
Lab Manual for BME 361

Biomeasurement Laboratory

The Department of Electrical, Computer, and Biomedical Engineering

University of Rhode Island

Kingston, Rhode Island, 02881

Course website: http://www.ele.uri.edu/courses/bme360/

Spring 2016

1

Preface

Biomeasurement is fundamental to our understanding of biology, physiology, and medicine. While

biomeasurement may refer to any observation (pulse, respiration rate, etc.) increasingly, measurements

rely on the advances of technology and engineering to provide more accurate estimation of biological sig-

nals (electrical and mechanical) and help interpret the underlying physiological mechanisms responsible

for those signals. Perhaps the best known and widely used example of biomeasurement is the ECG (elec-

trocardiogram, or EKG elektrokardiogramm (GER)). The history of the ECG can be traced to 1872 when

an electrical engineering PhD student connected wires to the wrist of a patient in St. Bartholomew's

Hospital in London. Since then, it has become the gold standard for vital sign assessment. Though the

underlying methodology of obtaining the ECG is little changed in the past 100 years, history, and a fair

amount of signal processing techniques, have allowed us to interpret the ECG with surprising diagnostic

acumen. To be sure, without the ECG and the countless other forms of biomeasurement, medicine and

health care would have a remarkably di�erent landscape.

In this laboratory, you will be introduced to some of the critical design considerations when attempting

to acquire a biological signal. Issues such as noise, small signal-to-noise ratios, electrode interface

and biocompatibility, as well as signal processing all combine to make the acquisition of a biological

signal a non-trivial exercise. Further considerations are given to analog to digital (A/D) conversion,

microprocessor-based circuitry, and LCD screen display.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Contents

1 Introduction to PIC18F4525 and MPLAB: Binary Counter 5

2 ECG Simulation . 9

2.1 Lab 2 - ECG Simulation Supplement . 12

3 Echo and Derivative Programs . 14

4 Implementation of Various Modes and LCD Display 17

4.0.1 LAB 4 Supplemental . 20

5 Introduction to Soldering: ECG Printed Circuit Board 26

6 Digital Filters: Low Pass, High Pass, Median, and 60 Hz Notch 32

7 QRS Detection . 34

8 Heart Rate Meter . 37

A Introduction to MPLab - Learning Exercise . 38

A.1 Creating a New Project in MPLAB . 38

A.2 Constructing your Circuit and Connecting the Programmer 38

B Oscilloscopes 101 . 40

B.1 Time Scale . 40

B.2 Volt Scale . 40

B.3 Coupling . 40

B.4 Trigger . 41

B.5 Autoset . 41

B.6 Other Functions . 41

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

List of Figures

1.1 Schematic for test circuit. 6

1.2 5V regulators and pin assignments . 7

(a) LM7805 - TO-220 packaging . 7

(b) Pin assignments . 7

(c) LM7805 - Transistor packaging . 7

1.3 Microchip MPLAB ICD3 Programmer . 8

2.1 Schematic of circuit with DAC for ECG simulation . 10

2.2 Timing diagram with waveform intervals for ECG simulation. 12

4.1 Schematic of circuit for LCD screen and multi-mode display 18

4.2 ASCII table for generating letters, numbers and symbols. 25

5.1 Table of parts. Note that some parts listed on the PCB are no longer used - they are

crossed out in this table. 27

5.2 Schematic of PCB layout. 28

5.3 PCB images with and without components. 30

(a) Populated PCB. Note the wire placement. 30

(b) Blank PCB shown with the wire placement and the capacitor orientations. 30

5.4 Back of PCB images without components. Note wire placement. 30

(a) Note the placement of the wires you'll need to solder. 30

(b) The soldered wires. 30

5.5 Electrode attachment recommendation and resulting ECG waveform. 31

(a) Recommended electrode placement. 31

(b) Oscilloscope showing waveform. 31

7.1 Schematic of completed circuit. 35

7.2 2N2222 Transistor . 35

A.1 There are comprehensive instructions to guide you to creating your �rst project successfully. 38

