Requirements for any FPGA/HPC Application Development Tool Flow

... if you want any reasonable fraction of the FPGA’s potential performance

Tom VanCourt
Martin C. Herbordt

Computer Architecture and Automated Design Lab

http://www.bu.edu/caadlab
What is FPGA/HPC exactly?

■ High performance computing
 - Computational chem.
 - Electromagnetics
 - Bioinformatics
 - Traffic modeling
 - Astrophysics
 - ...

■ Field Programmable Gate Arrays
 - App. specific processors on demand
 - Massive fine-grained parallelism
 - Drivers of silicon process development
What’s so hard about it?

- **Performance computing ≠ logic design**

 Standard languages hide parallelism

 FPGA tools address logic designers

- **Contradictions in FPGA applications**

 Applications should be widely applicable

 ... but finely tuned to each particular usage

 Require customization by application specialist

 ... but require unfamiliar hardware constructs

 Demand full use of hardware resources

 ... use is app-specific, resources are FPGA-specific

*Jeroen Voeten, ACM Trans. CAD 6(4)533-552, Oct 2001
What’s wrong with C to gates?

“Unfortunately, and despite 40 years of parallelizing compilers for all sorts of machines, [optimization] algorithms don't work terribly well.” Ian Page, 2004

- The best you get is C code in gates

 Good HW algorithm isn’t SW algorithm

- C distributes algorithms in time

 FPGAs distribute algorithms in space

 ... and a whole industry is dedicated to reinventing the von Neumann bottleneck
Example: Size-3 subsets

- **C style:**

  ```c
  for i = 0 to N
  for j = 0 to i
  for k = 0 to j
  // use x[i], x[j], x[k]
  ```

- **HW-oriented solution:**

 [Diagram showing a hardware-oriented solution]
Example: 3D Correlation

- Serial processor: Fourier transform \mathcal{F}

 $$A \otimes B = \mathcal{F}^{-1}(\mathcal{F}(A) \times \mathcal{F}(B))$$

- FPGA: Direct summation

 $RAM\ FIFO$
Example: Trilinear Interpolation

- **C style:** Sequential RAM access

 \[(x, y, z)\]

- **HW style:** App-specific interleaving

 \[(x, y, z)\]
Sizing applications to FPGAs

- Desired size of computing array:
 As big as possible – whatever that means

- Depends on:
 - **FPGA capacity**
 - **Application details**
 - **Computing array**
C Coding Style vs. Performance

- Hardware algorithms are different
 - Require non-SW algorithms
 - Require non-von Neumann memory
 - Require non-obvious data paths
 - Require careful precision analysis

- Explicit degree of parallelism is a bug
 - No commercial tools address all factors

- App. specialists aren’t logic designers
 - Need both – efficient HW & app. details
The Requirements

- Escape from the C code model
 GPUs? Device organizes control & memory... application is leaf calculations only

- Support two developer groups:
 *Logic designers create efficient structures
 App specialists tailor it to specific usage*

- Full use of FPGA’s computing resources
 App-specific, FPGA-specific array sizes