wrong-path effects on SMPs (Cont’d)
Invalidations

P1 asks for grant to write and sends invalidation

P1 loses its write privileges for block A

University of Rhode Island 8 of 162/3/2006

Wrong-path effects on SMPs (Cont’d)
Cache block state transitions

States Change
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Wrong-path effects on SMPs (Cont’d)

Data/Bus and Coherence Traffic Increases
L1 accesses, 
L2 accesses, 
Coherence traffic 

Snoop, directory requests for data and invalidations

Power Consumption Increases
Due to extra cache accesses, coherence traffic and cache line 
state transitions

Resource Contention
Competing with Correct-path resources

Increase in the frequency of full service buffers 
Critical when many cache-to-cache transfers

University of Rhode Island 10 of 162/3/2006

Simulation Methodology
GEMS simulator – Wisconsin Multifacet Group

Based on Virtutech SIMICS
Aggressive out-of-order superscalar processor
Detailed Shared-Memory Model

We evaluate 16-processor SPARC V9 system running unmodified 
Solaris 9

Evaluated both Snoop-based MOSI and Directory-based MOESI 
coherence

MOSI: Modified, Owned, Shared, Invalid
MOESI: Modified, Owned, Exclusive , Shared, Invalid 

We track the speculatively generated memory references 
And mark them as being on the wrong-path when the branch 
misprediction is known 
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Evaluation Results (Cont’d)
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Evaluation Results (Cont’d)
-- L1 and L2 cache replacements

4 Categories:
1. Unused : evicted before being used or never used by a correct-path
2. used: used by a correct-path reference
3. direct-miss: Replaces a cache block that is needed by a later correct-path load, 
but are evicted before being used. 
4. indirect-miss. LRU changes in a set may eventually cause correct-path misses.   

0%

20%

40%

60%

80%

100%

L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

FFT RADIX OCEAN WATER em3d FFT RADIX OCEAN WATER em3d

BROADCAST DIRECTORY

Used Unused Direct miss Indirect miss

55-67% L1 and 12-35% L2 repl. Used in Broadcast. However, small number of remote 
cache misses in directory systems may hurt the performance more.
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Evaluation Results (Cont’d)
-- Servicing Coherence Transactions
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Broadcast Directory

Misses to remote caches 12% to 80% for correct-path and 55% to 
96% for wrong-path 
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Evaluation Results (Cont’d)

Replacements Write-backs

0

10

20

30

40

50

60

70

FFT RADIX OCEAN WATER em3d FFT RADIX OCEAN WATER em3d

BROADCAST DIRECTORY

S->I

E->I

O->I

M->I

0

10

20

30

40

50

60

70

FFT RADIX OCEAN WATER em3d FFT RADIX OCEAN WATER em3d

BROADCAST DIRECTORY

M

O

-- Replacements and Write-backs
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Evaluation Results (Cont’d)
-- Cache Line State Transitions

State Transitions Write misses and invalidations
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Summary of Effects
Uniprocessor effects (i.e., pollution & 
prefetching) apply. Moreover,

Increase in Coherence Traffic
Cache-to-cache transfers by 32%
Invalidations by 8% and 20% for broadcast and 
directory-based SMPs, respectively
Write-backs by up to 67% for both systems

Extra Cache Line State Transitions
21% and 32% for broadcast and directory-based 
SMPs, respectively
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Using R-STAGE to Optimize the 
DASAT Cache System 
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{mtmaxwel,moss,weems,moll@cs.umass.edu 

University of Massachusetts Amherst 
 

 
As CPU speeds increase, physical 
constraints will further limit the size of on-
chip cache.  Wire-delay and thus the size of 
on-chip structures becomes more 
problematic as we move downward to the 
65nm process size, eventually requiring a 
data shrink of on-chip cache. 
 
The DASAT (Dynamically-Aggressive-
Spatial Adaptive-Temporal) cache system is 
a novel L0 data cache architecture with 
heuristic-guided variable size prefetching 
and intelligent data promotion. The structure 
of DASAT simultaneously exploits both 
temporal and spatial locality, increasing data 
utilization compared to conventional cache 
designs.   
 
Conventional caches are structured to 
exploit a specific balance between the two 
types of locality.  To exploit spatial locality, 
designers use large atomic access sizes 
(blocks) so that more data is brought into 
cache at once.  In contrast, using small 
access blocks exploits temporal locality, 
because there are more atomic units in the 
cache at once, reducing the probability of a 
newly requested block evicting a block 
about to be accessed again.  Because 
conventional caches have one block size, the 
designer is required to compromise on block 
size to attempt to maximize total locality 
exploitation. DASAT uses two block sizes 
so that both types of locality can be 
exploited.  In addition, DASAT’s variable 
prefetch mechanism further exploits spatial 
locality.   
 

This combination of design and dual locality 
exploitation allows for less data space to be 
required in order to maintain current hit 
rates, allowing the size of an on-chip 
DASAT to be smaller than a conventional 
cache.  With most of the data contained in a 
DASAT cache accessible in only one CPU 
cycle, prior work shows that a 9KB DASAT 
performs just as well as a conventional L0 
cache over four times its size. 
 
Determining good design parameters for 
DASAT is difficult because 1) its parameter 
space is 9-dimensional and thus large 
(7,487,690 feasible points), 2) one DASAT 
simulation takes days on modern hardware, 
and 3) there is little intuition as to what 
makes a good parameter set.  An exhaustive 
simulation search of the space would take 
over 40,000 CPU years for one benchmark, 
and naïve hill-climbing on point simulation 
is prohibitive. 
 
In this work we cast DASAT as an 
optimization problem minimizing estimated 
AMAT, and use the R-STAGE AI search 
algorithm to find better points in parameter 
space.  By using a separate feature space, we 
can learn promising starting points for 
search.  Furthermore, using regression 
techniques, we can speed search time during 
hill-climbing.  This way we amortize the 
cost of simulation over many hosts, and are 
able to find 10-40% eAMAT improvements 
over baseline for benchmarks in less than 
two weeks time. 
 
In this talk I present the DASAT cache 
system, benchmark results on SPEC2000 
and SPECJVM98, and discuss the 
application of R-STAGE onto the DASAT 
optimization problem. 
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Applying
R-STAGE to DASAT

M Tyler Maxwell
University of Massachusetts Amherst

2 of 16

DASAT

• Dynamically Aggressive Spatial, Adaptive
Temporal

• Exploits both spatial and temporal locality
– Small blocks to exploit temporal locality
– Large blocks to exploit spatial locality

• Heuristic-driven variable size prefetch
• Hit rates comparable to a conventional cache

4X its size

3 of 16

DASAT Structure

4 of 16

Parameters of DASAT

max value for hit counterhitmax
promotion thresholdpromo
prediction bound 3b3
prediction bound 2b2
prediction bound 1b1
# blocks per large blocksbplb
# words per blockwpb
# large blocks DASm
# blocks ATn
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Parameter Bounds

0 ≤ e ≤ 32ehitmax
0 ≤ p ≤ 6ppromo
b2 < b3 < 20b3b3
b1 < b2 < 15b2b2
b1 = 0b1b1
1 ≤ d ≤ 52dsbplb
0 ≤ c ≤ 62cwpb
2 ≤ b ≤ 82bm
2 ≤ a ≤ 172an

This space contains 7,487,690 points

6 of 16

Which Parameters are Best?

• Choose a point that gives best possible
performance for (process, benchmark, miss
penalty)

• Exhaustive search would take ~40,000 CPU
years

• Goodness function (eAMAT) is a function of
hit rate and DASAT speed

7 of 16

Computing eAMAT
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Computing eAMAT (cont.)

• CAT and CDAS are computed offline by
CACTI3.0

• S is computed by trace event simulation, so
it is time-intensive

• Define two lengths of simulation
– Sf : Full (4.6B refs, ~2 days)
– Sp : Partial (500M refs, ~2 hours)
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Standard Hill Climbing
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Regression as a Heuristic

• We can substitute a regression curve for the
hit rate surface (much faster)

• Need k source Sp points for generated curve
• Can do this in parallel using c CPUs
• Empirical results show k > 150

approximates DASAT’s 9-space
• Hillclimb on regression, then perform

simulation

11 of 16

Regression Hillclimbing
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STAGE

• Motivation: Increase starting point quality
and thus decrease necessary m

• Train a feature space that predicts expected
maximal goodness of starting at Pstart

• STAGE works well if search space is
patterned
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A Picture of Feature Space

Normal Space

Feature Space

14 of 16

Applying STAGE

• Define architecture space to be the set of all
possible P points

• Define feature space to be some projection P into
V

• For every path mi, train corresponding feature
space points on arrived maximal goodness value

• To select a new starting point, hillclimb on feature
space

15 of 16

R-STAGE

• Combines regression curve with m-
reducing STAGE algorithm

• Provides 10-40% eAMAT improvements
in several weeks

• More work can be done to further reduce
the number of paths m

16 of 16

eAMAT Results (R-STAGE)
%improvOpt (ns)Base (ns)Benchmark

21.4%0.92941.1829wupwise

16.5%0.87291.0453mpegaudio

13.3%0.87711.0112javac

13.3%0.92081.0623compress

20.5%0.97921.2315bzip2

40.4%1.04331.7519apsi
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RI�8:61V�LQFOXGH�HQYLURQPHQWDO�PRQLWRULQJ�DQG�GDWD�
FROOHFWLRQ��GLVDVWHU� HDUO\�ZDUQLQJ�� WDFWLFDO� VXUYHLOODQFH��
PLOLWDU\� WDUJHW� GHWHFWLRQ�� XQPDQQHG� RII�VKRUH�
H[SORUDWLRQ��DQG�XQGHUZDWHU�FRQVWUXFWLRQ���

&RPSDUHG� WR� ODQG�EDVHG� ZLUHOHVV� VHQVRU� QHWZRUNV��
8:61V� KDYH� WZR� XQLTXH� SURSHUWLHV�� DFRXVWLF�
FRPPXQLFDWLRQ� FKDQQHOV� DQG� WKH� PRELOLW\� RI� VHQVRU�
QRGHV�� 6LQFH� UDGLR� IUHTXHQF\� �5)�� VLJQDOV� GR� QRW�
SURSDJDWH�ZHOO�LQ�ZDWHU��DFRXVWLF�FKDQQHOV�DUH�WDNHQ�DV�
WKH� VROH�PHDQV� IRU� FRPPXQLFDWLRQV�DPRQJ�XQGHUZDWHU�
VHQVRU�QRGHV��&RPSDUHG�WR�5)�VLJQDOV��DFRXVWLF�VLJQDOV�
KDYH�PXFK� ORQJHU� ODWHQFLHV� �ILYH�RUGHUV�RI�PDJQLWXGH��
DQG�ORZHU�EDQGZLGWKV��7KH� VHFRQG�SURSHUW\� LV�SDVVLYH�
PRELOLW\� RI� VHQVRU� QRGHV�� ZKLFK� UHVXOWV� LQ� G\QDPLF�
QHWZRUNLQJ� VWUXFWXUH�� (PSLULFDO� REVHUYDWLRQV� VXJJHVW�

XQGHUZDWHU�VHQVRU�QRGHV�ZLOO�PRYH�DW�WKH�VSHHG�RI�����
NLORPHWHUV�SHU�KRXU�ZLWK�DQ�HIIHFWLYH�GLIIXVLYLW\�RI�IURP�
����� WR� ���� FP��V� LQ� WKH� YHUWLFDO� DQG� IURP� ����� WR� ����
FP��V�LQ�WKH�KRUL]RQWDO��7R�HQVXUH�UHOLDEOH�DQG�HIILFLHQW�
GDWD�WUDQVPLWWLQJ�DQG�IRUZDUGLQJ��8:61V�PXVW�LGHQWLI\�
WKH� VHQVRU�QRGHV¶� ORFDWLRQV�SHULRGLFDOO\�� DQG�DGDSW� WKH�
QHWZRUN�FRQILJXUDWLRQ�DFFRUGLQJO\���

7KH� DIRUHPHQWLRQHG� SURSHUWLHV� RI� 8:61V� UDLVH�
VSHFLDO� FKDOOHQJHV� WKDW� DIIHFW� DOO� HVVHQWLDO� FRPSRQHQWV�
RI� 8:61V�� LQFOXGLQJ� FRPPXQLFDWLRQ� PHFKDQLVPV��
QHWZRUNLQJ� SURWRFROV�� VHQVRU� QRGHV�� DQG� UHVRXUFH�
PDQDJHPHQW��,W�LV�QHFHVVDU\�WR�UHYLVLW�YDULRXV�DVSHFWV�RI�
VHQVRU� QRGH� GHVLJQ� DQG� FRQVLGHU� DOO� WKH� IHDWXUHV� LQ�
8:61V�WR�EXLOG�D�EHWWHU�RSWLPL]HG�V\VWHP�LQ�WKH�QHZ�
XQGHUZDWHU�HQYLURQPHQW����

7KH� UHVW� RI� WKH� SDSHU� LV� RUJDQL]HG� DV� IROORZV�� :H�
ZLOO� GHVFULEH� VRPH� DUFKLWHFWXUDO� FKDOOHQJHV� LQ� 8:61�
GHVLJQV�LQ�6HFWLRQ����DQG�VXPPDUL]H�LQ�6HFWLRQ����
�
���&KDOOHQJHV�LQ�8:61�V\VWHP�GHVLJQV�
�
�����:RUNORDG�FKDUDFWHUL]DWLRQ�

�
$� W\SLFDO� XQGHUZDWHU� VHQVRU� QRGH� FRQVLVWV� RI� D�

VHQVRU�SUREH��DQ�DFRXVWLF�PRGHP��D�FRQWUROOHU��VWRUDJH��
EDWWHU\�� DQG�DQ�LQWHUIDFH� FLUFXLWU\� WKDW� FRQQHFWV� DOO� WKH�
FRPSRQHQWV�ZLWK� WKH�FRQWUROOHU��$OWKRXJK�WKH�VWUXFWXUH�
LV�VLPLODU�WR�WKDW�RI�ODQG�EDVHG�VHQVRU�QRGHV��XQGHUZDWHU�
VHQVRU�QRGHV�QHHG�GLIIHUHQW�GHVLJQV�RI�WKHLU�FRPSRQHQWV�
EHFDXVH� RI� WKH� XQLTXH� SURSHUWLHV� RI� XQGHUZDWHU�
HQYLURQPHQWV� DQG� WKH� GLVWLQFW� UHTXLUHPHQWV� RI� DTXDWLF�
DSSOLFDWLRQV�� )RU� H[DPSOH�� KLJK�SUHFLVLRQ� ORFDOL]DWLRQ�
DOJRULWKPV�� QHHGHG� IRU� XQGHUZDWHU� VHQVRU� QRGHV� WR�
FDOFXODWH� WKHLU� SRVLWLRQV�� LPSRVH� KHDY\� ZRUNORDGV� RQ�
PLFURFRQWUROOHUV�� $V� IRU� WKH� DSSOLFDWLRQV�� ORQJ�WHUP�
HQYLURQPHQW� PRQLWRULQJ� UHTXLUH� OLWWOH� FRPSXWDWLRQDO�
FDSDELOLW\�� ODUJH� PHPRU\�� DQG� D� ORQJ� RSHUDWLRQ� WLPH��
ZKLOH� VKRUW�WHUP� WDUJHW� GHWHFWLRQ� DSSOLFDWLRQV� GHPDQG�
PRUH� FRPSXWDWLRQDO� FDSDELOLW\� DQG� UHDO�WLPH� UHVSRQVH��
:KHQ�EXLOGLQJ�XQGHUZDWHU�VHQVRU�QRGHV��WKH�ILUVW�WKLQJ�
ZH�QHHG�WR�VWXG\�LV�WKH�QHZ�ZRUNORDGV�RI�8:61V��,W�LV�
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DOVR�LPSRUWDQW�WR�LQYHVWLJDWH�WKH�LPSDFW�RQ�VHQVRU�QRGH�
GHVLJQ�RI� WKH�GLIIHUHQW� DSSOLFDWLRQ�UHTXLUHPHQWV� DQG� WR�
VHHN�D�FRPPRQ�DUFKLWHFWXUH�WKDW�PHHWV�WKH�UHTXLUHPHQWV����
�
�����(QHUJ\�HIILFLHQW�QRGH�GHVLJQ�DQG�UHVRXUFH�

PDQDJHPHQW��
�

2QH� SULPDU\� FKDOOHQJH� RI� GHSOR\LQJ� D� GHQVH��
GLVWULEXWHG�� DQG� VFDODEOH� 8:61� LV� WKH� OLPLWHG� HQHUJ\�
UHVRXUFHV�RQ�LQGLYLGXDO�VHQVRU�QRGHV��3RZHU�DQG�HQHUJ\�
RSWLPL]DWLRQV� DUH� HVSHFLDOO\� FULWLFDO� IRU� 8:61V�
EHFDXVH� ��� DFRXVWLF� FRPPXQLFDWLRQV� ZLOO� FRQVXPH�
PRUH� HQHUJ\� WKDQ� 5)� FKDQQHOV�� DQG� ��� HQHUJ\�
KDUYHVWLQJ� LV� PXFK� PRUH� GLIILFXOW� EHFDXVH� PDMRU�
KDUYHVWLQJ� VRXUFHV� VXFK� DV� VRODU� DQG� ZLQG� HQHUJ\� DUH�
QRW�DYDLODEOH�LQ�WKH�XQGHUZDWHU�HQYLURQPHQW���

2Q� WKH� RQH� KDQG�� 8:61V� IDFH� QHZ� FKDOOHQJHV� WR�
DFKLHYLQJ�ORQJ�RSHUDWLRQ�WLPHV��)RU�H[DPSOH��GXH�WR�WKH�
G\QDPLF� QDWXUH� RI� 8:61V�� QHWZRUN� FRQILJXUDWLRQ�
DOJRULWKPV�KDYH�WR�UXQ�SHULRGLFDOO\�DQG��YHU\�RIWHQ��DW�D�
UDWH�QRW� VORZHU� WKDQ�GDWD� VDPSOLQJ�UDWH��7KXV�� HQHUJ\�
HIILFLHQW�FRQILJXUDWLRQ�DOJRULWKPV�DQG�VFKHGXOHU�QHHG�WR�
EH� GHVLJQHG�� 2Q� WKH� RWKHU� KDQG�� WKH� XQGHUZDWHU�
HQYLURQPHQW� PD\� IDFLOLWDWH� VRPH� SRZHU�VDYLQJ�
PHFKDQLVPV�� )RU� H[DPSOH�� WKH� PLFURFRQWUROOHU� LQ� D�
VHQVRU�QRGH�FDQ�JR�WR�WKH�VOHHS�PRGH�GXULQJ�LGOH�WLPH�
DQG�ZDNH�XS�WR�WKH�DFWLYH�PRGH�ZKHQ�QHFHVVDU\��6LQFH�
WKH�ZDNHXS�SURFHVV�WDNHV�WLPH��WKH�QRGH�VKDOO�EH�SXW�LQ�
WKH�VOHHS�PRGH�RQO\�ZKHQ�WKH�LGOH�WLPH�LV�ORQJ�HQRXJK�
UHDFKLQJ� D� EUHDNLQJ� SRLQW�� 'XH� WR� WKH� ORQJ� GHOD\� RI�
DFRXVWLF�FRPPXQLFDWLRQV��XQGHUZDWHU�VHQVRU�QRGHV�PD\�
HQWHU�WKH�VOHHS�PRGH�PRUH�IUHTXHQWO\��

7R� PD[LPL]H� WKH� OLIHWLPH� RI� 8:61V�� ZH� QHHG� WR�
DFKLHYH� HQHUJ\� HIILFLHQF\� DW� ERWK� WKH� VHQVRU�QRGH�DQG�
QHWZRUN� OHYHOV��:LWKLQ� HDFK� VHQVRU�QRGH�� WKH�PHWKRGV�
LQFOXGH�SURSHU�DVVLJQPHQWV�RI�WDVNV�WR�FRPSRQHQWV�DQG�
WKH�HQHUJ\�HIILFLHQW�LPSOHPHQWDWLRQV�RI�WKH�FRPSRQHQWV��
$W� WKH�QHWZRUN� OHYHO�� LW� LV� FULWLFDO� WR�PDQDJH� UHVRXUFH�
HIILFLHQWO\��7KH�SRVVLEOH�VROXWLRQV�LQFOXGH�VWUDWHJLHV�WKDW�
EDODQFH� WKH� WUDGH�RIIV� EHWZHHQ� HQHUJ\� FRQVXPSWLRQV�
DQG� RWKHU� PHWULFV�� )RU� H[DPSOH�� QHWZRUN� URXWLQJ�
SURWRFROV� FDQ� WUDGH� HQHUJ\� IRU� UREXVWQHVV�� )RU�
DSSOLFDWLRQV� OLNH� WDUJHW� GHWHFWLRQ�� LW� FDQ� EH� SRZHU�
VDYLQJ� WR� SHUIRUP� SUHOLPLQDU\� FRPSXWDWLRQV� DPRQJ�
ORFDO�QRGHV�WKDW�DUH�FORVH�WR�HDFK�RWKHU�DQG�WR�WUDQVPLW�
RQO\�XVHIXO�GDWD�RU�UHVXOWV�EDFN�WR�WKH�SURFHVVLQJ�FHQWHU���
�
����� �/LIHWLPH�HVWLPDWLRQ��
�

7KH� OLIHWLPH� RI� 8:61V� LV� RQH� RI� WKH�PDLQ� GHVLJQ�
JRDOV�� 'LIIHUHQW� XQGHUZDWHU� DSSOLFDWLRQV� PD\� KDYH�
GLIIHUHQW� UHTXLUHPHQWV� RQ� OLIHWLPH�� $FFRUGLQJO\�� WKHVH�
UHTXLUHPHQWV� JLYH� XV� JXLGHOLQHV� WR� GHWHUPLQH� FHUWDLQ�
GHVLJQ�SDUDPHWHUV��VXFK�DV�GHQVLW\�RI�VHQVRU�QRGHV�DQG�
EDWWHU\�FDSDFLW\��DW�WKH�GHVLJQ�WLPH��

(VWLPDWLQJ� WKH� OLIHWLPH� RI� VHQVRU� QHWZRUNV� SULRU� WR�
WKH� GHVLJQ� DQG� GHSOR\PHQW� RI� DQ� DFWXDO� QHWZRUN�
UHTXLUHV�DQ�DQDO\WLFDO�PHWKRG�DQG�PRGHO�ZKLFK�FRDUVHO\�
FDSWXUHV� WKH� EHKDYLRU� RI� XQGHUZDWHU� VHQVRU� QHWZRUNV��
7KH� PRGHO� VKRXOG� EH� JHQHULF� DQG� SDUDPHWHUL]HG��
FRPELQLQJ�ERWK�WKH�SK\VLFDO�PHGLXP�VSHFLILF��DFRXVWLF�
FRPPXQLFDWLRQV�� DQG� QHWZRUNLQJ� DVSHFWV� LQ� 8:61��
&RQYHUVHO\�� DIWHU� WKH� HQHUJ\� HVWLPDWLRQ� PRGHO� LV�
GHULYHG�� SRZHU� RSWLPL]DWLRQ� FRQVLGHUDWLRQ� FDQ� EH�
ZRYHQ� LQWR� WKH� GHVLJQ� RI� QHWZRUN� SURWRFROV� �VXFK� DV�
PHGLXP� DFFHVV� FRQWURO�� URXWLQJ�� DQG� WUDQVSRUWLQJ���
WRSRORJ\� �VXFK�DV� WKH�GLVWDQFH�EHWZHHQ�QRGHV��QXPEHU�
RI�QRGHV�LQ�D�FOXVWHU��QXPEHU�RI�WLHUV�LQ�WKH�KLHUDUFKLFDO�
QHWZRUNLQJ�DUFKLWHFWXUH���DQG�ZRUNLQJ�SDUDPHWHUV��VXFK�
DV� DFRXVWLF� IUHTXHQF\�� GDWD� TXHU\� IUHTXHQF\�� HWF��� LQ�
RUGHU� WR� PDWHULDOL]H� D� FRVW�HIIHFWLYH� DQG� HQHUJ\�
HIILFLHQW�86:1��

�
���6XPPDU\�
�

,Q� WKLV�SDSHU��ZH�EULHIO\� H[DPLQHG� WKH�DUFKLWHFWXUDO�
DQG�V\VWHP�GHVLJQ�LVVXHV�IRU�8:61V��:H�EHOLHYH� WKDW�
WKH� ORZ�SRZHU� GHVLJQ� DQG� HIILFLHQW� UHVRXUFH�
PDQDJHPHQW� ZLOO� UHPDLQ� WKH� PDMRU� FKDOOHQJHV� IRU�
8:61� GHVLJQV�� 7KH� XQLTXH� IHDWXUHV� RI� 8:61V� UDLVH�
QHZ� FKDOOHQJHV�� EXW� WKH\� DOVR� FUHDWH� RSSRUWXQLWLHV� WR�
H[SORUH� SRZHU�VDYLQJ�PHFKDQLVPV�� ,Q� RUGHU� WR� H[WHQG�
WKH� OLIHWLPH� RI� 8:61V�� SRZHU� HIILFLHQF\� VKRXOG� EH�
SXUVXHG�DW�ERWK�WKH�QRGH�DQG�QHWZRUN�OHYHOV��0RUHRYHU��
DQ�DFFXUDWH� OLIHWLPH� HVWLPDWLRQ�PRGHO� LV�QHFHVVDU\� IRU�
8:61� GHVLJQV� DQG� FDQ� KHOS� GHWHUPLQH� LPSRUWDQW�
GHVLJQ�SDUDPHWHUV�WR�SURORQJ�WKH�QHWZRUN�OLIHWLPH���

�
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Outline

Motivation of underwater wireless sensor networks 
(UWSNs): Aquatic applications
Design challenges in UWSNs
– Communications
– Networking algorithms/protocols

Architectural issues in UWSNs
– Workload characterization
– Energy-efficient design and resource management
– Lifetime estimation

Summary
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Underwater wireless sensor networks: application-driven

Environmental monitoring and data collection
– Temperature, salinity, ocean currents, etc. 

• Influences on climate and living conditions of plants and animals
– Marine microorganism
– Pollution

Disaster early warning and prevention
– Seismic monitoring
– Tsunami

Off-shore exploration and underwater construction
Coastline protection and tactical surveillance
Target detection
– Mine
– Shipwreck

4 of 12

Application example: estuary monitoring

 

fresh 

salty

Fresh water current 

Salt water current

Buoyancy
 control 

Buoyancy
 control 

Existing Approaches
– Ship tethered with chains 

of sensors moves from 
one end to the other

– Cons: no 4D data, either 
f(x, y, z, fixed t), or 
f(fixed (x, y, z), t); and 
high cost

Using UWSN
– Easily get 4D data, f(x, 

y, z, t), mobile sensors
– Reduce cost significantly
– Increase coverage
– Have high reusability
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Challenges in different aspects of UWSNs

Communications
– Radio does not work well in water

• 120cm at 433 MHZ reported at USC
• Low frequency large antennae and high transmission power

– Acoustic channels adopted
• Limited bandwidth: Bandwidth × Range product =  40 kbps·km
• Long delay: 1.48 x 103 m/s vs. 3 x 108 m/s
• High bit error rates 
• Multi-path and fading problems

Networking
– Medium access control: high channel utilization
– 3-D networking, geographical-based routing: robust to dynamic 

topology
– Data transfer: reliable and high throughput
– Localization & time synchronization : GPS-free
– Robustness: resilient to network disconnection
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System design of UWSNs

Environmental 
constraints

Application 
requirements

UWSN system
parametersSensor node 

design
Resource 

management
Other design
components

UWSN design

Lifetime 
estimation model

Energy
consumption

model
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Typical structure of a sensor node

Sensor probes
– Interface circuitry 

Controller (processors)
Trans-receiver 
– Acoustic modem

Storage
Battery
Triggerable air-bladder

Different from land-based sensors:
Larger and more expensive
More power hungry
Prone to failures

Board
Interface

Acoustic
modem

Controller
/Storage

Battery

Sensing
unit

Triggerable air-bladder
for low-cost reusability purpose
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Goals of underwater sensor nodes

Easy to customize for different applications: workload 
characterization
– Satisfying performance

• Computing capacity 
– Storage
– Bandwidth

Long operation time: low power
– Energy becomes more critical

• Acoustic communications, memory, air-bladder, etc., more power-
hungry

• Energy harvesting difficult: solar and wind energy are not available
Reliable operations
Low cost: allows deployment of large amounts of nodes
– Decomposable or retrievable
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Energy-efficient design at the node level

Design choices: ASIC, ASIP, FPGA, microcontroller
Power-efficient design of individual components
– Acoustic communication modules
– Flexible packet relaying circuit

• Only wake up the microcontroller when needed

Proper task assignments and scheduling
– Sampling, processing, storing, transmitting, receiving, and 

forwarding 
Exploiting opportunities in the underwater environment
– Long and frequent sleep mode due to the long delay of 

acoustic channels
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Power management at the network level

Power-aware routing algorithms
– Short-range vs. long-range communications 
– Reliability vs. energy trade-offs

Power-aware localization algorithms
– Accuracy vs. energy trade-offs

Configuration strategy
– Choosing working parameters adaptively in the field 

In-network computations
– Utilizing short-range one-hop communications
– Balance the power consumption of nodes located in different areas
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Lifetime estimation model

Impact of network design parameters on power 
consumption
– Average one-hop signal transmission distance
– Data transmission period
– Acoustic channel frequency
– Network topology (3-D, distances, clustering, etc.)
– Sensor lifetime

Simulation of UWSNs
– Hierarchical energy model
– Output: statistic information, e.g., data communication 

throughput, retransmission rate, data drop rate, average 
power consumption, and sensor network lifetime. 
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Conclusions

Opportunities: interesting and promising area
– Requires interdisciplinary collaborations

Challenges: a lot of new challenges, especially in 
resource management and energy-efficient system 
design – a cross-layer effort!
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ILP is Dead,  
Long Live IPC! 

(A position paper.) 

Augustus K. Uht 
Microarchitecture Research Institute 

Dept. of Electrical and Computer Engineering 
University of Rhode Island 

February 3, 2006 
 

Overview: the State of the Art 

We will discuss the current state of 
microprocessor architecture, where it is currently 
headed, and where it should be headed. Specifically, 
until recently processors consisted of one copy of a 
CPU, the latter exploiting as much Instruction-Level 
Parallelism as possible. This improved performance. 

Unfortunately, two trends collided and caused a 
rapid shift in processor architecture: 1) The 
architecture community's ability to extract ILP from 
typical code asymptotically approached zero, so 
processor companies kept increasing the CPU clock 
rate to compensate and improve performance in a 
brute force way. Marketing also played a large role 
here: it’s relatively easy to sell processors based on a 
single {higher} number {clock frequency}.  
2) Processor temperatures were becoming excessive. 
The newer processors from Intel (Prescott Pentium 
4's) have power dissipations measurable in light bulb 
or toaster equivalents. 

The net result was the almost-appearance of the 
ill-fated 4.0 GHz Pentium 4. It could not be reliably 
sold or used due to its large power dissipation; in 
short, it would burn up. The industry 'fix' to this 
problem is to put two or more CPU's on a chip or 
package ('multi-core' processors) and run them at 
lower speeds, thereby reducing power to acceptable 
levels while increasing performance. Is there a 
fallacy here? Is this the right way to go? 

Multicore Performance 

Looking at Figure 1, a chart from a recent Intel 
talk given by Benson Inkley [1], the two processors 
being compared are a single-core 3.73 GHz Pentium 
4 vs. a dual-core Pentium 4 –based 3.2 GHz  840 
processor. Both processors use dual-threading 
(Hyperthreading). The performance numbers are 
based on the execution of the SPEC 2000 
benchmarks, both integer and floating point. We will 

focus on the left-most comparison: the processors 
running the SPECint2000 benchmarks without  
tuning. 

We see that by doubling the number of cores, 
performance increases by only 18%. While the 
single-core processor is ‘faster’ than the individual 
cores of the 840 processor (3.73 vs. 3.2 GHz), on a 
cycle-by-cycle basis one would expect a performance 
gain of 72%. 

Examining the power requirements of the two 
processors, from the datasheets [2, 3] we see that the 
total suggested design power (NOT the peak) for the 
single-core processor is:  115 W, and 125 W for the 
dual-core processor. However, the Intel-supplied fan 
runs at 24 W. 

Therefore, for about the same power dissipation, 
and about twice the cost, we get a slight performance 
increase of about 18%. 

I have been unable to determine the specifics of 
the experiments. For example, were the SPECInt 
benchmarks initially recoded to take advantage of the 
multithreading and dual core options? This seems 
likely. In a more realistic scenario, a shrink-wrapped 
program, unable to be recompiled, would likely have 
experienced a performance decrease when going to 
the dual-core processor, since each core runs at a 
lower speed than the 3.73 single-processor.  

The conclusion is that for normal, nominally 
sequential programs, multi-core processing is a 
‘lose.’ (Of course, if a program can be recompiled, 
and it contains lots of parallelism, like many media 
applications, then there will likely be a performance 
benefit from multi-core processors, but not 
necessarily proportionally; see the right-hand side of 
Figure 1.) 

 

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0

 
Figure 1.  Intel single vs. multi-core performance [1]. 
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Parallelizing Compilers 

In its current state, the hardware community can 
not make progress in improving the performance of 
the vast majority of existing or future programs. As 
currently envisioned, multi-core processors are not 
useful. However, industry has thrown the problem 
over the wall to the programmers, and said: ‘You fix 
it. You MUST learn how to program in parallel.’ 

While dictating technological progress can 
sometimes have a positive effect, it is unlikely in this 
case. Look at the supercomputing literature: for the 
past thirty to forty years researchers have attempted 
to write auto-parallelizing compilers, with only 
modest success. The community has turned to such 
tools as OpenMP or assertions, both of which are 
very hard to use and port. Also, the use of assertions 
can easily lead to functionally wrong code. 

Being realistic, we all have a hard time writing 
sequential programs, much less parallel programs. 
This is true for novice and expert programmers alike 
[4]. 

But we still want to improve performance. Is 
there a solution? I think so: ‘Long Live IPC.’ 

Back to the Future 

Whatever happened to ILP? Many, many limit 
studies have shown large amounts of ILP (potential 
parallelism) in typical programs, even gcc [5]. But 
architects have been unable to realize the potential 
performance in IPC (realized parallelism). 

ILP exploitation is hard, no doubt about it. But 
computer architects have solved tougher problems. 

For many years, the classic superscalar 
architecture has become a de facto standard. No 
serious deviations from its microarchitecture are 
allowed. Little changed, little gained.  

We need to wipe the slate clean, and create 
dramatically new microarchitectures in order to make 
significant gains. This is generally frowned upon by 
industry, which doesn’t like big changes. (But recall, 
the Intel P6 microarchitecture was a radical change, 
and it paid off big. Intel has even returned to it: the 
mobile Pentium M processor is based on the P6.) The 
results of this industry bias are a slew of incremental 
performance improvements. 

Some of us are starting fresh, e.g., the TRIPS 
machine [6] and the Levo machine [7]. Both have 
yielded IPC’s (not ILP) greater than three and five 
(resp.) with realistic simulation assumptions. (TRIPS 
requires compiler support, Levo does not.) 

But this is just the start. Power is still an issue. 
We must get away from the frame-of-mind that a 
microprocessor must use as many transistors as 

possible. On the contrary, it should use as few 
transistors as possible. (Sounds obvious, but we seem 
to have forgotten this.) 

We must also re-examine the multi-core model 
in even its most basic sense. Forget about duplicating 
entire processors. Remember, we can’t program the 
end result. Think of using less complex and less 
costly computation units.  

Conclusions 

Everyone has fallen in behind the 
microprocessor manufacturers in the multi-core 
futility, even the major operating systems’ and 
applications’ programmers. Further, (at least) the 
latter say they won’t be able to do anything for years 
[4]. 

‘Those who cannot remember the past are 
condemned to repeat it.’  

Let’s not waste another 30-40 years. If there was 
ever a time to think out-of-the-box, this is it. Let’s do 
some real envelope-pushing. Multi-core machines 
(the same as multiprocessors) and parallelizing 
compilers are well known and are not likely to 
produce any meaningful new results. 

We need IPC; we don’t need PPC (processors 
per cycle).  
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(A position paper.)
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Outline

1. ILP vs. IPC
2. State of the Art; two nasty trends:

a) Conventional wisdom: ‘…no more exploitable ILP…’
or: ‘ILP is Dead’

b) Power is killing us – CPU power in light-bulb equiv.
3. Industry/Academia Response:

a) Dual/multi-core chips (multiprocessors) 
b) Does this buy us anything?

4. Solution: ‘Long Live IPC!’
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1. ILP and IPC Defined

• ILP = Instruction-Level Parallelism:
Potential parallelism: what is in the code.
(Assumption: unlimited resources.)

• IPC = Instructions Per Cycle:
Realized parallelism: 

what the hardware really gets.
(Resources limited.)

• Overall ‘performance’ = IPC * clock frequency,
in Instructions Per Second.

BARC: February 3, 2006 4 of 8ILP/IPC

2. State of the Art

I. Conventional wisdom: ‘ILP is Dead’
a) Given: ‘Limit studies’ show ILP in 10’s (even gcc)
b) In reality, hardware rarely gets IPC > 1, BECAUSE:

i. Conservative research:
Need to stick to std. CPU model if you want to get published. 

ii. Industry cautious: doesn’t like big changes

II. Power has become excessive, e.g.:
Intel 4.0 GHz Pentium 4: 

Heat death of the uni-processor-verse
Industry sol’n: n-core chips: n lower-freq. CPUs, e.g.:

dual perf. >= solo perf., &  dual pwr. <= solo pwr.
(Oh, really???)
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Multicore Problem 1:
(non)-Performance

• Time, 1 to 2 cores:
– For same power,
– Twice the cost,
– Get 18% 

perf. increase.
– Likely perf. would 

actually decrease

• Speed, 1 to 2 cores:
– < 50% perf. gain
– Code copies used
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• Time
• red: 1 core
• blue: 2 cores

• Speed
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Multicore Problem 2:
Can’t Program ‘em

1. Chief of some chip company:
[Programmers will have to learn 

how to write parallel programs.]  !!!
2. ….and pigs have wings, to wit:
3. Since ~1964: 

a) Tried to build auto-parallelizing compilers. NG.
b) Tried to make parallel programming easy. No cigar.