A.2 Minimum working example (MWE) circuit. 39

B.1 Waveform appears smeared or blurred. 42

B.2 Stable waveform. 43

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

4

B.3 Fourier transform of the signal in �gure B.2. Notice that the time scale is set to 500

Hz per block and the �rst peak occurs at the second block, i.e. 1000 Hz. This is to be

expected as the signal is a 1 kHz square wave. The other peaks are referred to as the

harmonics and occur at ODD integer multiples of the fundamental. 44

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Lab 1: Introduction to PIC18F4525 and

MPLAB: Binary Counter

**If you have never used MPLab please refer to Introduction to MPLab - Learning Exercise in the

appendix.**

PURPOSE: Simple introduction to the PIC processor as well C++ programming using MPLAB. This

lab will give you a basic idea of how to program the PIC processor as well as implement it on a breadboard.

GOAL: Today you will be creating a system with a binary counter that will count from 0-7 (using

four LED's). To complete this task you must �rst create the circuit shown in Figure 1 on your bread-

board, as well as download the code for the binary counter from the course website http://www.ele.

uri.edu/courses/bme360/ listed as Sample Program: C code. This is a stock program, meaning it pro-

vides basic functionality but does not perform the exact function you will need to build. In its current

form, the program simply sets up the analog to digital conversion (A/D) function of the chip. Inside

the main loop, you can build the binary counter.

You will need to build the circuit and follow the procedure portion of the lab to get the initial counter

working. Once you have the binary counter working correctly, you may move onto the Tasks portion of

the lab.

**IMPORTANT: The stock code performs A/D. The program initializes a pin on the chip to use for this

purpose. The problem here is that if you leave the pin �oating (not connected to anything), the onboard

A/D has a di�cult time getting a value and so it will a�ect the performance of your program. There are

two ways to deal with this: hardware or software. For the hardware solution, you can simply tie that

pin to ground or 5V with a 10 kΩ resistor (this is called a pull-down or pull-up resistor, respectively).

Alternatively, you can comment out the section of the code that performs the A/D function. In either

case, you will need to determine where in the code this is performed and which pin is assigned to the

A/D function.**

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

6

MATERIALS:

� 9 Volt Battery & Clip

� Breadboard

� 4 LED's

� (4) 470 Ω Resistor

� 10 kΩ Resistor

� Microcontroller PIC18F4525

� 4 MHz ceramic resonator

� LM7805 5V voltage regulator

� 6 pin ICSP header

SCHEMATIC:

Figure 1.1: Schematic for test circuit.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

7

(a) LM7805 - TO-
220 packaging

(b) Pin assignments (c) LM7805 - Tran-
sistor packaging

Figure 1.2: 5V regulators and pin assignments

PROCEDURE:

Hardware

1. Using your breadboard, implement the circuit seen above in Figure 1.

2. Be sure you have all the necessary components, and that they are oriented correctly. (Note: if

you do not know/remember the pin assignment for a certain component, look up the datasheet and use

it as a reference.)

*IMPORTANT: The ceramic resonator shown in Figure 1 must be orientated correctly with the la-

bel side facing away from the PIC.

Software

1. Open MPLAB on either a desktop computer in the lab, or your own laptop; if you would like to

download MPLAB onto your personal laptop, you can follow the installation manual.

2. Download the stock program.

TASKS:

1. You must add code to execute a binary counter in the stock code. You shouldn't have to change the

original code, just write your own new code in the 'main' section.

2. Once you have modi�ed the code you will need to download the program to your PIC:

� Connect the MPLAB ICD3 programmer to the ICSP Header and to the PC, and download the

program onto the PIC (�gure 1.3).

� YOU MAY NEED TO REMOVE THE LEDs from pins 40 and 39 as the diode creates a capacitive

load on the programming pin. This capacitance interferes with the fast changing signals being

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

8

sent to your microcontroller by the programmer and computer. Hmmm, seems you may have

heard something about capacitance and high frequency signals somewhere along your academic

prerequisites.

� You do not need to disconnect the MPLAB ICD3 programmer from the ICSP Header. At this

point you should see the LED's lighting up as a binary counter.

