BME360/361 Biomeasurement & Lab (3+1 credits) MWF11

Engineering 045 F2019

Ying Sun, Ph.D., Professor Department of Electrical, Computer and Biomedical Engineering 2 East Alumni Avenue, Kingston, RI 02881

Office: Engineering 216 Tel: 401-874-2515 E-mail: yingsun@uri.edu

week	date	lecture topics	Reference
1	09/04	introduction: biomeasurement, embedded system design	handout
	09/06	hardware/software systems for embedded design	handout
2	09/09	overview of the PIC18F452 microprocessor	handout
	09/11	programming languages: assembly and C++	
	09/13	electrocardiogram (ECG): anatomy & physiology	handout
3	09/16	electrocardiogram (ECG): instrumentation	handout
	09/18	C programming: "for" loops, "while" loops, "switch"	
	09/20	timer for providing periodical timing references	
4	09/23	interrupts	
	09/25	simulation of ECG signals	handout
	09/27	analog-to-digital conversion, digital-to-analog conversion	
5	09/30	unsigned binary vs. 2's complement	
	10/02	backward difference to approximate derivative	
	10/04	Exam #1	
6	10/07	serial-parallel interface (SPI) and LCD display	
	10/09	basics of operational amplifiers (op amps)	handout
	10/11	analog circuit design with op amps	
7	10/15	(Tuesday) instrumentation amplifiers	handout
	10/16	ÈCG amplifier circuit	
	10/18	introduction to real-time digital filters	
8	10/21	low-pass and high-pass filters	handout
	10/23	a 60 Hz notch filter	
	10/25	introduction to morphological filters	
9	10/28	median filer and C++ implementation	
	10/30	digital QRS detection	
	11/01	Exam #2	handout
10	11/04	the multiplication of backward differences (MOBD) algorithm	
	11/06	C++ implementation of the MOBD algorithm	handout
	11/08	design of a heart rate meter	
11	11/11	(No class. Veterans' Day)	
	11/13	introduction to digital signal processing, Nyquist-Shannon sampling theorem	
	11/15	Youtube: Z-transform and discrete Fourier transform	handout
12	11/18	finite-impulse-response (FIR) & infinite-impulse-response (IIR) filters	online
	11/20	blood pressure measurement: non-invasive	handout
	11/22	blood pressure measurement: invasive	
13	11/25	blood pressure measurement: frequency characteristics	
	11/27	No class (Thanksgiving)	handout
	11/29	No class (Thanksgiving)	
14	12/02	(Sun teaches EGR 105. No class)	
	12/04	summary review of the PIC program	
	12/06	conclusions	
15	12/9	review	
	12/19	Thursday 9:30 - 11:00 am Exam #3	

Grading: Exam #1 (33%), Exam # 2 (33%), Exam # 3 (34%).

BME 360/361 Biomeasurement & Labs

Office Hours: (by appointment, email yingsun@uri.edu)

Monday:	10:30–11:00 am, 12:00–1:00 pm
Wednesday:	10:30-11:00 am, 12:00-2:00 pm
Friday:	10:30-11:00 am, 12:00-1:00 pm

Textbook (recommended):

Medical Instrumentation: Application and Design. 4th ed., edited by Webster JG. ISBN-13: 978-8126553792; ISBN-10: 8126553790 (This book is also the recommended textbook for BME 362 Biomedical Instrumentation.)

There is no required textbook.

Student Outcomes – Accreditation Board for Engineering and Technology (ABET)

BME 360

- 1: an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- 6: an ability to identify, formulate, and solve engineering problems.

BME 361

- 2: an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 5: an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6: an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

Generalized Learning Outcomes

Conceptions – signal-to-noise ratio, hardware-software tradeoff, digital-analog tradeoff, system integration Applications – ECG, blood pressure, digital filters, detection algorithms, design process Skills – electronics, embedded systems, C++ programming, multidisciplinary teamwork

BME 361 Labs (BME Lab is located in Engineering room 110.)

- LAB 1. Introduction to PIC18F452 and MPLab: Binary Counter
- LAB 2. ECG Simulation
- LAB 3. Echo and Derivative Programs
- LAB 4. Implementation of Various Modes and LCD Display
- LAB 5. Introduction to Soldering: ECG Printed Circuit Board
- LAB 6. Digital Filters: Low Pass, High Pass, Median, 60 Hz Notch
- LAB 7. QRS Detection
- LAB 8. Heart Rate Meter

Students with Disabilities

Any student with a documented disability is welcome to contact me as early in the semester as possible so that we may arrange reasonable accommodations. As part of this process, please be in touch with Disability Services for Students Office in Memorial Union, room 330 or phone 874-2098.