4. We don’t know how to write 
good sequential programs; 
now good PARALLEL programs?

BARC: February 3, 2006 7 of 8ILP/IPC

Solution: Back to the Future

‘Long Live IPC!’
1. Recall: community is stuck on old model.
2. Radically new models are promising; examples: 

• TRIPS (IPC ~3, needs compiler support)
• Levo (IPC ~5, with legacy binaries)
(Remember: the P6 was radical too, way back when.)

3. Don’t use as many transistors as possible.
power less of an issue.

4. Multicore processors? Maybe, but used differently.
1) Use simple cores:

Cores do not need to be complete or standard processors.
2) Eliminate basic cross-chip communications.

BARC: February 3, 2006 8 of 8ILP/IPC

Summary

‘Those who cannot remember the past 
are condemned to repeat it.’

Parallel programming is a losing proposition for most/all 
programs, even scientific (time-to-solution).

(But: APL, anyone?)

We need IPC!
(We don’t need PPC [processors per cycle]…)
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Fourth Annual Boston Area Architecture Workshop
Keypanel Session

Description:

The Keypanel Session combines the best features of keynote speeches and panel sessions.
The end user, industry, and academic communities will each be represented by one keypanelist.
Three 15-minute keypanelist presentations will be followed by one 15-minute audience Q & A session.
The order of the keypanelists' presentations will be randomly determined during the session.

General Topic: Whence goeth the microprocessor?
Specific questions to each keypanelist representative:
* to End Users: What does the commercial user want today? In 5 years? In 10 years?
* to Industry: What will/should industry provide today? In 5 years? In 10 years?
* to Academia: What will/should academia be looking at today? In 5 years? In 10 years?

The Keypanelists:
We are extremely fortunate to have the following practitioners and researchers representing:

* End Users: Dr. Atul Chhabra, Verizon Corp., Enterprise Architect and Senior IT Manager.
* Industry: Dr. Joel Emer, Intel Corp., Intel Fellow.
* Academia: Prof. Anant Agarwal, MIT, Professor of Electrical Engineering and Computer Science.

Keypanelist Biographies: (see next page)
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Keypanelist Biographies:

* Dr. Atul Chhabra
Dr. Chhabra is Enterprise Architect and Senior IT Manager at Verizon Communications Corp., a Fortune
14 company with over 200,000 employees and local, national and international communications
responsibilities. He received his Ph.D. from the University of Cincinnati in 1990, and his B.Tech., Indian
Institute of Technology, New Delhi, India in 1984. Dr. Chhabra has over fifteen years of IT, product
development, e-business, and R&D experience at Verizon and its former companies. He has developed
and managed the architecture for enterprise content management systems, enterprise portals as
personalized employee desktops, integration of enterprise resource planning systems, and systems for
managing internal controls. He has performed capacity planning, performance modeling, and evaluation of
several enterprise systems. In the mid to late 90’s, Dr. Chhabra led Verizon’s research into automated
recognition and interpretation of scanned images of engineering drawings and benchmarking of the
available methods. At the same time, he managed the process of scanning about half a million network
drawings and the automated extraction of key information from the drawings. 

* Dr. Joel Emer
Dr. Emer is an Intel Fellow, Digital Enterprise Group, and Director of Microarchitecture Research. Dr.
Emer received his bachelor’s and master’s degrees in electrical engineering from Purdue University in
1974 and 1975, respectively. He earned a doctorate in electrical engineering from the University of Illinois
in 1979. Dr. Emer has worked in industry for over 25 years, spending much of his career at Digital
Equipment Corp. (DEC), and then Compaq, where he was Director of Alpha Architecture Research. He
was responsible for innovations in almost every aspect of micro-architecture for several generations of
Alpha processors, widely considered to be the highest-performing processors of their time. As part of this
work and in his earlier work on several generations of VAXes, Dr. Emer stressed the then-unusual
quantitative approach to performance analysis. In recent years he was a pioneer in the research and
implementation of simultaneous multithreading in a commercial processor. Dr. Emer is both an IEEE
Fellow and an ACM Fellow. 

* Prof. Anant Agarwal
Prof. Agarwal is a member of the EECS department at MIT, and is also a member of MIT’s Computer
Science and Artificial Intelligence Laboratory (CSAIL). Anant Agarwal earned a Ph.D. in 1987 and an MS
in Electrical Engineering both from Stanford University. He got his bachelor's degree in Electrical
Engineering from IIT Madras in 1982. His teaching and research interests include VLSI, computer
architecture, compilation, and software systems. He is the CTO and founder of Tilera Corp., the nth 
startup company of his career. Prof. Agarwal has led many well-known prototyped radically-novel 
architecture projects, including Alewife, VirtualWires and the current RAW machine project.
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Branch Trace Compression for
Snapshot-Based Simulation∗

Kenneth C. Barr and Krste Asanović
MIT Computer Science and
Artificial Intelligence Lab

32 Vassar St., Cambridge, MA 02139
{kbarr, krste}@csail.mit.edu

1. Introduction
As full-system simulation of commercial workloads

becomes more popular, methodologies such as statistical
simulation and phase detection have been proposed to
produce reliable performance analysis in a small amount
of time. With such techniques, the bulk of simula-
tion time is spent fast-forwarding the simulator to rel-
evant points in a program rather than performing de-
tailed cycle-accurate simulation. To amortize the cost
of lengthy fast-forwarding, snapshots can be captured
at each sample point and used later to initialize differ-
ent machine configurations without repeating the fast-
forwarding.

If the snapshot contains just register file contents
and memory state, one must perform lengthy “detailed
warming” of caches and branch predictors to avoid cold-
start bias in the results. Microarchitectural state can also
be captured in the snapshot, but this will then require
regeneration of the snapshot every time a microarchitec-
tural feature is modified.

For caches, various microarchitecture-independent
snapshot schemes have been proposed, which take ad-
vantage of the simple mapping of memory addresses to
cache sets. Branch predictors, however, are much more
difficult to handle in the same way, as they commonly in-
volve branch history in the set indexing function which
smears the effect of a single branch address across many
locations in a branch predictor. One possibility is to
store microarchitectural state snapshots for a set of of
potential branch predictors, but this limits flexibility and
increases snapshot size, particularly when many samples
are taken of a long-running multiprocessor application.

We explore an alternative approach in this paper,
which is to store a compressed version of the com-
plete branch trace in the snapshot. This approach is
microarchitecture-independent because any branch pre-
dictor can be initialized before detailed simulation be-
gins by uncompressing and replaying the branch trace.

The main contribution of our paper is a branch
predictor-based compression scheme (BPC), which ex-
ploits software branch predictors in the compressor and
∗A full-length version of this paper appears in ISPASS 2006 [1]

decompressor to reduce the size of the compressed
branch trace snapshot. When BPC is used, the snapshot
library can require less space than one which stores just
a single concrete predictor configuration, and it allows
us to simulate any sort of branch predictor.

2. Design
BPC uses a collection of internal predictors to cre-

ate an accurate, adaptive model of branch behavior. A
software branch predictor has two obvious advantages
over a hardware predictor. First, the severe constraints
that usually apply to branch prediction table sizes disap-
pear; second, a fast functional simulator can provide ora-
cle information to the predictor such as computed branch
targets and directions. When the model correctly pre-
dicts many branches in a row, those branches need not
be emitted by the compressor; instead, it concisely in-
dicates the fact that the information is contained in the
model.

The output of the compressor is a list of pairs. The
first element indicates the skip amount, the number of
correct predictions that can be made beginning with a
given branch; the second element contains the data for
the branch record that cannot be predicted. We store the
output in two separate files and use a general-purpose
compressor called PPMd [3] to catch patterns that we
have missed and to encode the reduced set of symbols.

The decompressor reads from these files and out-
puts the original branch trace. After reversing the
general-purpose compression, the decompressor first
reads from the skip amount file. A positive skip amount,
x, indicates that BPC’s internal predictors are sufficient
to produce x correct branch records in a row. When
x = 0, the unpredictable branch may be found in the
branch record file. As the decompressor updates its in-
ternal predictors using the same rules as the compressor,
the state matches at every branch, and the decompressor
is guaranteed to produce correct predictions during the
indicated skip intervals.

We define a concrete branch predictor to be a pre-
dictor with certain fixed parameters such as size of
global history, number of branch target buffer entries,
etc. To measure the performance of various concrete
branch predictors, the output of the BPC Decompressor
is used to update state in each concrete predictor accord-
ing to the update policies of that predictor.

3. Evaluation
To evaluate BPC, we use the 20 traces from

the Championship Branch Prediction (CBP) competi-
tion [4]. The trace suite comprises four categories: in-
teger, floating point, server, and multimedia. Traces
contain approximately 30 million instructions compris-
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Figure 1. The optimal compressed trace format is in the upper left of each plot. Decompression speed across
applications is reported with harmonic mean. The times were collected on a Pentium 4 running at 3 GHz.

ing both user and system activity and exhibiting a wide
range of traits in terms of branch frequency and pre-
dictability.

The state of a given branch predictor (a concrete
snapshot in our terminology) has constant size of q
bytes. However, to have m predictors warmed-up at each
of n detailed sample points (multiple short samples are
desired to capture whole-program behavior), one must
store mn q-byte snapshots. Concrete snapshots are hard
to compress so p, the size of q after compression, is
roughly constant across snapshots. Since a snapshot is
needed for every sample period, we consider the cu-
mulative snapshot size: mnp. In our experiments, cu-
mulative snapshots grow faster than a BPC-compressed
branch trace even for reasonable p and m = 1.

On average, BPC+PPMd provides a 3.4×, 2.9×,
and 2.7× savings over a concrete snapshot compressed
with gzip, bzip2, and PPMd respectively. When broken
down by workload, the savings of BPC+PPMd over con-
crete+PPMd ranges from 2.0× (integer) to 5.6× (float-
ing point). Note that this represents the lower bound of
savings with BPC: if one wishes to study m branch pre-
dictors of size P = ∑m

i=1 pi, the size of the concrete snap-
shot will grow with mnP, while the BPC trace supports
any set of predictors at its current size.

Figure 1 summarizes space and time results of our
experiments with one plot for each application category.
The most desirable techniques, those that decompress
quickly and yield small file sizes, appear in the upper
left. For each application domain, BPC+PPMd performs
the fastest. In terms of bits-per-branch, BPC+PPMd
is similar to VPC [2] for highly-compressible floating
point traces and similar to PPMd for integer bench-
marks. For multimedia, PPMd compresses best, while
BPC+PPMd performs significantly better than all its
peers for hard-to-predict server benchmarks. BPC de-
compression also outpaces fast functional simulation
(not shown). High speed and small files across appli-
cation domains are the strengths of our technique.

4. Related work

Value-predictor based compression (VPC) is a re-
cent advance in trace compression [2]. Its underlying
predictors are more general than BPC’s branch direction
and target predictors. With its specialized predictors and
focus on chains of correct predictions, we have found
that BPC compresses branch trace data better than VPC
in 19/20 cases and is between 1.1× and 2.2× faster.

CBP uses a simpler set of branch predictors than
BPC to generate and read compressed traces. Though it
uses similar techniques, direct comparison is not possi-
ble as CBP obtains near-perfect program counter com-
pression due to the interleaving of non-branch instruc-
tions. With perfect PC prediction, CBP+bzip2 outper-
forms BPC in 10/20 cases, but when perfect prediction
is not allowed, BPC produces smaller files.
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BPC: compact, fast, flexible warming of branch 
predictors for snapshot-based simulation.

1. Motivation, simulation 
context, vocabulary

2. Branch Predictor-based 
Compression (BPC)

– Compress traces instead 
of storing snapshots

3. Preview of results
– Size
– Scalability
– Speed

BPC
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Intelligent sampling gives best speed-accuracy 
tradeoff for uniprocessors (Yi, HPCA `05)

Run benchmark entirely
in detailed mode: slow!

slow/detailed

ignored

measured

fast forward

Aggregate detailed samples

ISA+µarch

Variations
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Snapshots amortize fast-forwarding, but require 
slow warming or bind us to a particular µarch.

slow/detailed

ignored

measured

Snapshot 
file on 
disk

fast forward
ISA only 
snapshots:

Slow due to 
warmup, but allows 
any µarch

ISA+µarch 
snapshots:

Fastest (less warmup), 
but tied to µarch

ISA+µarch-
independent 
snapshots:

Fast, NOT tied to 
µarch (Cheetah, 
MTR)
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Why can’t we create µarch-independent 
snapshot of a branch predictor?

• In cache, an address maps to a particular cache set
• Branch history (global or local) “smears” static branch 

across the pattern history table
– Same branch

address…………..
– In a different

context……………

• In a cache, we can throw
away LRU accesses

• In a branch predictor, who
knows if ancient branch affects
future predictions?!

T T T T T T T N

2 4 0 0 2 4 0 0

T

NT

PHT PHT
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If a µarch independent snapshot is tricky, let’s 
try to store several predictor tables? 

• Suggested by [SMARTS, SimPoint]
• Is this an option?

– If you generate snapshots via hardware dumps, you 
can’t explore other microarchitectures

• Which ones?
– If it takes two weeks to run a non-detailed simulation 

of a real workload you don’t want to guess wrong
• Those branch predictors aren’t as small

as you think!
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Branch predictors are small, but multiply like 
rabbits!  8KB quickly becomes 1000’s of MB.

• P: gshare with 15 bits of global 
history

• n: 1 Billion instructions in trace 
sampled every million insts
requires 1000 samples 

• m:10 other tiny branch predictors 
• 26 benchmarks in Spec2000 
• 16 cores in design?
• Now, add BTB/indirect predictor, 

loop predictor…
• Scale up for industry: 100 

benchmarks, 10s of cores

8 KBytes

x 1000 = 8 MBytes
x 10 = 78  MBytes
x 26 = 2.0 GBytes
x 16 = 32 GBytes
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BPC compresses branch traces well and 
quickly warms up any concrete predictor.

• Simulator decodes 
branches

• BPC Compresses trace
– Chaining if necessary

• General-purpose 
compressor shrinks 
output further
– PPMd

• Reverse process to fill 
concrete predictors

Functional
Simulator

Benchmark

BPC
Decompressor

General-purpose
Decompressor

Concrete
Branch
Predictors

General-purpose
Compressor

Compressed
Trace

BPC
Compressor
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BPC uses branch predictors to model a branch 
trace.  Emits only unpredictable branches.

• Contains the branch predictors you 
always dreamed about!  
– Large global/local

tournament predictor
• 1.44Mbit
• Alpha 21264 style 

– 512-deep RAS
– Large hash tables for static info

• Three 256K-entry
– Cascaded indirect predictor

• 32KB leaky filter
• path-based (4 targets)
• 2 entries
• PAg structure

BPC
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BPC Compression

BPC
comp

0x00:  bne 0x20 (NT)
0x04:  j 0x1c (T)
0x1c:  ret (T to 0xc4)

Output:  
– If BPC says “I could have told you that!”

(Common case): no output
< >

– If BPC says “I didn’t expect that branch record!”
< skip N, branch record >

Input: branch trace from functional simulator

Update internal predictors with every branch.
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BPC Decompression

BPC
decompOutput: 

if (skip==0)
branch record
// updates predictors

while(skip > 0)
BPC says “let me guess!”
// updates predictors
// decrement skip

< 0,         0x00:  bne 0x20 (NT) >
< 0,         0x04:  j 0x1c (T) >
< 13,       0x3c:  call 0x74          >

Input: list of pairs < skip N, branch record >
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BPC-compressed traces grow slower than 
concrete snapshots

• We compare against one stored 
Pentium 4 style predictor:
2.7X smaller (avg)

• If you store 1000 samples, 10 
predictors…
– 11 MB for BPC
– 310 MB for concrete snapshot

• Growth
– BPC has shallow slope
– concrete scales with mnP
– Both grow with number of 

benchmarks and cores

Instructions 
(Millions)
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Summary: BPC decompresses faster, 
compresses as good or better than others.

• BPC+PPMd faster 
than other 
compressors 
and sim-bpred

• Know your general-
purpose compressors:
gzip’s too big
bzip2 is too slow

• Biggest help for 
phase-changing 
Server code

Server Integer

Bits per branch Bits per branch

Multimedia Floating Point
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Related work: BPC is a specialized form of VPC 
or a modified version of CBP. 

• Value-predictor based compression (VPC)
– Prof. Martin Burtscher at Cornell
– Trans on Computers, Nov 2005

• Championship Branch Prediction Contest (CBP)
– Stark and Wilkerson, Intel
– MICRO workshop, Jan 2005
– Provided traces used a technique with similar spirit

• Our Branch Prediction-based Compression (BPC) paper 
identifies application to snapshot-based simulation
– Barr and Asanović, MIT
– ISPASS, Mar 2006

Barr and Asanović.  BARC 2006.  Feb 3, 2006. 15 of 15 

Conclusion

• Full-length paper: ISPASS, March 2006
• http://cag.csail.mit.edu/scale

• Compressed branch traces are smaller than 
concrete branch predictor snapshots
– 2.0–5.6x smaller than a single, simple predictor snapshot
– Improvement multiplies for each predictor under test, size of 

those predictors, and each additional sample

• We introduce Branch Predictor-based Compression
– Better compression ratios than other compressors
– Faster than other decompressors; and 3-12X faster than 

functional simulation.  Slower than μarch snapshots, but 
infinitely more flexible.  
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Requirements for any HPC/FPGA

Application Development Tool Flow

(that gets more than a small fraction of potential performance)∗

Tom Van Court Martin C. Herbordt

Department of Electrical and Computer Engineering

Boston University; Boston, MA 02215

EMail: {tvancour|herbordt}@bu.edu

1 Introduction
One of the most exciting innovations in computer
architecture in many years is the introduction by
several major vendors of FPGA-based processing
nodes. FPGAs are fundamentally different from
von Neuman (vN) processors: applications are con-
figured in circuitry, rather than programmed into
software. The critical problem to be solved with
respect to High Performance Computing using FP-
GAs (HPC/FPGA) is determining an appropriate
method for configuring the FPGAs; this problem
involves the often inherent conflict between perfor-
mance and development cost.

The argument is currently being made, in anal-
ogy to the historic assembly language versus high
level language (HLL) debate–and to a lesser ex-
tent, the similarly historic quest for portable par-
allel programs–that the expected mode for creat-
ing HPC/FPGA applications is with HLLs, includ-
ing the direct compilation of HLL programs into
gates. Moreover, the argument continues, this so-
called C2gates approach can be to the exclusion of
logic-aware design, such as, e.g., would require using
a Hardware Description Language (HDL).