Figure 1.3: Microchip MPLAB ICD3 Programmer

TROUBLESHOOTING:

There are some common errors related to improperly building the circuit shown in �gure 1.1. Pay

close attention to the power connections associated with pin 1 as well as the 5V connections. Often, the

5V connections appear after the 10 kΩ resistor that connects to pin one. That is, it's on the wrong side

of the resistor. Remember, if you have a voltage supply on one side of a resistor, a certain amount of

the voltage will drop across that resistor depending on what other resistance is in that leg of the circuit.

This means that you WILL NOT be supplying 5V to the power connections that require 5V.

Check the value of all resistors. Remember ROYGBIV - Red is 100 multiplier, Orange is 1000 mul-

tiplier, Yellow is 10000 multiplier, etc. For instance, a brown stripe followed by a black stripe followed

by a yellow stripe is a 100 kΩ resistor - 10 (brown is 1, black is 0) times 10000 = 100000.

Make sure your con�guration bits are correctly set. Refer to appendix A, Introduction to MPLab -

Learning Exercise if you are unsure.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Lab 2: ECG Simulation

You must have a fully functional PIC circuit from LAB 1 to continue on with this lab.

PURPOSE: Further explore the functional relationship between the PIC Microprocessor and C++ Pro-

gramming using MPLAB. This lab will include the digital to analog converter and the voltage converter;

these chips are essential for the implementation of the ECG simulation. By understanding how these

two chips work you will have a greater appreciation for the PIC microprocessor and MPLAB and realize

their many possibilities.

GOAL: In today's lab you will be creating an ECG Simulation by building upon the circuit you con-

structed in Lab 1. You will do this by adding new components (highlighted in Figure 1), both the

DACØ8ØØ (Digital to Analog Converter) and LMC7660 (Voltage Converter) chips, as well as adding a

new program.

MATERIALS:

� DAC 0800 chip

� LMC7600

� (2) 0.1uF Capacitor

� 0.01uF Capacitor

� (2) 10uF Capacitor

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

10

SCHEMATIC:

Figure 2.1: Schematic of circuit with DAC for ECG simulation

PROCEDURE:

Hardware

1. Using your breadboard and circuit from Lab 1, add the highlighted section seen above in Figure

1 to your previously existing circuit.

2. Be sure you have all the necessary components, and that they are oriented correctly. (Note: if

you do not know/remember the pin assignment for a certain component, look up the datasheet and use

it as a reference.)

Software

1. Open MPLAB and download the ECG Simulation program. You will need to add this code to

the program from Lab 1 - this will be the beginning of your "master program".

2. Connect theMPLAB ICD3 programmer to the ICSP Header and to the PC, and download your

new program onto the PIC.

3. Disconnect theMPLAB ICD3 programmer from the ICSP Header.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

11

TASKS:

1. Once you have programmed the PIC you need to use an oscilloscope to test your circuit.

2. Connect the oscilloscope between pins 2 and 4 on the DAC 0800chip.

**NOTE: This means that the "GND" wire of the oscilloscope will be at pin 4 (not connected to

GND on your breadboard), while the normal lead will be at pin 2.**

3. The oscilloscope should now display an ECG signal automatically. If at �rst the signal is too

small, you may need to adjust the settings on the oscilloscope to see the signal more clearly.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

12

2.1 Lab 2 - ECG Simulation Supplement

This is a real-time program. Instead of storing the entire ECG waveform in the memory and playing it

back, compute what to send to the D/A converter on a point-by-point basis. You can implement the

code in the interrupt service routine. Set the timer to generate periodical interrupts at an appropriate

interval - suggesting 1 ms. So you need to �gure out the hexadecimal numbers for loading the TMR0H

and TMR0L. Study the diagram in �gure 2.2 carefully for the design of the ECG waveform. Learn to

use the "switch" instruction to implement the various modes for generating the individual segments of

the ECG waveform. See sample code on the following page.

