BME 360 Biomeasurment Sample Exam \#2 Spring 2011 Name:
Open book/note. 10 points for each question ($10 \times 10=100$ points $)$.

1. As shown on the right, six parameters of an ideal operational amplifier are listed. Circle the correct value for each parameter.

Differential gain	0	∞
Common mode gain	0	∞
Common mode rejection ratio	0	∞
Input impedance	0	∞
Output impedance	0	∞
Bandwidth	0	∞

2. () Refer to the circuit on the right for questions 2 to 5 . The stage-1 gain is defined by $\left(\mathrm{V}_{3}-\right.$ $\left.V_{4}\right) /\left(V_{1}-V_{2}\right)$. If we want to set the first-stage gain to 5.7, what value should be chosen for R_{1} ? (A) $100 \mathrm{~K}_{8}$, (B) $200 \mathrm{~K}_{8}$, (C) $330 \mathrm{~K}:$, (D) 470 K : (E) none of the above.

3. () The stage-2 gain is defined by $\mathrm{V}_{5} /\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right)$. What is the gain for stage 2 ? (A) -4.7 , (B) -5.7 , (C) -9.4 , (D) -11.4 , (E) none of the above.
4. () Stage 3 is a bandpass filter with a passing band between 1 Hz and 30 Hz . If we choose $\mathrm{C}_{5}=$ $2 \mu \mathrm{~F}$, what value should R_{5} be set at? (A) 24 K , (B) 33 K , (C) 56 K , (D) 80 K , (E) none of the above.
5. () For stage 3, if choose $\mathrm{C}_{6}=0.22 \mu \mathrm{~F}$, what value should R_{6} be set at? (A) 24 K , (B) 33 K , (C) 56 K , (D) 80 K , (E) none of the above.
6. () The C code on the right implements a digital filter. The input comes from ReadADC() subroutine, which acquires data from the onchip A/D. The output is sent to port D , which is connected to an external D/A. What kind of filter is this? (A) FIR and causal, (B) FIR and noncausal, (C) IIR and causal, (D) IIR and noncausal, (E) none of the above.
7. () For the above problem, what is the filter equation?
(A) $y[n]=(y[n-1]+x[n]+x[n-1]) / 2$,
(B) $\mathrm{y}[\mathrm{n}]=(\mathrm{y}[\mathrm{n}-1]+2 \mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]) / 4$,
(C) $y[n]=(y[n]+2 x[n]+x[n-1]) / 2$,
(D) $\mathrm{y}[\mathrm{n}]=(\mathrm{y}[\mathrm{n}]+\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]) / 4$,
(E) none of the above.
uns8 input0, input1; uns8 output0, output1; uns16 temp;
```
inputl = input0;
input0 = ReadADC();
temp = input0;
temp += input0:
temp += input1;
temp += output1;
temp = temp >>2;
output0 = temp;
PORTD = ouput0:
outputl = output0;
```

8. () We implement a digital filter according to: $y[n]=x[n]-x[n-2]+y[n-2] / 4$, where $y[n]$ is the present output and $\mathrm{x}[\mathrm{n}]$ the present input. Which of the following is the correct transfer function $\mathrm{H}(\mathrm{z})$ for this filter?
(A) $(\mathrm{z}-1)^{2} /(\mathrm{z}-1 / 4)^{2},(\mathrm{~B})\left(\mathrm{z}^{2}-1\right) /\left(\mathrm{z}^{2}-1 / 4\right),(\mathrm{C})(\mathrm{z}+1)^{2} /(\mathrm{z}+1 / 4)^{2}$, (D) $\left(z^{2}+1\right) /\left(z^{2}+1 / 4\right)$, (E) none of the above.
9. () For the above problem, which of the following is the correct pole-zero plot for this filter?

(B)

(C)

(D)

(E) none of the above. (The big cycle is the unit circle on the z plane. A zero is shown by o and a pole by x.)
10. () For the above problem, we choose a sampling rate of 500 Hz . Which of the following is the correct frequency response, i.e. magnitude of $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} 2 \pi \mathrm{f}}\right)$, for this filter?

(E) none of the above.