In this abstract, we argue that the conflict be-
tween C2gates and logic-aware approaches is far
from settled; in particular, that C2gates as so
described is fundamentally flawed; and that al-
though C2gates will be highly useful in most de-
sign flows, logic-aware design is essential to ob-
tain even a fraction of the possible capability of
HPC/FPGA. Putting this another way: we argue
that the tremendous performance advantage (po-
tentially) obtained by freeing the node architecture

∗This work was supported in part by the NIH through
award #RR020209-01 and facilitated by donations from Xil-
inx Corporation. Web: http://www.bu.edu/caadlab.

from the vN model is not likely to remain an ad-
vantage after the vN model is reimposed back onto
that node architecture.

2 Design Methods
In the rest of this abstract we present a number of
fundamental design methods that are both essen-
tial for creating efficient HPC/FPGA applications
and likely to be beyond C2gates. Or at least be-
yond C2gates in the sense that the developer is not
particularly “FPGA-aware” in addition to not be-
ing logic-aware. These potential monkey wrenches
in the FPGA machinery (particularly 1-10 below)
each have the capacity of reducing performance by
an order of magnitude or more.

1. Use the correct programming model. In
particular, exactly the wrong programming model
for FPGA configuration is the one used for se-
rial computing. In the classic example, a pro-
gram is created having a FOR loop with a harm-
less, but unnecessary, dependency among its itera-
tions. There is no effect on serial performance, but
on the FPGA, little parallelism can be extracted.
There are other not-so-blatant examples: parallel
programming models, such as global shared mem-

ory, message passing, and data parallel are likely to be
better than serial, but still far from ideal. In partic-
ular, none is likely to inspire an appropriate FPGA
algorithm. In contrast, certain programming styles
work particularly well on FPGAs: 1D and 2D sys-
tolic arrays; associative computing, which is domi-
nated by broadcast and reduction; and complex het-
erogeneous pipelines, i.e. pipelines of operations,
rather than pipelines to execute single operations.
These programming styles, collectively, could be an
appropriate HPC/FPGA programming model.
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2. Use an appropriate (FPGA) algorithm.
Assuming that the programming model is correct,
it is still possible to use a suboptimal FPGA al-
gorithm. HPC/FPGA implementors often create
efficient FPGA versions of the corresponding serial
algorithm, e.g. by getting rid of spurious inter-loop
dependencies. There is often, however, a different
algorithm that is superior to the one originally cho-
sen. One example comes from modeling molecu-
lar interactions: the standard algorithm uses FFTs,
but on FPGAs direct correlation is preferred. An-
other example comes from BLAST: the original uses
tables of pointers and random access; a preferred al-
gorithm uses streaming and a 2D systolic array.

3. Speed match computations. Even a good al-
gorithm can be implemented so that it does not use
resources properly. For example, (pipelined) stages
of a computation can have drastically different oper-
ating frequencies. If they are not “speed-matched,”
then they will all run at the slowest frequency. This
problem can be solved by replicating stages for par-
allel execution so that the data production per unit
time matches. This item is related to load balancing
in parallel programming.

4. Use all chip resources. A related issue is that
of leaving chip resources unused. Sometimes this is
unavoidable, such as when an application simply
does not call for a large number of multipliers or
memory ports to be used. Other times, however,
the design system simply will not let repeating ele-
ments in a computing array expand to fill available
resources. This item is related to scalability in par-
allel programming.

5. Hide latency of independent functions. For
example, let’s say a random number is required for
a particular operation. There is probably no reason
that the random number cannot be computed so
that it is available in time.

6. Use appropriate constructs. (Overlaps with
Use Correct Programming Model; related – do not
use innappropriate constructs.) One of best fea-
tures of FPGAs is their ability to do hardware com-
puting. Broadcast, reduction, and leader election
all can be be done at electrical speeds, resulting
in a large number of instruction-equivalents being
executed by a single hardware structure in a sin-
gle cycle. On the other hand, some operations—
sparse data structures, pointer following, and non-
pipelined random data access—are very slow. Also
related to this item is the use of the correct hard-
ware construct for the correct structure: For exam-
ple, there are well-known ways to implement FIFOs
in hardware that yield performance far superior to
naive implementations.

7. Use FPGA resource types appropriately.
Modern FPGAs contain much more than just loose
gates. In particular, they contain hundreds of em-
bedded block RAMS and multipliers. In a molec-
ular dynamics application, we access 400 separate
memories for two reads and two writes on every cy-
cle, yielding on overall on-chip memory bandwidth
of 20Tb/s. Just as important is to not use re-
sources incorrectly. For example, configuring chip
resources into complete CPUs (softcores) for high
performance applications is unlikely to be benefi-
cial. The small number of such CPUs that can
be configured into a high-end FPGA is unlikely to
match the performance of even a single micropro-
cessor, much less offer significant speed-up.

8. Arithmetic 1: Use appropriate precision.
Certain applications—notably those involving bi-
ological sequences, but also many others—require
only a few bits of precision. Using appropriate pre-
cision allows a proportional increase in parallelism
and so performance.

9. Arithmetic 2: Use appropriate operations.
The most obvious of these (unfortunately) is to limit
the use of floating point. An FPGA implementation
of a floating point unit following the complete IEEE
standard requires the bulk of a high-end FPGA.
There are often substitutes, however, that cost little
performance, and use far fewer resources. For exam-
ple, in a molecular dynamics application, floating
point was successfully replaced with a combination
of table look-up, “semi-fixed floating point,” and
higher order interpolation.

10. Overall 1: Use good logic design. Poor
HDL-level design leads to even poorer logic. One
of the most common pitfalls in modern logic de-
sign is the use of HDLs without an understanding
of what logic will actually be generated. Inexperi-
enced designers quickly learn that seemingly trivial
oversights or imprecisions lead to logic that is cor-
rect, but that runs at a small fraction of projected
performance. One vendor of a commercial C2gates
tool reports that 180 lines of HLL code generated
150,000 lines of VHDL code.

11. Overall 2: Recognize that there are in-
herent limits to logic synthesis (compilation).
There exist formal results proving that an optimal
design can be unreachable even from a semantically
equivalent but syntactically different description.

12. Overall 3: Recognize the brittleness of
high-performance solutions. As we know from
Amdahl’s Law, the greater the potential speed-up,
the more difficult it is to obtain a large fraction of
that speed-up.
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Requirements for any FPGA/HPC Requirements for any FPGA/HPC 
Application Development Tool FlowApplication Development Tool Flow

…… if you want any reasonable fraction of if you want any reasonable fraction of 
the FPGAthe FPGA’’s potential performances potential performance

BOSTON
UNIVERSITY

Tom VanCourt
Martin C. Herbordt

Computer Architecture and Automated Design Lab

http://www.bu.edu/caadlab

3 Feb 20063 Feb 2006 T. VanCourt & M. C. HerbordtT. VanCourt & M. C. Herbordt 22 of 10of 10

What is FPGA/HPC exactly?What is FPGA/HPC exactly?

High performance computingHigh performance computing
Computational chem.Computational chem. ElectromagneticsElectromagnetics
BioinformaticsBioinformatics Traffic modelingTraffic modeling
AstrophysicsAstrophysics ……

Field Programmable Gate ArraysField Programmable Gate Arrays
App. specific processors on demandApp. specific processors on demand
Massive fineMassive fine--grained parallelismgrained parallelism
Drivers of silicon process developmentDrivers of silicon process development

3 Feb 20063 Feb 2006 T. VanCourt & M. C. HerbordtT. VanCourt & M. C. Herbordt 33 of 10of 10

WhatWhat’’s so hard about it?s so hard about it?

Performance computing Performance computing ≠≠ logic designlogic design
Standard languages hide parallelism*Standard languages hide parallelism*
FPGA tools address logic designersFPGA tools address logic designers

Contradictions in FPGA applicationsContradictions in FPGA applications
Applications should be widely applicableApplications should be widely applicable
…… but finely tuned to each particular usagebut finely tuned to each particular usage

Require customization by application specialistRequire customization by application specialist
…… but require unfamiliar hardware constructsbut require unfamiliar hardware constructs

Demand full use of hardware resourcesDemand full use of hardware resources
…… use is appuse is app--specific, resources are FPGAspecific, resources are FPGA--specificspecific

*Jeroen Voeten, 
ACM Trans. CAD 
6(4)533-552, 
Oct 2001

3 Feb 20063 Feb 2006 T. VanCourt & M. C. HerbordtT. VanCourt & M. C. Herbordt 44 of 10of 10

WhatWhat’’s wrong with C to gates?s wrong with C to gates?

““Unfortunately, and despite 40 years of parallelizing compilers Unfortunately, and despite 40 years of parallelizing compilers 
for all sorts of machines, [optimization] algorithms don't for all sorts of machines, [optimization] algorithms don't 

work terribly well.work terribly well.”” Ian Page, 2004Ian Page, 2004

The best you get is C code in gatesThe best you get is C code in gates
Good HW algorithm isnGood HW algorithm isn’’t SW algorithm t SW algorithm 

C distributes algorithms in timeC distributes algorithms in time
FPGAs distribute algorithms in spaceFPGAs distribute algorithms in space
…… and a whole industry is dedicated toand a whole industry is dedicated to
reinventing the von Neumann bottleneckreinventing the von Neumann bottleneck
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Example: SizeExample: Size--3 subsets3 subsets

C style:C style:

HWHW--oriented solution:oriented solution:

for i = 0 to N
for j = 0 to i

for k = 0 to j
// use x[i],x[j],x[k]

…
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Example: 3D CorrelationExample: 3D Correlation

Serial processor: Fourier transform Serial processor: Fourier transform FF
A A ⊗⊗ B = B = FF --11( ( FF(A) x (A) x FF(B) )(B) )

FPGA: Direct summationFPGA: Direct summation
RAM FIFORAM FIFO

FIFO
F(a,b)

3 Feb 20063 Feb 2006 T. VanCourt & M. C. HerbordtT. VanCourt & M. C. Herbordt 77 of 10of 10

C style: Sequential RAM accessC style: Sequential RAM access

HW style: AppHW style: App--specific interleavingspecific interleaving

Example: Example: TrilinearTrilinear InterpolationInterpolation

(x,y,z)

(x,y,z)

3 Feb 20063 Feb 2006 T. VanCourt & M. C. HerbordtT. VanCourt & M. C. Herbordt 88 of 10of 10

Desired size of computing array:Desired size of computing array:
As big as possibleAs big as possible –– whatever that meanswhatever that means

Depends on:Depends on:
FPGA capacityFPGA capacity

Application detailsApplication details

Computing arrayComputing array

Sizing applications to FPGAsSizing applications to FPGAs
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C Coding Style C Coding Style vsvs. Performance. Performance

Hardware algorithms are differentHardware algorithms are different
Require nonRequire non--SW algorithmsSW algorithms
Require nonRequire non--von Neumann memoryvon Neumann memory
Require nonRequire non--obvious data pathsobvious data paths
Require careful precision analysisRequire careful precision analysis

Explicit degree of parallelism is a bugExplicit degree of parallelism is a bug
No commercial tools address all factorsNo commercial tools address all factors

App. specialists arenApp. specialists aren’’t logic designerst logic designers
Need both Need both –– efficient HW & app. detailsefficient HW & app. details

3 Feb 20063 Feb 2006 T. VanCourt & M. C. HerbordtT. VanCourt & M. C. Herbordt 1010 of 10of 10

The RequirementsThe Requirements

Escape from the C code modelEscape from the C code model
GPUs? Device organizes control & memoryGPUs? Device organizes control & memory

…… application is leaf calculations onlyapplication is leaf calculations only

Support two developer groups:Support two developer groups:
Logic designers create efficient structuresLogic designers create efficient structures
App specialists tailor it to specific usageApp specialists tailor it to specific usage

Full use of FPGAFull use of FPGA’’s computing resourcess computing resources
AppApp--specific, FPGAspecific, FPGA--specific array sizesspecific array sizes
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Rose F. Liu and Krste Asanović
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The Stata Center, 32 Vassar Street, Cambridge, MA 02139�

rliu, krste � @csail.mit.edu

1. Introduction

Detailed microarchitectural simulators are not well
suited for exploring large design spaces due to their ex-
cessive simulation times. We introduce AXCIS (Archi-
tectural eXploration using Canonical Instruction Seg-
ments), a framework for fast and accurate design space
exploration. AXCIS achieves fast simulation times by
compressing a program’s dynamic trace into a form that
can model many different machines. AXCIS performs
compression and performance modeling using a new
primitive called the instruction segment to represent the
context of each dynamic instruction. As shown in Fig-
ure 1, AXCIS is divided into two stages: dynamic trace
compression and performance modeling.

IPC 
1

IPC 
2

IPC 
3

stage 1

stage 2

CIST+
Inputs

Program Dynamic 
Trace
Compressor

AXCIS
Performance

Model
Configs

Figure 1. AXCIS Simulation Framework.

During the first stage, the Dynamic Trace Compres-
sor (DTC) identifies all instruction segments within the
dynamic trace and compresses these into a Canonical In-
struction Segment Table (CIST). In order to capture lo-
cality events (ex. cache and branch behaviors) within in-
struction segments, partially-specified branch predictors
and instruction/data caches are simulated. During this
stage, only the organizations (ex. sizes, associativities)

of these structures are specified and not their latencies,
allowing the generated CISTs to be used for simulating
multiple machines. To perform compression, the DTC
compares each dynamic segment against existing CIST
entries, and either increments the count of an existing
entry if a match is found or adds the new segment to
the CIST if not. CISTs can be adjusted to trade simu-
lation speed for accuracy by varying the DTC compres-
sion scheme.

In the second stage, the AXCIS Performance Model
(APM) uses dynamic programming to quickly estimate
performance in terms of instructions per cycle (IPC) for
each design, given a CIST and a set of microarchitec-
ture configurations. First, the APM calculates the total
effective stall cycles of the CIST by summing the stall
cycles of each segment weighted by their corresponding
frequency counts. Then the APM computes IPC using
the total effective stall cycles and the total instructions
in the dynamic trace.

This paper applies AXCIS to in-order superscalar
processors, although the main ideas behind AXCIS ap-
ply to out-of-order processors as well. More detailed
descriptions of AXCIS can be found in [1] and [2].

2. Instruction Segments and CISTs

Each dynamic instruction has a corresponding in-
struction segment, containing its dependencies, locality
events, and all preceding instructions directly affecting
the stalls it experiences. A segment begins with the pro-
ducer associated with the instruction’s longest depen-
dency and ends with the instruction itself, termed the
defining instruction of the segment. Instructions within
segments are abstracted into instruction types (ex. in-
teger ALU, LD hit). The left side of Figure 2 shows
a sequence of dynamic instructions and their segments.
Dependencies are represented by arrows, and the seg-
ment for the st miss is highlighted.

A CIST is an ordered array of instruction segments
and their frequency counts that also records the total in-
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frequency: 1

frequency: 1

frequency: 1

1

2

3

4

Index total dynamic instructions: 4
Dynamic Instruction Sequence

CIST

int_ALU

int_ALU

ld_miss

st_miss

ld_miss

ld_miss

int_ALU

int_ALU

int_ALU

int_ALU

int_ALU

st_miss
frequency: 1

ld_miss

Figure 2. Instruction Segments and CIST.
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Figure 3. Distribution of absolute IPC error for
each benchmark obtained under its optimal
compression scheme.

structions analyzed during trace compression. The right
side of Figure 2 shows the CIST corresponding to a se-
quence of dynamic instructions and their instruction seg-
ments.

3. Compression Schemes

Because program behavior repeats over time, many
dynamic instructions have equivalent segments that can
be compressed. Two instruction segments can be com-
pressed, without sacrificing accuracy, if their defining
instructions have the same set of stall cycles (perfor-
mance) under all configurations. Since it is not possible
to determine the set of all possible stalls for an instruc-
tion under all configurations, we propose three differ-
ent compression schemes that approximate this idea us-
ing heuristics, while making different tradeoffs between
compression and accuracy.

In the Limit-Configurations Based Compression
Scheme, the DTC simulates two configurations (min and
max) to calculate, for each instruction, a pair of stall cy-
cles and structural occupancies (snapshots of microar-
chitectural state) to approximate its set of all possible
stalls. Two segments are compressed if their defin-
ing instructions have the same (1) min/max stall cycles,
(2) min/max structural occupancies, and (3) instruction
types. In the Relaxed Limit-Configurations Based Com-
pression Scheme, only the defining instruction types and
the min/max stalls are compared for equality.

Instruction segments that look the same are more
likely to have the same number of stall under all con-
figurations. Therefore, the Instruction Segment Char-
acteristics Based Compression Scheme compares seg-
ment characteristics such as segment lengths, instruction
types, locality events, and dependence distances.

4. Results

We evaluated AXCIS against our baseline cycle-
accurate simulator, SimInOrder, for speed and accu-
racy (absolute IPC error between results obtained from
AXCIS and SimInOrder). We simulated a wide range
of microarchitectures, differing in memory latency, is-
sue width, number of processor functional units and
primary-miss tags in the nonblocking data cache using
24 SPEC CPU2000 benchmarks [3].

Using the optimal compression scheme for each
benchmark (selected from the three explored), AXCIS is
highly accurate and configuration independent, achiev-
ing an average IPC error of 2.6% with an average er-
ror range of 4.4% over all benchmarks and configura-
tions. Except for galgel with a maximum error of
25.3%, the maximum error of all benchmarks is less
than 10%. Figure 3 shows the distribution of IPC error
specified in quartiles for each benchmark. Using pre-
generated CISTs, AXCIS is over four orders of magni-
tude faster than conventional detailed simulation. While
cycle-accurate simulators can take many hours to simu-
late billions of dynamic instructions, AXCIS can com-
plete the same simulation on the corresponding CIST
within seconds.

References

[1] R. F. Liu. AXCIS: Rapid architectural exploration us-
ing canonical instruction segments. Master’s thesis, Mas-
sachusetts Institute of Technology, 2005.

[2] R. F. Liu and K. Asanovic. Accelerating architectural ex-
ploration using canonical instruction segments. To appear
in International Symposium on Performance Analysis of
Systems and Software, March 2006.