Figure 2.2: Timing diagram with waveform intervals for ECG simulation.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

13

1 Declare global variables :

2

3 unsigned char da_output , mode ;

4 unsigned int count ;

5

6 void _highPriorityInt (void) {

7 checkflags :

8 if (INTCONbits . TMR0IF == 1) { // When there i s a t imer0 over f low , t h i s loop ←↩
runs

9 INTCONbits . TMR0IE = 0 ; // Disab le i n t e r r up t

10 INTCONbits . TMR0IF = 0 ; // Reset t imer 0 i n t e r r up t f l a g to 0

11 switch (function) {

12 case 0 : // LAB 1 − BINARY COUNTER

13 TMR0H =0x ? ? ; // Reset t imer count : high−order and low−order bytes

14 TMR0L = 0x ? ? ; // 0xFFFF − 0x???? = 0x03E8 = 1000 (decimal) ¬ 1ms

15 break ;

16 case 1 : // LAB 2 − ECG SIMULATION

17 //ad_input = ReadADC() ; // Bonus Sec t i on − Var iab le Heartrate

18 TMR0H = 0x ? ? ; // Load upper 8 b i t s to TMR0H

19 TMR0L = 0x ? ? ; // Load lower 8 b i t s to TMR0L

20 switch (mode) {

21 case 0 : // P wave up

22 count++;

23 da_output++;

24 if (count == 30) mode++;

25 break ;

26 case 1 : // P wave f l a t

27 count−−;
28 if (count == 0) mode++;

29 break ;

30 case 2 : // P wave down

31 count++;

32 da_output−−;
33 if (count == 30) mode ++;

34 break ;

35 }

36 }

37 PORTD = da_output ;

38 INTCONbits . TMR0IE = 1 ; // Re−arm by enab l ing the Timer0 i n t e r r up t

39 goto checkflags ; // Check again in case the re i s a t imer i n t e r r up t

40 }

41 }

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Lab 3: Echo and Derivative Programs

PURPOSE: Introduce students to writing and implementing various programs using C++ and MPLab.

Students will modify the provided Echo program to display the derivative of a signal. This lab will

enhance students' programming skills in the C++ language.

GOAL: In today's lab you will be exploring an echo program and later implementing a derivative program

- quite literally taking the derivative (discrete time) of your input signal. You will do this by studying

the provided code, and then adapting it to �t the speci�cations presented in the Tasks portion of this lab.

PROCEDURE:

(You will be using your breadboard and circuit from Lab 2.)

Software

1. Open MPLAB and add the following code. Before you can add this code you must make some

minor modi�cation to the ECG simulation code. Essentially, you will be placing all the switch − case

statements inside a larger switch − case . Follow the layout of lab 2 when the ECG code was made

case 1: . (Recall, we also made the Binary Counter case 0:). Now case 2: will be the ECHO and

case 3: will be the DERIVATIVE. It will take you a little while to get comfortable with this but it will

save time later.

1 // LAB 3 − ECHO

2 case 2 :

3 TMR0H =0x ? ? ; // Reset t imer count f o r 240 Hz

4 TMR0L = 0x ? ? ; // 0xFFFF−0x???? = 4167 => 240 Hz

5 da_output = ReadADC () ; // Read A/D and send i t to output

6 break ;

7 // LAB 3 − DERIVATIVE

8 case 3 :

9 TMR0H =0x ? ? ; // Reset t imer count f o r 240 Hz

10 TMR0L = 0x ? ? ; // 0xFFFF−0x???? = 4167 => 240 Hz

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

15

11 data1 = data0 ; // Save the prev ious sample in data1

12 data0 = ReadADC () ; // Read cur rent ADC and save in data0

13 dumb = data0 ;

14 dumb −= data1 ; // Backward d i f f e r e n c e : data0 − data1

15 dumb += 128 ; // Sh i f t b a s e l i n e up

16 if (dumb > 255) dumb = 255 ;

17 if (dumb < 0) dumb = 0 ;

18 da_output = dumb ;

19 break ;

2. Connect theMPLAB ICD3 programmer to the ICSP Header and to the PC, and upload the program

onto the PIC.

