Branch Trace Compression for Snapshot-Based Simulation

Kenneth Barr
Krste Asanović

BARC
February 3, 2006
BPC: compact, fast, flexible warming of branch predictors for snapshot-based simulation.

1. Motivation, simulation context, vocabulary

2. Branch Predictor-based Compression (BPC)
 - Compress traces instead of storing snapshots

3. Preview of results
 - Size
 - Scalability
 - Speed
Intelligent sampling gives best speed-accuracy tradeoff for uniprocessors (Yi, HPCA `05)

Run benchmark entirely in detailed mode: slow!

Aggregate detailed samples

Variations

ISA+μarch
Snapshots amortize fast-forwarding, but require slow warming or bind us to a particular μarch.

- **ISA only snapshots:** Slow due to warmup, but allows any μarch.
- **ISA+μarch snapshots:** Fastest (less warmup), but tied to μarch.
- **ISA+μarch-independent snapshots:** Fast, NOT tied to μarch (Cheetah, MTR).
Why can’t we create \(\mu \)arch-independent snapshot of a branch predictor?

- In cache, an address maps to a particular cache set.
- Branch history (global or local) “smears” static branch across the pattern history table.
 - Same branch address.
 - In a different context.

- In a cache, we can throw away LRU accesses.
- In a branch predictor, who knows if ancient branch affects future predictions?!
If a μarch independent snapshot is tricky, let’s try to store several predictor tables?

- Suggested by [SMARTS, SimPoint]
- Is this an option?
 - If you generate snapshots via hardware dumps, you can’t explore other microarchitectures
- Which ones?
 - If it takes two weeks to run a non-detailed simulation of a real workload you don’t want to guess wrong
- Those branch predictors aren’t as small as you think!
Branch predictors are small, but multiply like rabbits! 8KB quickly becomes 1000’s of MB.

- **P:** gshare with 15 bits of global history 8 KBytes
- **n:** 1 Billion instructions in trace sampled every million insts x 1000 = 8 MBytes requires 1000 samples
- **m:** 10 other tiny branch predictors x 10 = 78 MBytes
- 26 benchmarks in Spec2000 x 26 = 2.0 GBytes
- 16 cores in design? x 16 = 32 GBytes
- Now, add BTB/indirect predictor, loop predictor…
- Scale up for industry: 100 benchmarks, 10s of cores
BPC compresses branch traces well and quickly warms up any concrete predictor.

- Simulator decodes branches
- BPC Compresses trace
 - Chaining if necessary
- General-purpose compressor shrinks output further
 - PPMd
- Reverse process to fill concrete predictors
BPC uses branch predictors to model a branch trace. Emits only unpredictable branches.

- Contains the branch predictors you always dreamed about!
 - Large global/local tournament predictor
 - 1.44Mbit
 - Alpha 21264 style
 - 512-deep RAS
 - Large hash tables for static info
 - Three 256K-entry
 - Cascaded indirect predictor
 - 32KB leaky filter
 - path-based (4 targets)
 - 2 entries
 - PAg structure
BPC Compression

Input: branch trace from functional simulator

- 0x00: bne 0x20 (NT)
- 0x04: j 0x1c (T)
- 0x1c: ret (T to 0xc4)

Output:
- If BPC says “I could have told you that!”
 (Common case): no output
 `< >`
- If BPC says “I didn’t expect that branch record!”
 `< skip N, branch record >`

Update internal predictors with every branch.
BPC Decompression

Input: list of pairs < skip N, branch record >

- < 0, 0x00: bne 0x20 (NT) >
- < 0, 0x04: j 0x1c (T) >
- < 13, 0x3c: call 0x74 >

Output:

```java
if (skip==0)
  branch record
  // updates predictors

while(skip > 0)
  BPC says “let me guess!”
  // updates predictors
  // decrement skip
```
BPC-compressed traces grow slower than concrete snapshots

- We compare against one stored Pentium 4 style predictor: 2.7X smaller (avg)
- If you store 1000 samples, 10 predictors…
 - 11 MB for BPC
 - 310 MB for concrete snapshot
- Growth
 - BPC has shallow slope
 - concrete scales with mnP
 - Both grow with number of benchmarks and cores
Summary: BPC decompresses faster, compresses as good or better than others.

- BPC+PPMd faster than other compressors and sim-bpred
- Know your general-purpose compressors: gzip’s too big bzip2 is too slow
- Biggest help for phase-changing Server code
Related work: BPC is a specialized form of VPC or a modified version of CBP.

- Value-predictor based compression (VPC)
 - Prof. Martin Burtscher at Cornell
 - Trans on Computers, Nov 2005

- Championship Branch Prediction Contest (CBP)
 - Stark and Wilkerson, Intel
 - MICRO workshop, Jan 2005
 - Provided traces used a technique with similar spirit

- Our Branch Prediction-based Compression (BPC) paper identifies application to snapshot-based simulation
 - Barr and Asanović, MIT
 - ISPASS, Mar 2006
Conclusion

• Compressed branch traces are smaller than concrete branch predictor snapshots
 – 2.0–5.6x smaller than a single, simple predictor snapshot
 – Improvement multiplies for each predictor under test, size of those predictors, and each additional sample

• We introduce Branch Predictor-based Compression
 – Better compression ratios than other compressors
 – Faster than other decompressors; and 3-12X faster than functional simulation. Slower than μarch snapshots, but infinitely more flexible.

• Full-length paper: ISPASS, March 2006

• http://cag.csail.mit.edu/scale