[3] SPEC CPU2000 benchmark suite. Standard Performance
Evaluation Corporation. http://www.spec.org/cpu2000/.
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AXCIS: Accelerating Architectural 
Exploration using
Canonical Instruction Segments

Rose Liu & Krste Asanović
Computer Architecture Group
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Simulation for Large Design Space 
Exploration

Large design space studies explore thousands of 
processor designs

Identify those that minimize costs and maximize performance

Speed vs. Accuracy tradeoff
Maximize simulation speedup while maintaining sufficient 
accuracy to identify interesting design points for later detailed 
simulation

Pareto-optimal
designs on curve

Cost Metric B

Cost 
Metric 

A
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AXCIS Framework

Dynamic 
Trace
Compressor

Program
&

Inputs

IPC1
IPC2
IPC3

AXCIS
Performance
Model

CIST
Canonical
Instruction
Segment

Table

Configs
In-order superscalars:
• Issue width
• # of functional units
• # of cache primary-

miss tags
• Latencies
• Branch penalty

• Machine independent
except for branch   
predictor and cache 
organizations

• Stores all information  
needed for  
performance analysis

Stage 1 (performed once)

Stage 2
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Instruction Segments
An instruction segment captures all performance-
critical information associated with a dynamic 
instruction

Int_ALU

Load_Miss

Int_ALU

Store_Miss

defining instruction

addq 

ldq (cache miss)

subq

stq  (cache miss)
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Dynamic Trace Compression
Repetition in program behavior such as loops, and 
code reuse cause instruction segments of different 
dynamic instructions to be canonically equivalent
Ideal Compression Scheme: (no loss in accuracy)

Compress two segments if they always experience the same stall 
cycles regardless of the machine configuration
Impractical to implement within the Dynamic Trace Compressor

Three compression schemes that approximate this 
ideal scheme

Each selects a different tradeoff between accuracy and speedup 
Our simplest scheme compresses segments that look the same 
(i.e. have the same length, instruction types, dependence 
distances, branch and cache behaviors)
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Instruction Segments & CIST Example
Freq Segment

Total ins: 3

Load_Miss

Int_ALU

Int_ALU

Int_ALU

Load_Miss

Store_Miss

Int_ALU1

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU
1

Canonical Instruction Segment Table (CIST) records:
One instance of each set of canonically equivalent    
segments and its frequency count
The total dynamic instructions analyzed during 
trace compression
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Instruction Segments & CIST Example
Freq Segment

Total ins: 6

Load_Miss

Int_ALU

Int_ALU

Int_ALU

Load_Miss

Store_Miss

1

Load_Miss

Store_Miss

Int_ALU

Int_ALU1

Int_ALU

Load_Miss

Load_Miss

Int_ALU

1 2

21
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AXCIS Performance Model

∑
=

=
Size CIST

1

))ningIns(talls(DefiEffectiveS * )Freq(                 

  

i
ii

Stalls Effective Total

Cycles Total
Ins Total 

  Ins Total
Ins Total  =

+
=

Stalls Effective Total
IPC

Methodology is independent of the compression 
scheme used to generate the CIST
Calculates IPC using a single linear dynamic 
programming pass over CIST entries
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Dynamic Programming Example

Int_ALU

Freq Segment

Int_ALU

Load_Miss

Load_Miss

Int_ALU

1

2

2

1

Load_Miss

Store_Miss

Int_ALU

Total ins: 6

Stalls

Look up in previous segment
Calculate

Total work is  
proportional to the  
# of CIST entries

Calculate the stalls   
of the defining 
instruction in each   
segment

Look up stalls of   
other instructions in  
previous entries
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Experimental Setup
Evaluated AXCIS against a baseline cycle accurate simulator 
on 24 SPEC2K benchmarks using their respective optimal 
compression schemes

Evaluated AXCIS for:
Accuracy:

Speed:    # of CIST entries, time in seconds

For each benchmark, simulated many configurations that span 
a large design space:

Issue width: {1, 4, 8}, # of functional units: {1, 2, 4, 8},
Memory latency: {10, 200 cycles},
# of primary miss tags in non-blocking data cache: {1, 8}

Absolute IPC Error =
| AXCIS – Detailed Sim |

Detailed Sim
* 100
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Results: Accuracy

Average Absolute
IPC Error = 2.6 %

Average
Error Range = 4.4%
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Results: Speed

AXCIS is over 
4 orders of 
magnitude faster
than detailed   
simulation

While detailed   
simulation 
takes hours to 
simulate
billions of 
instructions,  
AXCIS takes 
seconds
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AXCIS is a fast, accurate, and flexible tool for 
design space exploration

AXCIS
Over four orders of magnitude faster than detailed simulation
Highly accurate across a broad range of designs
Predicts performance as well as buffer occupancies

Future Work
More general compression schemes
Support out-of-order processors

Conclusion
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Abstract

Until recently, the vast majority of research efforts
in optimizing computer systems have targeted a single
logical “layer” in isolation: application code, operat-
ing systems, virtual machines, microarchitecture, or cir-
cuits. However, we are reaching the limits of the solu-
tions than we can provide by targeting a single design
layer in isolation. The Tortola project explores a sym-
biotic relationship between a virtual machine and the
host microarchitecture to solve crosscutting concerns in
the areas of power, reliability, security, and performance
using both hardware and software extensions. We have
demonstrated the effectiveness of our approach on the
well-known dI/dt problem, where we successfully stabi-
lized the voltage fluctuations of the CPU’s power supply
by transforming the source code of the executing appli-
cation using feedback from hardware.

This paper and accompanying talk will motivate our
notion of symbiotic program optimization, discuss vari-
ous applications, and detail our experiences in solving
the dI/dt problem using a holistic approach.

1 Overview

Modern computer system designers must consider
many more factors than just raw performance. Thermal
output, power consumption, reliability, testing, and se-
curity are quickly becoming first-order concerns. Yet,
the vast majority of research efforts in optimizing com-
puter systems have targeted a single logical “layer” in
isolation: application code, operating systems, virtual
machines, microarchitecture, or circuits. There are sev-
eral reasons to believe we are reaching the limits of the
solutions we can provide by targeting a single layer in
isolation.

An important class of computing challenges exist that
are better suited for more holistic approaches. Many
challenges can be solved much more easily using “re-

active” techniques, whereby the hardware can detect a
problem, and a virtual machine can use its global knowl-
edge about the executing workload to correct the prob-
lem. In fact, this solution has the potential to outperform
each of its constituent hardware-only or software-only
solutions.

2 A Virtual Interface

In order to explore such solutions, the Tortola project
introduces a virtual interface between the application
software and the underlying machine architecture. The
unique aspect of this interface is that it facilitates com-
munication between the microprocessor and the virtual
layer, which allow us to investigate combined hardware-
software techniques for solving many of the future com-
puting challenges.

In essence, this solution virtualizes the ISA, allow-
ing solutions to be developed which span the hardware-
software divide, as shown in Figure 1. As the figure indi-
cates, the virtual machine can use hardware feedback to
detect various machine-specific events, such as voltage
fluctuations in the power supply, temperature and power
problems, as well as performance-related events, such
as cache misses or resource contention. The VM can
then factor in its knowledge about the executing work-
load, such as the specific instructions selected, their in-
struction schedule, and the control-flow graph. Finally,
the VM can develop a holistic solution to the problem
at hand which accounts for both hardware and software
inputs; we call this technique symbiotic optimization.

3 Our Approach

As Figure 1 indicated, our solution requires changes
to the hardware in order to provide feedback to our vir-
tual layer. Rather than building custom hardware, we be-
gan our investigations using simulation. We used Sim-
plescalar [1] for x86 to simulate our modified hardware.
We also incorporated the Wattch [2] power extensions
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HW

SW Applications

Binary ModifierBinary Modifier

Figure 1. The Tortola architecture including a
virtual layer to support HW-SW communication
channels.

to Simplescalar in order to enable power results in ad-
dition to performance results. For our virtual machine
layer, we used the x86/Linux version of the Pin dynamic
instrumentation system [5].

To explore symbiotic optimization, we execute our
applications on top of Pin, which is running on top
of Simplescalar. Not surprisingly, a great deal of im-
plementation effort was required in order to get Sim-
plescalar to the point where it could successfully emu-
late all of the system calls that Pin requires. The end
result is a holistic simulation environment that allows us
to explore collaborative solutions to existing and future
computing challenges.

4 A Motivating Example

Many system design problems exist that can bene-
fit greatly from the holistic design approach we present,
including issues related to power, performance, temper-
ature, reliability, and security. As a motivating example,
we present one such problem and symbiotic solution.

A Symbiotic Di/dt Solution We have demonstrated
the effectiveness of our approach on the well-known
dI/dt problem. The dI/dt problem is a side-effect of mod-
ern techniques in low-power processor design. In order
to reduce overall power consumption, idle portions of
a processor are turned off. If one feature is repeatedly
turned on and off, reliability problems can arise.

Hardware-based sensor/actuator mechanisms have
been proposed to detect and react to these problem-
atic current variations [4], but they do so at a perfor-
mance cost to the running application. Our approach
keeps these hardware solutions in tact, but simply com-
municates to the virtual machine in real time when the
problem occurs. The virtual machine then modifies and
caches the currently executing instructions in an attempt
to avoid the problem in the future. The code transfor-
mations can be fairly straightforward. In fact, we were
able to apply standard compiler optimizations (loop un-
rolling and software pipelining) to remedy future recur-
rences of the dI/dt problem. Figure 2 shows the result

0.97V

0.98V

0.99V

1.00V

1.01V

1.02V
Before Software Pipelining After Software Pipelining

Figure 2. The effect of software pipelining on a
voltage fluctuation stressmark.

of applying software pipelining to a hand-coded power
virus described by Joseph et al. [4].

Our symbiotic solution was therefore able to provide
the safety of the hardware-only technique with the per-
formance improvements possible from a software-only
technique. More detailed information about this partic-
ular dI/dt solution is available in our ISLPED paper [3].
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Modern Computing Challenges
• Performance
• Power

– Energy consumption, max instantaneous power, di/dt
• Temperature

– Total heat output, “hot spots”
• Reliability

– Neutron strikes, alpha particles, MTBF, design flaws
• Approaches: Circuit, microarchitecture, compiler
• Constraint: Fixed HW-SW interface (e.g., x86)

3 of 16

Typical Approaches
• Optimize using SW or HW techniques in isolation
• Performance

– SW: Compile-time optimizations
– HW: Architectural improvements, VLSI 

technology
• Reliability: Code/data duplication (HW or SW)
• Power & Temperature

– HW control mechanisms
– Profile + recompile cycle HW

SW

4 of 16

Modern Design Constraints
Compilers – “Compile once, run anywhere”

– Cannot ship “MS Office for 1Q05 batch of Pentium-4 
3GHz, > 1GB RAM, BrandX power supply, located in 
high altitudes…”

Microarchitecture – Limited window of application 
knowledge (past must predict the future)

VLSI – Guaranteed correctness, reliability

We currently must optimize for the common case 
(but must design for the worst case)
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The Power of Virtualization
• A HW-SW interface layer

HW

SW Applications

Binary Modifier

Initiallyx86
x86

Eventually
SWI

HWI
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Dynamic Binary Modification
• Creates a modified code image at run time

• Always triggered by software events … until now

EXE

Transform

Code
Cache

Execute

Profile

Examples:
• Dynamo (HP)
• DAISY/BOA (IBM)
• CMS (Transmeta) 
• Mojo (Microsoft)
• Strata (UVa)
• Pin (Intel)
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Tortola: Symbiotic Optimization
• Enable HW/SW Communication

HW

SW Applications

Binary Modifier

8 of 16

Simulation Methodology
• SimpleScalar 4.0 for x86
• Wattch 1.02 power extensions
• Pin dynamic instrumentation system (x86/Linux version)

HW

SW Application

Binary Modifier

Benchmarks

Pin

Wattch &
Simplescalar/x86
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Tortola Applications
• Combine global program information with run-

time feedback
– System-specific power usage
– Application-specific heat anomalies
– Workload/input specific performance optimization

• Reduce hardware complexity
– No more backwards compatibility warts
– Fix bugs after shipment
– Reduce time to market for new architectures

• One such application: The di/dt problem

10 of 16

The Di/dt Problem
• Low-power techniques have a negative side 

effect: current variation
• Voltage stability is important for reliability, 

performance

• Dips (undershoots) in supply voltage – can 
cause incorrect values to be calculated or stored

• Spikes (overshoots) in supply voltage – can 
cause reliability problems
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Detecting Imminent Emergencies
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Control 
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• Phantom firing - increases current (at the expense of power)
• Resource throttling - reduces current (at the expense of 

performance)
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A Di/dt Stressmark
BEGIN_LOOP:
…
ldt $f1, ($4)
divt $f1, $f2, $f3
divt $f3, $f2, $f3
stt $f3, 8($4)
ldq $7, 8($4)
cmovne $31, $7, $3
stq $3, $(4)
stq $3, $(4)
stq $3, $(4)
…
stq $3, $(4)
…
JUMP BEGIN_LOOP

Se
qu

en
tia

l
Se

qu
en

tia
l

Lo
w

 C
ur

re
nt

Lo
w

 C
ur

re
nt

Pa
ra

lle
l

Pa
ra

lle
l

H
ig

h 
C

ur
re

nt
H

ig
h 

C
ur

re
nt

But…Actuator engages every 
loop iteration degrading 
performance

Why not correct the problem in 
the code?
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Proposed Solution
• Leverage our additional software layer to supplement 

existing solutions
• Microarchitecture provides feedback to our software-based 

virtual layer

Microprocessor
Sensor+Actuator Ext

AlteredAltered
ExecutableExecutable

SW 

HW

Binary
Modifier

ExecutableExecutable

VL

Loop Unrolling & SW Pipelining

A
A
B
B

Iteration=1

Iteration=2

Iteration=3

Current

A
A
B
B

A
A
B
B

A
A
B
B

Software pipelining
smoothes profile

Current

Problematic
loop:

A
A
A
A
B
B
B
B

Current

Loop unrolling disrupts 
resonance pulse

Unrolled
loop:
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Unrolling the Di/dt Stressmark

0.97V
0.98V
0.99V

1.00V
1.01V
1.02V Before Loop Unrolling After Loop Unrolling

H
L

H1
H2
L1
L2
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Summary

• Symbiotic program optimization is a powerful 
approach

• The di/dt problem – well suited for a symbiotic 
solution

• The Tortola design can also target power reduction, 
temperature reduction, reliability, etc.

http://www.tortolaproject.com/
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Abstract 

 
Distributed storage systems employ replicas or 

erasure code to ensure high reliability and 
availability of data. Such replicas create great 
amount of network traffic that negatively impacts 
storage performance, particularly for distributed 
storage systems that are geographically dispersed 
over a wide area network (WAN). This paper presents 
a performance study of our new data replication 
methodology that minimizes network traffic for data 
replications. The idea is to replicate the parity of a 
data block upon each write operation instead of the 
data block itself. The data block will be recomputed 
back at the replica storage site upon receiving the 
parity. We name the new methodology PRINS (Parity 
Replication in IP-Network Storages). PRINS trades off 
high-speed computation for communication that is 
costly and more likely to be the performance 
bottleneck for distributed storages.  By leveraging the 
parity computation that exists in common storage 
systems (RAID), our PRINS does not introduce 
additional overhead but dramatically reduces 
network traffic. We have implemented PRINS using 
iSCSI protocol over a TCP/IP network 
interconnecting a cluster of PCs as storage nodes. We 
carried out performance measurements on Oracle 
database, Postgres database, MySQL database, and 
Ext2 file system using TPC-C, TPC-W, and Micro 
benchmarks. Performance measurements show up to 2 
orders of magnitudes bandwidth savings of PRINS 
compared to traditional replicas. A queueing network 
model is developed to further study network 
performance for large networks. It is shown that 
PRINS reduces response time of the distributed 
storage systems dramatically. 

1. Introduction 
 

As organizations and businesses depend more and 
more on digital information and networking, high 
reliability and high performance of data services over 
the Internet has become increasingly important. To 
guard against data loss and to provide high 
performance data services, data replications are 
generally implemented in distributed data storage 
systems. Examples of such systems include P2P data 
sharing [1,2,3], data grid [4,5] and remote data mirroring 
[6] that all employ replicas to ensure high data reliability 
with data redundancy. While replication increases data 
reliability, it creates additional network traffic. 
Depending on application characteristics in a 
distributed environment, such additional network traffic 
can be excessive and become the main bottleneck for 
data intensive applications and services. In addition, 
the cost of bandwidth over a wide area network is very 
high [6] making replications of large amount of data 
over a WAN prohibitively expensive.  

In order to minimize the overhead and the cost of 
data replication, researchers in the P2P community have 
proposed techniques to reduce unnecessary network 
traffic for data replications. Susarla and Carter 
presented a new consistency model for P2P sharing of 
mutable data [1]. By letting applications compose 
consistency semantics appropriate for their sharing 
needs, such relaxed consistency reaps order-of-
magnitude performance gains over traditional file 
systems. To avoid duplicated messages in the 
replication process, Datta, Hauswirth and Aberer 
proposed a hybrid push/pull rumor-spreading algorithm 
[2] to minimize network traffic. While these techniques 
can reduce unnecessary network traffic, replicated data 
blocks have to be multicast to replica nodes. The basic 
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data unit for replication ranges from 4KB to megabytes 
[4], creating a great amount of network traffic on replica 
alone. Such large network traffic will result in either 
poor performance of data services or excessive 
expenses for higher WAN bandwidth. Unfortunately, 
open literature lacks quantitative study of the impacts 
of such data replications on network performance of a 
distributed storage systems.  

This paper presents a quantitative performance 
evaluation of a new data replication technique that 
minimizes network traffic in a P2P shared storage 
environment when mutable data is replicated. The new 
replication technique works at block level of distributed 
data storages and reduces dramatically amount of data 
that has to be transferred over the network. The main 
idea of the new replication technique is to replicate the 
parity of a changing block upon each block write 
instead of the data block itself, hence referred to as 
PRINS (Parity Replication in IP-Network Storages). 
Such parity is computed in RAID storage systems such 
as RAID 3, RAID 4 or RAID5 that are the most popular 
storages in use today. As a result, no additional 
computation is necessary at the primary storage site to 
obtain the parity. After the parity is replicated to the 
replica storage sites, the data can be computed back 
easily using the newly received parity, the old data and 
the old parity that exist at the replica sites. Extensive 
experiments [7,8] have shown that only 5% to 20% of a 
data block actually changes on a block write. Parity 
resulting from a block write reflects the exact data 
changes at bit level. Therefore, the information content 
and hence the size of parity is substantially smaller than 
the size of corresponding data block. PRINS is able to 
exploit the small bit stream changes to minimize network 
traffic and trades off inexpensive computations outside 
of critical data path for high cost communication.  

We have implemented a PRINS software module at 
block device level on a cluster of PCs interconnected 
by a TCP/IP network, referred to as PRINS-engine. The 
network storage protocol that we used is the iSCSI 
(Internet SCSI) protocol. Our PRINS-engine runs as a 
software module inside the iSCSI target serving storage 
requests from computing nodes that have an iSCSI 
initiator installed. Upon each storage write request, the 
PRINS-engine performs parity computation and 
replicates the parity to a set of replica storages in the IP 
network. The replica storage nodes also run the PRINS-
engine that receives parity, computes data back, and 
stores the data block in-place. The communication 
between PRINS-engines also uses iSCSI protocol. We 
have installed Oracle database, Postgres database, 
MySQL database, and Ext2 file system on our PRINS-
engine to test its performance. TPC-C, TPC-W, and 
micro benchmarks are used to drive our test bed. 

Measurement results show up to 2 orders of 
magnitudes reduction in network traffic using our 
PRINS-engine compared to traditional replication 
techniques. We have also carried out queueing 
analysis for large networks to show great performance 
benefits of our PRINS-engine. 
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Motivations

Performance
CPU performance: over 6 orders of magnitude change
Memory Performance: several orders of magnitude
Network performance: LAN speed: over 4 orders of magnitude

Cost: Servers:25%; data storage 75% of IT Cost
Reliability and Availability

If CPU Burned: Replace it, re-compute.
Memory Lost: Replace with new card, reboot
Network Down Fix it, rebuild, comm possible w/ other means

What about data storage?

