TISSUE ENGINEERED HEART VALVES

Jake Matte
PROBLEM

• Heart Valve Disease
 • Stenotic Valve
 • Chest Pain, Fatigue, Heart Palpitations, etc.
 • Regurgitant Valve
 • Heart Murmurs, Fatigue, Heart Palpitations, etc.
 • Mitral Valve Prolapse
 • Dangerous heart rhythms, heart infections, other complications
 • Etc.
• Five million Americans diagnosed every year
• 1668 John Mayow observed constriction of the mitral valve
• 1706 William Cowper did research into aortic valve regurgitation
• 1952 First mechanical valve implanted by Dr. Charles Hufnagel
HISTORY (CONT.)

- 1960 new type of valve, Starr-Edwards ball valve
- Late 1960’s Tilting discs were introduced
- 1979 Bileaflet valves introduced
PROCEDURE

• First an allogenic heart valve conduit is acellularized
• Conduit then seeded
• Resulting valve is then surgically implanted
• Tissue engineered valve should be accepted by the body and begin to grow into the spot of the heart valve it replaced, and over time heals
• Procedure can also be done with a polymer scaffold
• Results of animal testing were very successful

<table>
<thead>
<tr>
<th>Experimental Group</th>
<th>Examination, wk</th>
<th>EC</th>
<th>MFB</th>
<th>Calc</th>
<th>Infl</th>
<th>vWF</th>
<th>α-Actin</th>
<th>Procollagen</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unseeded control valves</td>
<td>12</td>
<td>1</td>
<td>0–1</td>
<td>Valvar</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>41G</td>
<td>12</td>
<td>1</td>
<td>0–1</td>
<td>Supravalvar</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>45G</td>
<td>12</td>
<td>1</td>
<td>0–1</td>
<td>Subvalvar</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>39B</td>
<td>12</td>
<td>1</td>
<td>0–1</td>
<td>Subvalvar</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tissue-engineered valves</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Subvalvar</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>30G</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Subvalvar</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>42G</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Subvalvar</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>40G</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Subvalvar</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>32G</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Subvalvar</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>31G</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>Subvalvar</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>37G</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>Subvalvar</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
LIMITATIONS

• Takes time to grow the new valve
• Human trials have yet to be successful
• Still requires surgery
• Polymer scaffolds showed progression of regurgitation and stenosis over time
FUTURE DIRECTIONS

• Creating a better polymer scaffold
• Clinical Trials

