
Compiler-Based Adaptive Fetch
Throttling for Energy-Efficiency

Huaping Wang, Yao Guo,
Israel Koren and C. Mani Krishna

ECE Dept, UMass at Amherst

2 of 11

Introduction
Power consumption increases significantly
in modern computer architecture.
Fetch throttling can reduce executions of
miss-fetched instructions and number of
Icache accesses.

3 of 11

Fetch throttling techniques
Hardware-based runtime techniques

Use past behavior to predict future behavior.
Can not catch irregular situations such as abrupt
program phase changes.
Cause substantial performance degradation.

Software-based static techniques
Estimate Instruction Level Parallelism (ILP) based on
compile-time program analysis.
Can not capture dynamic effects, such as cache misses.
Use fixed low IPC threshold for throttling - to avoid high
performance loss.
Energy savings is small if IPC threshold is low.

4 of 11

Potential problems of fixed low IPC threshold

Limits throttling opportunities at high IPC
values:

If estimated IPC (e.g., 3) is less than number of
instructions left unexecuted in previous cycle (e.g., 5),

we can throttle fetch even at a high IPC value.

May throttle at an inappropriate time
resulting in a performance loss:

If estimated IPC is low (e.g.,2) but no instructions left in
the issue queue (from previous cycle), throttling results
in performance loss.

5 of 11

Compiler-based Adaptive Fetch Throttling (CAFT)

IPC estimate using compile-time analysis.
A large Decode/Issue Difference (DID)
means that many instructions were left
unexecuted.
DID value can be used as recent history
information to change the IPC threshold
adaptively

IF Estimated_IPC ≤ DID

THEN throttle for one cycle

6 of 11

Compiler-level implementation
Used SUIF/MachSUIF as our compiler
framework
Added new passes to both SUIF and
MachSUIF to annotate and propagate the
static IPC-estimation
Compiler-based IPC estimate

Consider only true data dependencies.
Identify data dependencies for both registers and
memory accesses.
Use approximate and speculative alias analysis for
memory accesses.

7 of 11

Experiments
Setup

SimpleScalar/Wattch
SPEC2000 and Mediabench benchmarks

Examined several existing throttling
techniques

Hardware dependence-based (DEP)
Just-In-Time instruction delivery (JIT)
Compiler-based fixed IPC threshold (CFT)

Compared CAFT to above techniques
Throttling cycles and IPC threshold distribution
Execution Time and Energy
Energy Delay Product (EDP)

8 of 11

Number of throttling cycles and IPC distribution
Number of
throttling cycles
increases
significantly
compared to
fixed low IPC-
threshold

Percent of
throttling
cycles above
IPC-threshold of
2 is larger than
50% in most
benchmarks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

mesa vpr gap pegwit parser jpeg gsm equake averageN
o
r
m
a
l
i
z
e
d

T
h
r
o
t
t
l
i
n
g

C
y
c
l
e
s

CFT CAFT

0%

20%

40%

60%

80%

100%

mesa vpr gap pegwit parser jpeg gsm equake

%
 o

f t
hr

ot
tle

 c
yc

le
s i

n
di

ff
er

en
t

IP
C

IPC2 IPC3 IPC4 IPC5

9 of 11

Execution time and energy

CAFT keeps the advantage of low performance decrease of
CFT, and has a good energy savings as hardware-based
techniques.

0.75

0.8

0.85

0.9

0.95

1

1.05

mesa vpr gap pegwit parser jpeg gsm equake average

En
er

gy

No-Throttle DEP JIT DID CFT CAFT

0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

1.1

mesa vpr gap pegwit parser jpeg gsm equake average

Ex
ec

ut
io

n
Ti

m
e

No-Throttle DEP JIT DID CFT CAFT

10 of 11

Energy Delay Product (EDP)

Compared to fixed threshold technique (CFT),
CAFT achieves a 3.7% additional EDP saving and
6.7% overall EDP reduction.
Compared to DEP, CAFT achieves a 3.2%
additional EDP reduction.

-5

0

5

10

15

mesa vpr gap pegwit parser jpeg gsm equake average

ED
P

Sa
vi

ng
s(

%
)

DEP JIT DID CFT CAFT

11 of 11

Conclusion
CAFT has a better EDP savings than
software- or hardware-only fetch throttling
techniques.

12 of 11

Experiment setup (Backup)
Skip the initialization stage and simulate
next 500M instructions for SPEC; run
Mediabench to completion.

Processor Speed
Process Parameters
Issue
Fetch,Issue,Decoded,Commit
Fetch Queue Size
Instruction Queue Size
Branch Prediction
Int.Functional Units
FP Functional Units
L1 D-cache
L1 I-cache
Combined L2 cache
L2 Cache hit time
Main memory hit time

5GHz
0.18µm, 2V
Out-Of-Order
8-way
32
128
2K entry bimodal
4 ALUs, 1Mult./Div.
4 ALUs, 1 Mult./Div.
128Kb, 4-way, writeback
128Kb, 4-way, writeback
1Mb, 4-way associative
20 cycles
100 cycles