3 of 12

Motivations (cont.): Real World Demand

In 18 months (Jim Gray)
New Storage = sum of all old storage (ever)

Online data storage 
doubles every 9 months 

Cost of one hour data not available
up to millions $

IDC 
#1 Top Challenge…“Improving Data Availability and Recovery”
#1 Driver of Storage ...“Data Protection and Disaster Recovery”
#1 Priority of storage users… “Replication”

4 of 12

The State-of-the-Art Technologies

File system replication
LBFS, rsync, NSI, XOsoft

Block level replication
Synchronous vs Asynchronous 
Delta blocks and delta set

WAN bandwidth limitations
TCP optimization and data sequencing
Data compression before replication
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Redundant Array of Independent disks

RAID Controller

A1 A2 A3      A 4 PA
parity

X
If data A4 lost, it can be recovered by using parity PA, as show above

Parity:
PA = A1 A2    A3  A4

Α4 = PA A1 A2 A3

Our Approach
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Gemini Controller

A1 A2 A3 A4
old PA

old

New data A4 can be computed using the new parity PA, old parity, 
and old data already stored at the storage at mirror site

New Parity
Received
PA

new

A4
new= PA

new A4
old PA

old

PA
new= A4

new A1 A2 A3

PA
old= A4

old A1 A2 A3

Commutativity, Associativity, 
and Distributivity lead to:

A4
old PA

old= A1 A2 A3

PRINS: Parity Replication in 
IP-Network Storages
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PRINS Design & Implmentation
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Evaluation Methodology
Measurement on Real Implementation 
using iSCSI protocol
Workloads: 

TPC-C, TPC-W, on Oracle, Postgres, MySQL
Databases
File system micro benchmarks on MS and 
Linux
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Network Traffic Comparison: TPC-C on Oracle and 
Postgres Databases
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Network Traffic Comparison: TPC-W MySQL and File 
System Micro-benchmarks
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Overhead Evaluation

12 of 12

Conclusions

A New Data Replication Methodology: 
PRINS

Prototype Implementation
Measurements using real world workloads
2 orders of magnitudes BW savings
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Abstract

Nowadays, interfaces with a network processor and
large local memory are widely used. The complexity
of network interfaces has increased tremendously
over the past few years. This is evident from
the amount of silicon used in the core of network
interface hardware. A typical dual-speed Ethernet
controller uses around 10K gates whereas a more
complex high-speed network processor such as the
Intel IXP1200 [1] uses over 5 million transistors.
This trend is being driven by the demand for greater
network performance, and so communication-related
processing is increasingly being offloaded to the
network interface. As transistor counts increase
dramatically, single bit upsets from transient faults,
which arise from energetic particles, such as neutrons
from cosmic rays and alpha particles from packaging
material, have become a major reliability concern
[2, 3], especially in harsh environments [4]. A
sufficient amount of charge accumulated in transistor
source and diffusion nodes may invert the state of
a logic device – such as an SRAM cell, a latch,
or a gate – thereby introducing a logical fault into
the circuits operation. Because this type of fault
does not reflect a permanent failure of the device,
it is termed soft. Typically, a reset of the device
or a rewriting of the memory cell results in normal
device behavior thereafter. Soft-error-induced network
interface failures can be quite detrimental to the
reliability of a distributed system. The failure data
analysis reported in [5] indicates that network-related
problems contributed to approximately 40% of the
system failures observed in distributed environments.
The architects of programmable network interface

should understand the impact of soft errors and select
techniques to reduce this impact. Soft errors can cause
the network interface to completely stop responding,
function improperly, or even cause the host computer
to crash/hang. Quickly detecting and recovering from
such network interface failures is therefore crucial
for a system requiring high reliability. We need to
provide fault tolerance for not only the hardware in
the network interface, but also the local memory of the
network interface where the network control program
(NCP) resides.

In this work, we propose an efficient software-
based fault tolerance technique for network failures.
Software-based fault tolerance approaches are
highly attractive solutions, since they allow the
implementation of dependable systems without
incurring the high costs resulting from designing
custom hardware or using massive hardware
redundancy. On the other hand, software fault
tolerance approaches impose some overhead in terms
of reduced performance and increased code size.
Since performance is critical for high-speed network
interfaces, fault tolerance techniques applied to them
must have a minimal performance impact.

Failure detection is based on a software-
implemented watchdog timer to detect network
processor hangs, and a software-implemented
concurrent self-testing technique to detect non-
interface-hang failures, such as data corruption
and bandwidth reduction. The proposed self-testing
scheme achieves failure detection by periodically
directing the control flow to go through program
paths in specific portions of the NCP in order to
detect errors that affect instructions or data in the
local memory as well as components of the network
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processor and other parts of the network interface
hardware. The key to our technique is that the NCP
is partitioned into various logical modules and only
active logical modules are tested, where a logical
module is defined as the collection of all basic blocks
that participate in providing a service, and an active
logical module is the one providing a service to a
running application. When compared with testing
the whole NCP, testing only active logical modules
can limit significantly the impact of these tests on
application performance while achieving good failure
detection coverage. When a failure is detected by
the watchdog timer or self-testing the host system is
interrupted and informed about the failure. Then, a
fault tolerance daemon is woken up to start a recovery
process.

In this work, we shows how the proposed
failure detection techniques can be made completely
transparent to the user. We demonstrate this technique
in the context of Myrinet, but the approach is
generic in nature, and is applicable to many modern
networking technologies that have a microprocessor
core and local memory.
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Introduction
Complex network interfaces

• Typical Ethernet controller: 10 thousand gates
• IXP1200: 5 million gates
Transient faults: a major reliability concern

• Neutrons from cosmic rays
• Alpha particles from packaging material
Software-based fault tolerance approaches

• Pros: Less expensive than
• Custom hardware
• Massive hardware redundancy

• Cons: Overhead
• Performance degradation
• Increased code size

3 of 12

Software-Based Failure Detection

Network interface failures
• Hardware failures
• Software failures 

• The instruction and data of the Network Control Program 
(NCP) in the local memory.

Requirements for failure detection of network 
interfaces
• Limited performance impact 

• Performance is critical for high-speed network interface
• Good failure coverage

4 of 12

Myrinet: An Example High-speed 
Network Interface

A cost-effective local area 
network technology

High bandwidth: ~2Gb/s
Low latency: ~6.5μs

Components in an 
example Myrinet LAN:
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Simplified Block Diagram of The 
Myrinet Network Interface

Instruction-interpreting 
RISC processor
DMA interface
Link interface
Fast local memory 
(SRAM)

6 of 12

Network Interface Failures
Transient faults in the form of random bit flips in the network interface
Failures observed:

Unusually long latencyDMA failures

Corrupted messagesSend/Receive failures

Corrupted control informationNetwork interface hangs

(a) (b)
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Failure Detection Strategy 
Interface hangs

Software watchdog timer
Other failures

A useful observation: applications generally use only 
a small portion of the NCP

Directed Delivery: used for tightly-coupled systems, allows 
direct remote memory access
Normal Delivery: used for general systems, allows reliable 
ordered message delivery 
Datagram Delivery: delivery is not guaranteed 

Adaptive Concurrent Self-Testing (ACST)
Test only part of the NCP
Avoids testing & signaling benign faults
Can detect hardware & software failures

8 of 12

Logical modules

Identify the “active” parts
Logical module: 
The collection of all basic blocks 
that might participate in providing 
a service

To test a logical module: 
Trigger several requests/events 
to direct the control flow to go 
through all its basic blocks
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Experimental Results: Failure Coverage

Exhaustive fault injection into a single routine: 
send_chunk
Exhaustive fault injection into special registers
Random fault injection into the entire code segment

93.9%95.6%Entire code segment

32.3%99.2%Registers

60.3%99.3%Routine: send_chunk

No impactCoverage
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Performance Impact

The original Myrinet software: GM
The modified Failure Detection GM: FDGM
The MCP-level self-testing interval is set to 5 seconds

(a) (b)

11 of 12

Performance Impact For Different 
Self-Testing Intervals

Message length is 2KB
For the half-second interval

bandwidth is reduced by 3.4%
latency is increased by 1.6%

(a) (b)

12 of 12

Conclusion

The proposed ACST tests only active logical 
modules
Failure coverage: over 95% 
No appreciable performance degradation
Transparent to applications
The basic idea is generic – applicable to other 
fast network interfaces
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In recent decades, microprocessor performance has
been increasing exponentially, due in large part to
smaller and faster transistors enabled by improved fab-
rication technology. While such transistors yield per-
formance enhancements, their lower threshold voltages
and tighter noise margins make them less reliable [1],
rendering processors that use them more susceptible to
transient faults. Transient faults are intermittent faults
caused by external events, such as energetic particles
striking the chip, that do not cause permanent damage
but may result in incorrect program execution by alter-
ing signal transfers or stored values.

To detect or recover from these faults, designers typi-
cally have introduced redundant hardware. For example,
storage structures such as caches and memory often in-
clude error correcting codes (ECC) or parity bits while
techniques like lockstepping or Redundant Multithread-
ing [4] have been proposed for full processor protection.
Although these techniques are able to increase reliability,
they all require changes to the hardware design.

Software-only approaches to reliability have been
proposed and evaluated as alternatives to hardware mod-
ification [3, 5]. These techniques have shown that they
can significantly improve reliability with reasonable per-
formance overhead and no hardware modifications.

Since software-only techniques do not require any
hardware support, they are far cheaper and easier to de-
ploy. In fact, these techniques can be used for systems
that have already been manufactured and now require
higher reliability than the hardware alone can offer. This
need can occur because of poor estimates of the severity
of the transient error problem or changes in the environ-
ment, such as moving to higher altitudes.

Software-only approaches also benefit from reconfig-
urability after deployment. Since reliability is achieved
via software, the system can dynamically configure the
trade-off between reliability and performance. Software
techniques can be configured to only add reliability in
certain environments, for specific applications, or even
for critical regions of an application, thus maximizing
the reliability while minimizing the costs.

Although software-only error mitigation techniques
do exist, previous proposals have been static compila-
tion techniques that rely on alterations to the compila-
tion process. Our proposal is the first use of software
fault detection for transient errors that increases reliabil-

ity dynamically. Our proposal uses a modified version of
the PIN dynamic instrumentation framework [2] to enact
the reliability transformations.

Using dynamic instrumentation, rather than static
compilation, to increase reliability is advantageous for
a number of reasons. Since the only requirement is the
program binary, it is applicable to legacy programs that
no longer have readily available or easily re-compilable
source code. Even if the application sources are avail-
able, users typically do not recompile ibraries (such as
libc ) when recompiling an application.

While it is possible to create a binary translator that
enhances reliability in some cases, our dynamic reliabil-
ity technique can seamlessly handle variable-length in-
structions, mixed code and data, statically unknown in-
direct jump targets, dynamically generated code, and dy-
namically loaded libraries. Our technique can also attach
to already running applications to increase reliability.

We base our fault detection implementation on the
SWIFT software-only reliability technique [5], applying
computational redundancy and detection to the x86 in-
struction set. We have implemented the dynamic trans-
lations for reliability and have evaluated some perfor-
mance enhancements to our technique. Future work in-
cludes a thorough evaluation of the fault coverage as well
as explore the relationship between reliability and per-
formance when certain code regions are left unprotected.

Our technique dynamically duplicates all instruc-
tions, except for those that write to memory. Since a fault
causing data corruption will only manifest itself as a pro-
gram error if it changes the output, we delay validation
until instructions that may affect output, such as stores.
This ensures that we will not flag an error in a dynam-
ically dead register or one whose value will be masked
away. Also, our technique does not duplicate load in-
structions, but to maintain reliabile execution, copies the
loaded value into a redundant register as shown in previ-
ous work [4, 5].

Figure 1 is a simple example to illustrate the instruc-
tion duplication and verification of our technique. In-
struction 1 is inserted to add redundancy to the data
loaded from memory by copying the value to its dupli-
cate virtual register. Instruction2 is inserted to redun-
dantly compute the subtraction and instructions3-6 ver-
ify that both the address and value sources of the store
instruction are fault-free.
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mov (%edx), %eax

sub %eax, %ebx

mov %ebx, (%edx)

(a) Original Code

mov (%edx), %eax
1: mov %eax , %eax2

sub %eax , %ebx
2: sub %eax2 , %ebx2
3: cmp %edx , %edx2
4: jne faultDetect
5: cmp %ebx , %ebx2
6: jne faultDetect

mov %ebx , (%edx)

(b) Reliable Code

Figure 1. Duplication and Validation
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Figure 2. Performance for duplication only,
accounting for specialized registers.

Our reliability enhancements were implemented in
the PIN dynamic instrumentation framework [2]. Re-
dundant instructions, as well as validation and copy in-
structions, are inserted during dynamic instrumentation.
We use the existing PIN framework to register allocate
the additional code, as well as perform other basic opti-
mizations like data liveness analysis. Due to current lim-
itations with register allocation in the PIN tool, we do
not duplicate floating point or multimedia instructions,
but this is part of our future work to increase reliability.

To analyze the performance of our reliability ap-
proach, we first calculated the cost of duplicating in-
structions without data verification. We compared
the execution relative to a base PIN execution with
no reliability or instrumentation tools. We ran all
SPECINT2000 executions using reference inputs.

We found that the execution time of the reliabile code
is dominated by the duplication of theEFLAGSregis-
ter. Figure 2 shows the normalized execution times of
duplicating instruction with and without duplicating the
stack pointer andEFLAGSregisters. The average nor-
malized executing time without theEFLAGSregister is
2.31x slower than the base, but by protecting that one
register, the time increases to 9.00x. Duplicating the
EFLAGSregister is extremely expensive due to the re-
stricted manner in which it may be fully accessed. It
can only be completely moved to and from the memory
stack, whereas non-EFLAGSregisters can be moved into
other architectural register. In addition, moving the en-
tire EFLAGSregister is a very expensive operation.

The stack pointer is the second most expensive regis-
ter to duplicate, bringing the normalized execution time
from 2.02x to 2.31x. This degradation is mainly due to
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Figure 3. Performance of detection com-
pared to duplication.

instructions that implicitly read from or write to the stack
pointer, making the allocation of the two virtual stack
pointers is limited.

Instruction duplication adds the redundancy neces-
sary for independent computation, but comparison of
the independent versions is necessary for fault detection.
Figure 3 shows the normalized performance for full de-
tection, attributing the performance costs for duplication
and verification. These executions use only a single ver-
sion of the stack pointer andEFLAGSregister.

On average, the normalized execution time for in-
struction duplication alone is 2.02x while duplication
plus data verification is 3.77x. The per benchmark degra-
dations vary, ranging from 254.gap with a cost of 6.84x
to 181.mcf with a cost only 1.99x. Benchmarks like
181.mcf which contain many cache misses have extra in-
struction level parallelism to execute the redundant and
detection instructions without affecting the critical path.

Our technique shows that a dynamic software-only
approach to reliability is possible with acceptable per-
formance degradation. Our future work targets ways
to further increase performance of the reliable execu-
tion through smarter register allocation and scheduling.
We also plan to simulate fault injections to determine
the precise fault coverage, which will guide the dynamic
trade-off between reliability and performance.
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Transient faultsTransient faults

• Hardware faults
• Different that design or manufacturing faults
• Cannot test for fault before hardware use
• Hardware is not permanently damaged

• Caused by external energetic particle striking chip

• Randomly change one bit of state element or computation

0x32AA36852

0x8675309 

*        0x42
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Severity of transient faultsSeverity of transient faults

• IBM historically adds 20-30% additional logic for mainframe 
processors for fault tolerance [Slegel 1999]

• In 2000, Sun server systems deployed to America Online, eBay, and 
others crashed due to cosmic rays [Baumann 2002]

• In 2003, Fujitsu released SPARC64 with 80% of 200,000 latches 
covered by transient fault protection [Ando 2003]

• “it was found that a single soft fail … was causing an entire 
interleaved system farm (hundreds of computers) to crash.” [SER: History, 
Trends, and Challends 2004]

• Los Alamos National Lab ASC Q 2048-node supercomputer was 
crashing regularly from soft faults due to cosmic radiation.   [Michalak 2005]

• Processors are becoming more susceptible
• lower voltage thresholds
• increased transistor count
• faster clock speeds
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GoalsGoals

• Develop transparent (to user) way to increase reliability, 
specifically targeting soft errors, without any hardware 
requirements.

• This can be used to increase the reliability of currently 
deployed systems.
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Mitigation of transient faultsMitigation of transient faults

• Levels to add reliability
• Circuit, Logic, Microarchitectural, Architectural, Application

• Hardware techniques
• Lockstepping processors [Compaq Himalaya]

• Redundant multithreading (RMT) [Reinhardt & Mukherjee, 2000]

• Software techniques
• NMR, TMR
• Source-to-source [Rebaudengo et al. 2001]

• SWIFT [Reis et al. 2005], EDDI, CFCSS [Oh et al. 2002]
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Dynamic Software TranslationDynamic Software Translation

• Software techniques
• Can be applied today to existing applications on existing hardware

• Binary translation
• Can be applied without recompilation

• legacy binaries with no source code
• compilation of included libraries

• Dynamic binary translation
• Can attach to running application (and later detach)
• Can easily handle:

• Variable-length instructions
• Mixed code and data
• Statically unknown indirect jump targets
• Dynamically generated code
• Dynamically loaded libraries
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Store ProtectionStore Protection

If a tree falls in the forest, 
but nobody is around to hear it, 

does it make a sound?

If a fault affects some data, 
but does not change the output, 

does it make a error?

Only store operations affect output, 
so validate data before stores.
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Our implementationOur implementation

• Create single-threaded, software-only version of RMT
• Add redundant instruction 
• Add verification before memory accesses
• Add duplication of loaded values

• Use PIN’s dynamic instrumentation infrastructure 
• Implemented for x86

• Only 8 registers available
• register pressure is big issue

• Implicit register operands (PUSH, SAL)
• add more constraints to register allocation
• EFLAGS is frequently used
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PIN Reliability TransformPIN Reliability Transform

MOV     (DS:EAX) = 0x00000000
INC EDX  EFLAGS  = EDX 
INC EDX’ EFLAGS’ = EDX’
ADD EAX  EFLAGS  = EAX  0x04 
ADD EAX’ EFLAGS’ = EAX’ 0x04
CMP EFLAGS  = EDX  0x4a 
CMP EFLAGS’ = EDX’ 0x4a
JBE EIP 
= 0xABCDABCD EIP EFLAGS

FORMAT:   OP  DEST1  DEST2  =  SRC1  SRC2

Compare before 
memory instruction

CMP EFLAGS’’ = EAX  EAX’
JNZ EIP 
= 0xFAULTDETECT EIP EFLAGS’’

Duplicate non-
memory instruction
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PIN Reliability Transform PIN Reliability Transform -- LoadsLoads

MOV EAX  = (ESP,0xfffffd64)
MOV EAX’ = EAX
. . .

