Fascinating Facts:

424,000/year out of hospital CA’s.

More than half of all cardiovascular deaths.

~25-30% achieve ROSC

30 day survival rate is ~10%
Let’s talk about the Heart...

Four chambers:
- Right Atrium
- Right Ventricle
- Left Atrium
- Left Ventricle
Cardiac Neuroanatomy

SA Node

AV Node

Bundle of His

L & R bundle branch

Purkinje Fibers
What is cardiac arrest?

Arrhythmia vs. asystole

Blood not adequately pumped out
Causes of Cardiac Arrest

Ventricular Fibrillation & pulseless V-TACH

Not 100% understood

- Myocardial Infarction
- Congenital Heart Defects
- Cardiomyopathies
- Trauma (surgery)
- Commotio Cordis
Defibrillation

Delivering current through myocardium

Depolarizes and terminates arrhythmia

Pacemaker of the heart (Sinoatrial node)

Reestablishes normal sinus rhythm
Defibrillation

Pulseless Ventricular Tachycardia

Ventricular Fibrillation
Pop quiz: which one is shockable rhythm?
I forgot to say “clear”.
The Engineering
Defibrillators
Mapping of the heart
How Defibrillators Work

Electrodes assess electrical activity to determine if shockable rhythm.

If shockable rhythm, current is passed.

Heart stops. (Restarts?)
DC Defibrillators

Automated transformer charges capacitor.

Rectifying diode allows current to flow in only one direction (DC).

Capacitor discharges voltage and produces current.

Inductor slows down discharge by counter-voltage.

Better shock for patient.
Capacitors Review

\[
\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2}
\]

\[
\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}
\]

\(I = 0\)

\(Q_T = Q_1 = Q_2\)
DC Defibrillator Circuitry
Monophasic and Biphasic Defibrillation

Monophasic delivers in one direction.

Biphasic delivers in two directions.

Delivers depolarization effect to more myocardial fibers than monophasic.

Less energy needed for same effect.
Other Kinds Of Defibrillators

Implantable Cardioverter Defibrillator

- Prevents cardiac arrest in high risk patients.
- Placed under skin, monitors heart rate and rhythm.

Pacemaker

- When bradycardic, device sends tiny electrical signals.
- When arrhythmic, device defibrillates.
Heart Mapping

Journal of Mathematical Analysis and Application

Mathematical models to predict bioelectric activity across cardiac tissue

Used data to rigorously create a 3D model of the heart & current flows
Heart Mapping

Better understanding of neuroanatomy, and gap-junction interconnection.

Help improve defibrillation methods.
\[\|p_n\|_{L^\infty(t,T;L^2(\Omega_H))} + \sum_{j=i,e} \|\sqrt{\varepsilon} p_{n,j}\|_{L^\infty(t,T;L^2(\Omega_H))} + \|p_{wn}\|_{L^\infty(t,T;L^2(\Omega_H))} \leq c_1, \]
\[\sum_{j=i,e} \|\nabla p_{n,j}\|_{L^2(t,T;L^2(\Omega_H))} + \|\nabla p_{n,e}\|_{L^2(t,T;L^2(\Omega_B))} \leq c_2, \]
\[\|\partial_t p_n\|_{L^2(t,T;L^2(\Omega_H))} + \sum_{j=i,e} \|\nabla \partial_t p_{n,j}\|_{L^2(t,T;L^2(\Omega_H))} \leq c_3. \]

\[
\left\{ \begin{array}{l}
-\beta c_m \partial_t p_n - \varepsilon \partial_t p_{n,e} - \nabla \cdot (M_i \nabla p_{n,i}, e_k)_{L^2(\Omega_H)} = (H_u(u, w)p_{wn} - \beta I_{ionu} p_n - 2(u - u_d), e_k)_{L^2(\Omega_H)}, \\
-\beta c_m \partial_t p_n + \varepsilon \partial_t p_{n,e} + \nabla \cdot (M_o \nabla p_{n,e}, e_k)_{L^2(\Omega_H)} = (-H_u(u, w)p_{wn} - \beta I_{ionu} p_n + 2(u - u_d), e_k)_{L^2(\Omega_H)}, \\
-\nabla \cdot (M_s \nabla p_{n,s}, e_k)_{L^2(\Omega_B)} = 0, \\
-\partial_t p_{wn}, e_k = (H_w(u, w)p_{wn} + \beta I_{ionw} p_n, e_k)_{L^2(\Omega_H)},
\end{array} \right.
\]

\[
\iint_{\Omega_T,H} -\beta c_m \partial_t \phi_i + \iint_{\Omega_T,H} M_i(x) \nabla p_{i} \nabla \phi_i + \iint_{\Omega_T,H} \beta I_{ionu}(u, w)p_{i} \\
- \iint_{\Omega_T,H} H_u(u, w)p_{w} \phi_i + \iint_{\Omega_T,H} 2(u - u_d)\phi_i = 0,
\]

\[
\iint_{\Omega_T,H} -\beta c_m \partial_t \phi_e - \iint_{\Omega_H} M_o(x) \nabla p_{e} \nabla \phi_e + \iint_{\Omega_B} M_s(x) \nabla p_{s} \nabla \phi_s
\]
Final Note

CPR chest compressions and breaths are the most important.

-10% / minute survival following CA
References

Questions?