Compare before 
memory instruction CMP EFLAGS’’ = ESP  ESP’

JNZ EIP 
= 0xFAULTDETECT EIP EFLAGS’’

Duplicate loaded 
value
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Performance: duplication with register breakdownPerformance: duplication with register breakdown
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Performance: detection vs. duplication Performance: detection vs. duplication 
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Just the beginningJust the beginning……

• Register allocation
• Can greatly reduce overhead via more sophisticated algorithm
• Increase reliability by protecting MMX, FP registers

• Persistence Pin [Janapa Reddi WBIA-2005]

• Cache (on disk) the instrumented code
• Eliminate most of dynamic translation cost 

• Running on x86-64
• More available registers will decrease overhead due to spill/fill

• Fault injection to determine error coverage
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Just the beginningJust the beginning…… Error coverage Error coverage 

preliminary results
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Correct Fault Detected Faulty Output
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Just the beginningJust the beginning…… SoftwareSoftware--modulated Fault Tolerancemodulated Fault Tolerance

• Dynamic translation can make different decisions for 
different code regions, and can change over time
• Programs
• Functions
• Individual store dependence chains

• Programs have varying level of importance
• Programs have varying level of natural fault resistance
• Output corrupting faults have varying severity

original jpegenc output f a u l t y    j p e g e n c    o u t p u t faulty? jpegenc output
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Just the beginningJust the beginning…… SoftwareSoftware--modulated Fault Tolerancemodulated Fault Tolerance

• Software flexibility    
allows tradeoff between 
performance and 
reliability 

• Tune redundancy based 
on function reliability and 
performance response

• Example: changes in 
reliability and execution 
time for different function 
of 124.m88ksim
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Execution time
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Self-healing Nanoscale Architectures on 2-D Nano-fabrics

Teng Wang, Mahmoud Ben Naser, Yao Guo, Csaba Andras Moritz
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

1 Introduction

One of the most promising underlying nanodevice
technologies today for nanoscale integrated circuits is
semiconductor nanowires (NWs) and arrays of crossed
NWs. Researchers have already built FETs and diodes
out of NWs [3]. Complementary depletion-mode FETs
in the same material have been demonstrated with Ger-
manium and Silicon. There has also been a lot of
progress made on assembling arrays with such devices
with both unconventional lithographic techniques and
bottom-up self-assembly. The rapid progress on de-
vices is driving researchers to explore possible cir-
cuits/architectures out of them. Examples of proposed
architectures include [1, 4, 2, 6].

The fabric architecture we proposed is called NASIC
(Nanoscale Application-Specific IC) [6]. WISP-0 (Wire
Streaming Processor) is a simple but complete stream
processor that exercises many of different NASIC cir-
cuit styles and optimizations. These previous efforts fo-
cused on circuit level optimizations that set apart our
work from the other nanoscale proposals. In this pa-
per we focus on another key distinguishing aspect: our
strategy for fault tolerance. As discussed by several re-
searchers, fault tolerance is expected to be a key issue in
nanoscale designs.

Our solution for fault tolerance of NASICs is based
on built-in circuit-level redundancy which makes the cir-
cuits in our designs self-healing.

2 Overview of NASIC Designs and WISP-
0 Processor

NASIC designs use FETs on 2-D semiconductor
NWs to implement logic functions and various opti-
mizations to work around layout and manufacturing
constraints as well as defects. While still based on 2-
level AND-OR logic style, our designs are optimized
according to specific applications to achieve higher den-
sity and self-healing. NASIC circuits are based on a new

type of dynamic circuitry [5].

WISP-0 is a stream processor (based on self-healing
NASIC circuits) that implements a 5-stage pipeline ar-
chitecture including fetch , decode, register file, execute
and write back. WISP-0 consists of five nanotiles, as
shown in Figure 1. In WISP designs, in order to preserve
the density advantages of nanodevices, data is streamed
through the fabric with minimal control/feedback paths.
With the help of dynamic Nano-latches [5], intermedi-
ate values during processing are often stored on the wire
without requiring explicit latching. The compiler is re-
sponsible of generating code such that data hazards are
avoided.

PC

ROM

DEC

ALU

RF

Figure 1. The floorplan of WISP-0.

3 Fault Tolerance Strategy

Nanoscale computing systems face challenges not
encountered in the world of traditional microelectronic
devices. Researchers have pointed out that the defect
levels in nano-fabrics tend to be quite high: we have
to build enough fault-tolerance to sustain functionality
when a substantial fraction of circuits are faulty.

There are basically two main approaches to deal with
faults. First, if reconfigurable devices are available, we
could possibly devise techniques to work around faults.
One key challenge in such solutions is, however, access-
ing crosspoints in the fabric. That requires a special in-
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terface between the micro and the nanodevices and such
an interface is not only presenting a high area overhead
but it is also very difficult to do due to the required align-
ment between the nano and the micro wires. No propos-
als with exception of perhaps CMOL [4] (that has other
challenges) address this issue in a credible way.

Alternatively, as proposed by this work, we can make
the circuits and the architectures self-healing. This of
course requires some sort of added redundancy. The re-
dundancy is achieved by replicating NWs and transistors
in our designs. Most faults can be automatically masked
by the AND-OR logic either in the current stage or the
next one. For example, a faulty “0” can be automatically
masked by the following OR plane and faulty “1” can be
masked by the following AND plane. Interleaving repli-
cated NWs further improves the efficiency of tolerating
faults. There are cases that AND-OR logic can not han-
dle directly. To solve this problem, we propose to insert
weak pull-up/down NWs between AND and OR logic
planes. With pull-up/down NWs, we improve the fault-
tolerance of our self-healing circuits considerably with
the cost of some speed reduction.

4 Results

We base our evaluation on self-healing WISP-0. We
apply several of our fault tolerance techniques and ex-
plore both the impact of faulty transistors and broken
NWs. As shown in Figure 2, our built-in redundancy
works very well and the techniques combined improve
yield considerably. Without our self-healing mecha-
nism, the yield goes down rapidly to 0 for even a very
small defect rate. As such, with the exception of com-
pensating faults, without fault tolerance the presence of
faults cause incorrect execution. For self-healing NA-
SICs, however, even if the defect rate of transistors or
NWs is 10%, the yield remains over 10%. Of course, if
combined with system-level approaches, we can likely
improve the yield further.

We have also estimated the impact of our self-healing
techniques on density. As shown in Figure 3, the re-
dundancy techniques cause around 2X area overhead for
WISP-0 (see “WISP-0” and “WISP-0-Redundancy” in
Figure 3). However, our solution eliminates the need of
accessing each crosspoint for reconfiguration. The den-
sity of WISP-0 with redundancy is in fact better than
the density without redundancy but with a micro-nano
decoder. Even at 18-nm CMOS, available in 12 years
according to ITRS 2005, our self-healing design would
still be over 10X denser than equivalent processor design
in 18-nm CMOS.

Transistor Effect on Yield
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Figure 2. The yield achieved under dif-
ferent configurations (Red means WISP-0
with redundancy. Inter means interleaving
of NWs. Pull means applying weak pull-
up/down NWs). The left figure shows the
impact of faulty transistors and the right
one shows the impact of broken NWs.
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From Devices to Nano Computing

We are trying to answer questions  like
What are the challenges when building nanoscale circuits and architectures?
Can the density advantages of nanodevices be preserved at system level?
What would be the capabilities of such systems compared to CMOS?
Influence device/manufacturing research 

Lauhon et al., Nature 420,57

Carbon Nanotubes
(CNT)

Semiconductor 
Nanowires (NW)

2-D Nanoarray & CircuitTransistors/Diodes Nano Computing

Avouris, IBM Nanoscence
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Self Assembly of FETs and Metallic  
Interconnects on Nanoarray

Wu et al., Nature Vol. 430, pp. 61, 2004 

Metalize NWs Form NiSi segments NWs as masks

Scale bar: 5nm Scale bar: 1um Scale bar: 10nm
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Dynamic NASIC Tile and Pipeline

a0 a0 b0 b0 c0 c0

c1 s0c1 s0

prechargeevaluate

precharge

evaluate

Nano-Latch provides implicit latching 
on the SiNW

Dynamic circuit style with precharge-
evaluate-hold control (see papers)
Solution for temporary data storage
Used to build pipelined structures

high-density stream processing

Pipelined structure
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Architecture of WiSP-0
WiSP-0 is the initial version 
of WiSP.

Supports simple ISA: nop, 
movi, mov, add, mul
Hazards exposed to compiler
Implements 5-stage pipeline 
on 5 NASIC nanotiles

Program 
Counter Ins Rom Ins Decoder Register 

File ALU4 7 9

9

6

Floorplan of WiSP-0Schematic of WiSP-0

PC

ROM

DEC

active p-NWs active n-NWs

region implementing logic

underlying nano-fabric array

ALU

RF
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NASICs without Fault Tolerance

vdd gnd

a bevaluate preDischarge
cd

vdd

gnd

evaluate

preCharge

ab

ab+cd

0

cd

X0/1

cd/1

Logic: f=ab+cd

Without fault tolerance:
Any fault can make 
the whole nanotile
faulty
We explored 
several approaches
Built-in redundancyX: Break point

0/1: Uncertain value
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2-level Redundancy – Example

aa’bb’

aa’bb’+c+c’ (aa’bb’+c+c’)’

x0/1

(aa’bb’+c+c’)/1

With duplicated rows:
Breaks between 
duplicated columns 
are masked by AND 
plane in the next 
stage
Similar for breaks on 
the left from 
columns

0

aa’bb’

aa’bb’
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Pull-up/down NW for Fault Tolerance

Weak pull-up/down 
NWs for the case 
that 2-level 
redundancy can 
not handle
Tradeoff – better 
fault tolerance with 
lower speed

x0 0

a a

a+b a+b

evaluate

gnd
vdd

a a’ b

evaluate

preCharge

preDischarge

Next Stage Logic
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Defect Effect on Yield

Transistor Effect on Yield
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Comparison with CMOS
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Conclusions

Self-healing technique improves the yields of 
NASICs considerably.
Self-healing technique eliminates the needs of 
decoder for reconfiguration, defect map 
extraction, and micro-nano alignment 
Self-healing NASICs have great density 
advantage over deep sub-micron CMOS 
technology.
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     A concept for Embedded System Design is 
presented based on an adaptation of functional 
programming to hard real time systems.  The 
goals are the development of a highly 
dependable embedded computing environment 
that will be free from many common 
programming errors, and possibly be capable of 
applying formal checking methods.  An 
integrated approach to both language and 
operating system is included.  An additional goal 
is to remove the distinction between hardware 
and software so that a program can be run on any 
mix of hardware and software without re-
compilation.   That is, the program design is to 
be independent of the underlying computing 
fabric.  This leaves a "back-end" problem of 
mapping the computation to a specific fabric 
which in the case of multi-processing can be a 
hard problem.   This paper deals with running a 
"soft" program on a small, simple processor that 
can execute the software portion of a program as 
a soft core within an FPGA.   The hardware 
would be realized directly within the remaining 
gates.  The language is made to look as much 
like C, C++, Java, and Verilog as possible to 
facilitate adoption.  
      We will refer to the language presented in 
this paper as V, for verifiable[1].   The starting 
principle is that V should have cycle based, 
repetitive execution semantics.  This is 
sometimes referred to in the literature as 
Synchronous execution[2][3], and can be related 
to the sampling theorem.  The language then 
carries with it a model of its own operating 
system which is very simple.  A program is 
compiled, run in simulation, and then 
downloaded to a target for instantiation.  The 
program can then be initialized after which it 
runs in a continuous loop.  There is no garbage 
collection, because no garbage is created.  The 
idea is to create a program that is statically 
analyzable in order to reduce run-time errors to a 
minimum.  
     The program is executed repeatedly and 
consists of a net-list of functions.  The outermost  

 
function is the program itself, which contains a 
net-list of inner functions.  This "fractal" picture 
continues down to a set of primitive functions 
that can not be further de-composed.   It could be 
depicted  in the form of a synchronous dataflow 
graph.  Synchronous dataflow can be statically 
scheduled at design time, whereas Asynchronous 
dataflow[4] is scheduled at  run time.  
Synchronous dataflow closely resembles the way 
hardware works and it can be translated to 
synthesizable Verilog[5] and then hardware.  
     The execution semantics are as follows.  On 
each cycle of the program, it accepts a set of  
inputs, and produces a set of outputs.  The data 
flows through the program progressing a step at 
a time.  Intermediate values are held in memory  
(registers)  inserted into some of the functions. 
      On each cycle, all inputs and data stored in 
registers are presented to the inputs of all 
functions.  Then these functions execute. Finally, 
all outputs are made and intermediate results 
stored away.   All registers (which store 
intermediate results) can be read as many times 
in the program as desired, but can be written 
only once.  This is a "single assignment" rule[6].  
An assignment does not update a register until 
the end of each execution cycle.  Thus all 
registers are read in a "coherent" fashion.   
      The syntax can look much like pointer-less C 
or Java.  A compiler converts the mixture of 
infix operator and prefix function expressions to 
postfix.  This compiled intermediate code is 
executed on a stack machine that is very similar 
to that of a Forth machine.  The difference is that 
the user does not see the postfix stack 
instructions, and in addition, V is strongly typed.   
The type of  a variable as well as its value is kept 
at run time.  The stack machine is very simple 
compared with conventional register based 
processors and appears a likely target for a small 
FPGA soft core. 
     The V language is functional in that it is very 
similar to Haskell and pH[6].  Hudak[7] and co-
workers have applied Haskell to real time 
systems.  But unlike Haskell, V is not executed 
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with lazy evaluation.  And unlike pH, the 
memory locations in V are non-blocking because 
V is synchronous.   V is also inspired by Sisal[8], 
an early attempt at a real time functional 
language.  But in most respects, V is like 
Haskell.   For example, full recursion is 
supported.  The stack machine is rather efficient 
at this.  It may also be possible  to convert some 
kinds of recursion to loops in the compiler.   
     To generate hardware, the postfix expression 
can be unwound by a special kind of 
"interpreter" which instead of executing the 
program generates structural Verilog.      
     The V type system is similar to Haskell and 
supports user defined types and a restricted form 
of object oriented design.  The user can define 
Type Classes which consist of a list of member 
Types.  A Type Class is abstract and can not 
itself be instantiated.  It contains a list of 
members and a list of those functions which its 
members are required  to supply (a bit like an 
interface), but it is up to the members to supply 
them.  This leads to a form of inheritance where 
the Type Classes can have parents and children.   
A form of object oriented design based on this 
kind of a type system has been described by 
Jackson and co-workers[9].   V implements a 
subset of the type system described there. 
     Type Classes can have Types as members 
which can be instantiated. The Types must 
supply all the required functions and fields as 
required by their parents.   They are not 
overwriting virtual methods, they are supplying 
required methods.   A Type must also supply a 
constructor which contains a list of all their 
properties that are going to be instantiated.   
Types can only be instantiated during the 
initialization portion of a program, never during 
the main loop of the program itself.    
     Types can be further sub-typed themselves, 
but only by providing relations among their 
properties, not by providing new properties.   
There is no over writing of functions and 
properties.  Run-time polymorphism is 
supported;  the arguments of a function can be 
that of a Type Class while at run-time, a specific 
member of that class can be actually passed as an 
argument.  There are also no class casts.   It 
remains to be seen if this limited version of 
object oriented design will be powerful enough 
to support the design of useful embedded system 
applications. 
     The existence of persistent storage that holds 
data between execution "ticks" supports finite 
state object modeling.  The easy creation of 
Finite State Machine models is a useful feature 

of this system.  Not all portions of the program 
have to "tick" at the same rate, it is possible to 
have multiple sub-programs each "ticking" at a 
different rate.  The different sub-programs are 
then connected by what amounts to rate adapting 
filters.   So it will be possible to support a 
complex system model of concurrent Finite State 
Machines. 
     Dependability of systems designed in this 
manner appears likely as there is no possibility to 
get null pointers, class cast exceptions, and so 
forth.  However, arithmetic exceptions still 
remain and have to be dealt with carefully.  A 
next step for this project is to determine the 
degree to which formal checking can be applied 
to the verification of such a system before it is 
even run. 
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Hard Real Time Embedded Systems MUST:

• Be highly Dependable.  Zero failures.  
• Do what they’re supposed to do.
• Not ever crash.
• Integrate complex hardware and software. 
• Ensure behavior by some means before they are run.

1/28/2006 Copyright E-TrolZ, Inc. 3 of 20

What Designers Want

• No run time exceptions:
– No null pointers.
– No out of range arrays.
– No class casts.
– No arithmetic exceptions - most difficult.

• Well specified execution semantics.
• No distinction between hardware and software.
• Implicit parallelism.
• Compatibility with existing languages if possible.

1/28/2006 Copyright E-TrolZ, Inc. 4 of 20

Look to the Basics of Computer Science

• Functional Programming. Examples: Haskell and pH.
• Build execution semantics into the language.

– Cycle based execution from sampling theory and 
synchronous computing.

– Set the cycle rate based on input data streams.
– Leads to synthesizable Verilog subset and 

synchronous dataflow graphs.
• Must be a net-list language so that we can map a 

program to one or more processors or to hardware.
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Take Out the Garbage

• All instantiation at initialization. 
• After instantiation

– Software: the program runs in a cyclical loop at a 
fixed rate (or set of rates) on one or more processors.

– Hardware: the design is mapped to RTL(Verilog).
• The design is statically analyzable before being run.
• Analyzable side effects.
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Why Not Just Haskell?

• Layout syntax is not industrial strength.
• No clear treatment of memory and state. 
• Input/Output? 
• Object oriented design?   

– Inheritance. 
– Types and Type Classes.

1/28/2006 Copyright E-TrolZ, Inc. 7 of 20

Introduce a Special Memory Function

• A “register” sources and/or sinks data each cycle.
• Single assignment rules:

– Write once in a cycle. New value updated at the 
end of cycle.

– Multiple reads during a cycle(old value only). 
• Synchronous, unblocked reads and writes. 
• Registers are instantiated only at initialization.
• Input and Output are memory mapped to Registers.

1/28/2006 Copyright E-TrolZ, Inc. 8 of 20

Execution Cycle
• Fetch data from each input and from registers and place 

it at the input to all functions.
• Execute all functions. 
• Not lazy evaluation.
• Store the produced values away in the appropriate 

registers.
• Conventional “drivers” must then fill and empty these 

registers outside the functional program.  
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What if the Input Data rates vary widely?

• No interrupts.
• Multiple “Tasks” each cycle at a different rate.
• Inter-task communication by rate adapting filters.
• System model is locally synchronous and globally 

asynchronous.

1/28/2006 Copyright E-TrolZ, Inc. 10 of 20

System Modeling with Finite State Machines

• Each Task can be represented as a Finite State 
Machine.

• The State is contained in the registers of each task.
• State changes only at an execution cycle boundary.
• Leads to a design model of concurrent FSM’s.

1/28/2006 Copyright E-TrolZ, Inc. 11 of 20

Software Implementation on a Stack

• The compiler converts C-like expressions to postfix.
• Execute the postfix directly on a simple stack machine.
• Is this Forth?  Almost!

– No user written postfix.
– Strongly typed (like Haskell). 

• Stack machines are small, efficient and a target for soft 
cores in an FPGA.  

1/28/2006 Copyright E-TrolZ, Inc. 12 of 20

Hardware Implementation

• The front end of the compiler is the same!
• Only difference is that for hardware, the “interpreter”

unwinds the postfix code into structural Verilog.
• Can we do without synthesis? 
• For parallel processing, a complex mapping problem 

remains.
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Types and Type Classes

• Type Classes:
– Members can be sub TypeClasses or Types
– Abstract, not instantiated.  
– Lists methods that must be supplied by its Types.

• Types:
– Are Instantiated.
– Supply constructor and methods  required by its Type 

Class.  
• Sub-types differentiate with relations on property values 

of  types.
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Polymorphism and Inheritance

• Simple tree like single inheritance.
• Parametric polymorphism. 
• No class casts. 
• Simplified form of Object Oriented Design.
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Partitioning an Embedded Architecture

Separate Soft from Hard Real Time Measurement and Control

This Slide Courtesy of E-TrolZ, Inc.,  www.e-trolz.com.

File management
Communications

Conventional OS

Real Time 
Control

FPGA

Measurement

Input/Output

Conventional 
Programming Functional 

Programming

Control
DSP

USB
Ethernet
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A Simple if – else branch executing.  The return value is on the stack.
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A “for” loop looks just like C.
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A Recursive Factorial Function.
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A Shape Type Class. Each Type provides its own Area implementation. 
Sub-Types provide relations on the properties of their parent Types.
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Summary

• Start with Functional programming (Haskell).
• Add a “memory” function; a non-blocking register.
• Instantiation followed by cyclical execution determined 

by the sampling rate.
• A type system whose instantiated objects have “state”.
• Simplified object and inheritance model.
• C like syntax.  But not C or Java compatible.
• Execute on simple stack machine(s) or translate into 

hardware.
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The Fresh Breeze Memory Hierarchy
Jack B. Dennis

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139

Extended Abstract
The Fresh Breeze project concerns the design of a

multi-core chip, guided by principles of modular soft-
ware construction, that may be used to build scalable
parallel computing systems that achieve high perfor-
mance with low power consumption. The project
addresses the challenge of making parallel computers
more programmable. In particular the functional pro-
gramming style is supported so that parallelism is
readily exploited in programs written in an appealing
and familiar form.

In the Fresh Breeze system architecture, there are
three significant departures from conventional multi-
processor architecture. One is the use of simultaneous
multithreading processors. The benefit of this choice is
greater latency tolerance for memory references, and
better utilization of function units. Another feature is
the use of a large, global, shared address space. This
reduces the complexity of thread switching and com-
munication, and eliminates the need for a distinction
between memory and files. A more radical choice is the
use of fixed-size chunks for memory allocation. Mem-
ory chunks are created and shared among computing
activities, but are never updated. This choice avoids
cache consistency problems, and allows reference count
garbage collection by preventing creation of cycles of
chunk references.

A Fresh Breeze chip has eight simultaneous mutit-
heading processors (MTPs) together with blocks of on-
chip memory that hold active code and data chunks.
The memory blocks, known as Instruction Access Units
(IAUs) and Data Access Units (DAUs) are accessible
from all MTPs through a set of crossbar interconnects.

An code chunk can hold 32 32-bit instructions; a
data chunk can hold up to 32 32-bit data words or up to
16 64-bit longs. Any of the 64-bit items in a chunk may
be the UID of another chunk, hence the collection of all
data chunks and their pointers to one another forms a
directed graph called the heap. In view of the no-update
rule, it is impossible to create cycles in the heap, and
this fact facilitates continuous, parallel garbage collec-
tion using the reference count method.

Execution of a computation job on a Fresh Breeze
system has the form of a tree of method (function) acti-
vations. Each method activitation may have one or
more active threads or activities, and has an associated
code segment from which instructions are fetched, and
a local data segment for variables local to the method.
Both the code segment and the local data segment are
implemented as a one-level tree of chunks, a master
chunk containing pointers to up to sixteen code or data
chunks. Pointers (UIDs) may be present as components
of chunks, values in a code segment, or may be held in
registers.

The top of the memory hierarchy of a Fresh Breeze
system is the Register File of each processor, which
holds 32 words or 16 longs for each of four activities.
The second level consists of the IAUs and DAUs that
hold code and data chunks for use by the MTPs on one
Fresh Breeze chip. The third level is the Shared Mem-
ory System, not yet proposed in detail, that acts as a
repository for code and data chunks.

The Register File of each MTP is organized to pro-
vide high performance at relatively low cost, in
exchange for an occasional added cycle in instruction
execution. It is divided into four independent sections,
each having two banks that can operate concurrently.
Each bank has three read ports and one write port. One
read port is reserved to support write transfers from reg-
isters to the DAUs; the other two ports provide (for two
banks and four sections) 16 simultaneous word
accesses, enough to support two two-operand, double-
precision operations on each cycle, plus extra band-
width for integer and control operations. Each function
unit has a result buffer that holds results until they can
be written back to the Register File. While in the Result
Buffer, values are available for use as bypass operands.

Instructions are provided to request multi-word tans-
fers between the DAUs and the Register File to make
best use of the crossbar connectivity.

The IAUs and DAUs serve as cache memories for
code and data chunks. Analogous to the tag lines of
cache memories, a Fresh Breeze chip has two content-
addressable memories (I-CAM and D-CAM) that
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implement directories of code and data chunks held in
the IAUs and DAUs. When the on-chip location of a
chunk is needed, an MTP requests translation of its UID
from the I-CAM or D-CAM over an arbitrated bus. If
there is no entry for the chunk, the complete chunk is
retrieved from the Shared Memory System. During
such retrievals, an on-chip thread scheduler keeps a
record of suspended threads and reactivates them when
retrieval is complete and processor resources are avail-
able. In the meantime the scheduler will run other
threads awaiting service. In this way, demand “paging”
of chunks is implemented. The LRU replacement
method is implemented by arranging for each MTP to
mark the chunk locations touched in program execu-
tion.

Because the shared bus would be overwhelemd if
the I-CAM and D-CAM were consulted for every
instruction fetch or data reference, short-cuts are pro-
vided so that only the first reference to a chunk by an
MTP causes a CAM search. To this end each MTP has

two Map Tables, one for code segments and one for
data segments These are read on each code or local data
reference to find the location if the chunk has already
been mapped for an earlier access. To provide the same
benefit for access to heap chunks, each word pair (that
can hold a UID) of the Retgister File has an associated
location tag that provides the corresponding chunk
location if it is known.

Conclusion
The Fresh Breeze project combines of a lot of ideas,

old and new, in a way that we believe addresses the
challenges of today’s technological and usage environ-
ment. Many design choices have been made with little
ability to anticipate their effects on performance and
programmability, so we look forward with excitement
and trepidation to the results of simulation trials and
programming experiments and. It should be fun.
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The Fresh Breeze
Memory Hierarchy

Jack Dennis
MIT Computer Science

and
Artificial Intelligence Laboratory
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Shared Memory System

A Fresh Breeze System

• A scalable multiprocessor system.

• Intended to support the functional 
programming style for implicit 
parallelism and programmabiltiy.

• Intended to achieve high 
performance with low power 
consumption.

Chip Chip

Interchip Network

3 February 2006 3 of 15

Ideas
• Simultaneous Multithreading: Improves latency 

tolerance and function unit ultilization.
• Global Shared Memory: Reduces complexity of 

thread switching and communication; eliminates 
need for distinction between memory and files.

• Fixed-Size Chunks: Simplifies memory management.
• No Update: Chunks are created, accessed, and 

released; no multiprocessor consistency problem.
• Cycle-Free Heap: Parallel reference count garbage 

collection of chunks may be used.
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Fresh Breeze
Multiprocessor Chip

• Active chunks are held in on-chip 
IAUs and DAUs. Chunks are 
analogous to I-cache and D-cache 
data lines.

• MTPs: Multithreaded  Processors.

• I-CAM and D-CAM are associative 
directories of chunks held in IAUs
and DAUs; analogous to cache 
address lines and TLB, but shared 
by all MTPs.

MTP MTP

IAUs DAUs

I-CAM and D-CAM
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Memory Chunks and UIDs

• Chunk: A fixed-size unit of memory allocation. 
1024 bits of data; 

•32 x 32-bit words

•32 x 32-bit instructions

•16 x 64-bit longs

64 bits

UID or Pointer

Chunk contents:

Tags
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Program Execution
• A program in execution is a tree of method

activations (similar to Monsoon).

Several threads may be active in each
method activation. 

Code Segment

Local Data 
Segment
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Data Structures
• Fan-out as large as 16

Code or
Data
Chunks

Master
Chunk

• Arrays: Three levels yields 
4096 elements (longs)

• Cycle-Free Heap

• Code Segment or Local Data Segment
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Memory Hierarchy

• Register File:
– 32 x 32-bit words per Activity

• Code and Data Access Units:
– 1024-bit Code and Data Chunks 

shared by all MTPs on chip. About 
214 chunks. Like cache lines.

• Shared Memory System:
– Repository for code and data chunks. 

Up to 264 chunks.
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Register File

• 32 x 32-bit words per Activity
• Words are paired for longs or UIDs
• Four sections, each having two banks for 

left and right (even/odd) words.
• Total of 16 words per bank (four per 

activity).
• Two read ports, one write port per bank.
• Total bandwidth is 4 x 2 x 2 = 16 reads (32-

bit) per cycle; 8 (32-bit) writes per cycle.
3 February 2006 10 of 15

X-Bar

Int-0

Superscalar Operation I
Operand Access

A B A B A B A B
A B A B A B A B

Int-1 Add Mult

RF-0 RF-1 RF-2 RF-3

Function Units

Direct
AdvanceOperand

Registers

Read Ports

Register File

•Port 0 supplies Operand A; Port 1 supplies Operand B.
•Port 3 is used to read registers for store transfers.
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X-Bar

Superscalar Operation II
Result Writeback

RF-0 RF-1 RF-2 RF-3

Function Units

Result Buffers

Write Ports

Register File

•Bypass Operands may be selected from the result buffers.
•Load transfers share the write ports of all Register File sections and 

have priority over writebacks

Int-0 Int-1 Add Mult
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Data Movement
• Between Registers and Access Units

– Programmed as multi-word loads and stores
– X-Bar switch permits one transfer per MTP 

simultaneously, if no conflicts
• Between Access Units and the Shared 

Memory System
– Complete Chunk is the unit of transfer.
– Demand “Paging” using built-in LRU 

replacement of chunks in Access Units.
– Supported by on-chip Activity (Thread) 

Scheduler.
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Chunk Directories
I-CAM and D-CAM

• Content-Addressed memory; 
214 entries.

• Shared by all MTPs on Chip 
using an arbitrated bus.

• Short-cuts needed to 
minimize number of accesses 
and decrease average latency 
of access.

Valid Flag

64
UID

Chunk
Location
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Mapping Short-Cuts
• A Mapping table is maintained 

separately by each MTP for the 
chunks of the code segment and 
local data segment of each Activity. 

• The Map is consulted before 
requesting  service from the I-CAM 
or D-CAM.

• Each UID entry in the Register File 
has an associated location auxiliary 
field.

• After the first reference using a UID 
from a register, subsequent 
references are made without 
consulting the D-CAM.

Master Chunk Flag

Chunk index in segment

Chunk
Location

Activity Flags
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Conclusion
• The Fresh Breeze project combines of a lot of ideas, 

old and new.
• We believe it addresses the challenges of today’s 

technological and usage environment.
• Many design choices have been made with little 

ability to anticipate their effects on performance and 
programmability.

• We look forward with excitement and trepidation to 
the results of simulation trials programming 
experiments.

It should be fun!
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Ideal and Resistive Nanowire Decoders
General models for nanowire addressing

Eric Rachlin and John E. Savage
Department of Computer Science

Brown University

Recent research in nanoscale computing offers multi-
ple techniques for producing large numbers of parallel
nanowires (NWs). These wires can be assembled into
crossbars, two orthogonal sets of parallel NWs separated
by a layer of molecular devices. In a crossbar, pairs
of orthogonal NWs provides control over the molecules
at their crosspoints. Hysteretic molecules act as pro-
grammable diodes, allowing crossbars to function as
both memories and circuits (a PLA for example). Either
application requires that NWs be interfaced with exist-
ing CMOS technology.

The technology for controlling a large number of NWs
with a much smaller number of lithographically pro-
duced mesoscale wires (MWs) is called a decoder. A
number of methods for producing decoders have been
proposed and studied separately. These decoders can
all be modeled as embedding resistive switches in NWs,
where each switch is controlled by a MW. In this unify-
ing approach, the sequence of switches embedded in a
particular NW is termed its “codeword”.

All proposed techniques for decoder production involve
a significant degree of uncertainty. Nanoscale features
cannot be placed precisely. As a result, codewords are
assigned randomly to NWs. We believe that stochas-
tic assembly will remain a defining characteristic of
nanoscale computing technology. NW decoders pro-
vide a highly practical starting point for the more general
study of stochastically assembled devices.

We begin this talk by briefly reviewing existing NW and
decoder technologies, then present our general model
for NW decoders. We define a “simple NW decoder”,
which uses a pair of ohmic contacts and a set of MWs to
control a set a parallel NWs. We also define a “compos-
ite NW decoder”, which combines multiple simple NW
decoders to control a large number of NWs efficiently.

We pay particular attention to how these decoders are
used in the context of a crossbar.

To understand what qualifies as a properly functioning
decoder, we must first describe how MWs control NWs.
We provide two models of MW control. In the ideal
model, each MW completely turns off some subset of
NWs. In the more general resistive model, each MW
merely increases each NW’s resistance by some positive
amount. The ideal model uses binary codewords, while
the resistive model uses real-valued codewords.

Binary codewords are a convenient way of describing
decoders. Using binary codewords, one can concisely
state the conditions a decoder must satisfy. Real-valued
codewords, by contrast, are cumbersome to work with.
We describe how real-valued codewords can be mapped
to binary codewords by adding the notion of “errors” to
our ideal model.

In our discussion of errors, we explain how decoders
can be made robust. We define the notion of “balanced
hamming distance”, which accurately captures the cri-
teria a decoder must meet to tolerate permanent defects
and certain transient errors. Using this concept, we can
bound the number of MWs required to make different
types of fault-tolerant decoders. This in turn bounds the
size of these decoders.

Given more time, we would also address the prob-
lem of codeword discovery. Since decoders are assem-
bled stochastically, testing is required to discover which
codewords are present. This information must be stored
to produce a properly functioning decoder. We con-
sider efficient codeword discovery algorithms which do
not require nanoscale measurements or specialized test-
ing circuitry. In contrast, our previous discovery algo-
rithms required the use of hysteretic molecules on which
read/write operations could be performed.
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Nanowire Decoders
General Models for Nanowire Addressing

Eric Rachlin and John E. Savage

Brown University CS Department
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The Nanowire

SNAP NWs
(Heath, Caltech)

CVD NWs
(Lieber, Harvard)

Directed Growth
(Stoykovich, UW)

• Sets of parallel NWs have been produced.

• Devices will reside at NW intersections.

• We must gain control over individual NWs.

3 of 16

The Crossbar

The crossbar is currently
the most feasible nano-
scale architecture.

By addressing individual
NWs, we can control
programmable molecules
at NW crosspoints.

Crossbars are a basis for
memories and circuits.
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Nanowire Control
• Mesoscale contacts apply a potential

along the lengths of NWs.

• Mesoscale wires (MWs) apply fields to

across NWs, some of which form FETs.

• NW/MW junctions can form FETs using a

variety of technologies:

! Modulation-doping

! Random Particle deposition

! Masking NWs with dielectric material
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Simple NW Decoders
• A potential is applied along the NWs.

• M MW inputs control N NW outputs.

Each MW controls a subset of NWs.

• When a MW produces a field, the current

in each NW it controls is greatly reduced.

• Each MW “subtracts” out subsets of

NWs. This permits M << N.

• Decoders are assembled stochastically

and are difficult to produce if N large.
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Composite Decoders

• A composite decoder uses

multiple simple decoders

to control many NWs.

• The simple decoders

share MW inputs.

• This space savings allows

for mesoscale inputs.
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Ideal Decoders

• To analyze a decoder, we must model how

MWs control NWs.

• In an ideal decoder, a MW’s electric field

completely turns off the NWs it controls.

Other NWs are unaffected.

• This model is accurate if the FETs formed

from MW/NW junctions have high on/off

ratios.
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Binary Codewords
• In an ideal decoder, we associate an 

M-bit codeword, ci, with each NW, ni.

• The jth MW controls the ith NW if and only

if the jth bit of ci, cij, is 1.

• The M-bit decoder input, A, causes ni to

carry a current if and only if A•ci = 0.

• Codeword assignment is stochastic.

• Control over codewords is a key way

to compare decoding technologies.
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Codeword Interaction

• If cbj = 1 where caj = 1, ca implies cb.

Inputs that turn of na turn off nb.

• A set of codewords, S, is

addressable if some input turns off

all NWs not in S.

• S = {ci} is addressable if and only if

no codeword implies ci. S is

addressed with input A = ci.
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Decoders for Memories

• A B-bit memory maps B addresses to B

disjoint sets of storage devices.

• A D-address memory decoder

addresses D disjoint

subsets of NWs.

• Equivalently, the decoder 

contains D addressable 

codewords.
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Resistive Decoders

• Decoders that rely on FETs are not ideal.

• MWs carrying a field increase each NW’s

resistance by some amount.

• In a resistive decoder, codewords are

real-valued. In real-valued codeword ri, rij is

the resistance induced in ni by the jth MW.

• On input A, ni’s resistance is rbase + A•ri.

12 of 16

Ideal vs. Resistive
• In a resistive memory decoder the

addressed NWs must output more

current than the other NWs.

• Consider 1-hot codewords:

! The addressed wire has resistance < rbase + Mrlow

! Remaining wires have resistance > (rbase + rhigh)/N

• We require that rhigh >> MNrlow and

Nrbase

• If rij ! rlow, cij = 0.

• If rij " rhigh, cij = 1.

• If rlow < rij < rhigh, cij is an error.
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Ideal Decoders with Errors

• To apply the ideal model to resistive

decoders, consider binary

codewords with random errors.

• If cij = e, the jth MW increases ni‘s

resistance by an unknown amount.

• Consider input A such that the jth

MW carries a field. A functions

reliably if a MW for which cik = 1

carries a field.
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Balanced Hamming Distance

• Consider two error-free codewords, ca and cb.

Let |ca - cb] denote the number of inputs for

which caj = 1 and cbj = 0.

• The balanced Hamming distance (BHD)

between ca and cb is 2•min(|ca - cb], |cb - ca]).

• If ca and cb have a BHD of 2d + 2 they can

collectively tolerate up to d errors.
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Fault-Tolerant Random

Particle Decoders
• In a particle deposition decoder, cij = 1

with some fixed probability, p.

• If each pair of codeword has a BHD of

at least 2d + 2, the decoder can

tolerate d errors per pair.

• This holds with probability > 1- f  when

(d + (d2 + 4 ln(N2/f ))1/2)2

4p(1 - p)
M >

16 of 16

Conclusion

• Any nanoscale architecture will require

control over individual NWs.

• Stochastically assembled decoders can

provide reliable control even if errors occur.

• Our decoder model applies to many viable

technologies and provides conditions that

decoders must meet.
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