3. Disconnect theMPLAB ICD3 programmer from the ICSP Header.

Hardware

4. You can now test the Echo program using a signal generator and an oscilloscope. You will do

this by connecting the positive lead of the signal generator to pin 2 of the PIC (the negative goes to

ground) and the oscilloscope probe to pin 2, with the probe ground to pin 4 of the DAC 0800, just like

lab 2.

The echo program will take an analog input signal (from the signal generator) and convert that analog

signal to a digital signal so it can be used as digital input to the PIC, where it will be reproduced exactly

- or at least to within quantization error. The output signal will then be converted back to analog on a

digital to analog converter where it can be viewed on an oscilloscope.

5. You may chose to input any type of wave from the signal generator (square, sign, or triangle)

and the oscilloscope should display the exact same wave. Be sure to use both channel 1 and 2 on the

oscilloscope. Do this by connecting channel 1 to the signal generator and channel 2 to the output (pin

2) of the DAC 0800. By doing this you will be able to determine if your output is the exact "echo" of

your input.

TASKS:

1. Now that you have seen what the echo program does, you will need to study the code in order

to modify it to produce a derivative program.

The derivative program will take an input from the signal generator just like the echo program, but

this time your program in the PIC will produce the derivative of the original input. For example if your

input signal is a triangle wave, than your output signal would be a square wave.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

16

HINTS:

1. You will need to declare three unsigned characters (one for the current data point, one for the

previous data point, and one for the output), and at least one integer as a "dummy variable".

2. In order to obtain the derivative you will need to subtract each current data point from the pre-

vious data point.

3. You will then need to store that value as your dummy variable (at this point this value may be

positive or negative depending on the two points you have used). Since you will be running this value

through the PIC and ADC, you must �nd the absolute value of this variable as you cannot use negative

values.

4. After you have converted the output back to an unsigned character, you must assign its value to

PORTD of the PIC.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Lab 4: Implementation of Various Modes

and LCD Display

PURPOSE: Introduce students to writing and implementing numerous modes using C++ and MPLab,

as well as introduce a push button and LCD Display to your project.

GOAL: In today's lab you will be exploring modes and later using them to creating your own pro-

gram. You will do this by studying code you have been given, and modifying it to �t the speci�cations

presented in the Tasks portion of this lab. You will also have the opportunity to create your own code

which will implement a push button to drive the various modes in your program. Finally, you will be

give code for an LCD Display which must be slightly modi�ed to accommodate your project.

MATERIALS:

� LCD Display Screen

� Push Button

� 10 kΩResistor

SCHEMATIC:

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

18

Figure 4.1: Schematic of circuit for LCD screen and multi-mode display

PROCEDURE:

Hardware

1. Using your breadboard and circuit from Lab 3, add the highlighted section seen above in Figure

1 to your previously existing circuit.

Software

1. Open MPLAB and add both the LCD Display and Modes programs to your already existing master

program.

TASKS:

1. Since you have been given code for the LCD Display you will only need to create your own function

to output variables to the LCD. The program will already be set up to display information on the screen

- now you just need to tell it what to display.

2. You have been given sample code for basic mode and LCD programs - now you will need to modify

them to include multiple modes to display all the programs you have used in the previous labs.

So far you have worked on an ECG Simulation, as well as Echo and Derivative programs. You will

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

19

need to include at least three modes to accommodate these programs.

3. Reference PortB on your datasheet for the PIC to determine how to program the pushbutton you

have just added at pin 33. This will require you to use a high priority interrupt routine.

The purpose of an interrupt routine is to put the normal program on hold, execute a subroutine, and

then continue on with the normal program. The subroutine can only be executed after a certain event

(interrupt) has occurred. In this case you may want to implement a �ag which will activate the high

priority interrupt.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

20

4.0.1 LAB 4 Supplemental

1 //BME361/BME463 Lab #4 Implementation o f Various Modes and LCD Display − ←↩
Supplement

2

3 /* ****************************** Global v a r i a b l e s ←↩
********************************* */

4 unsigned char output , counter , mode , function , data0 , data1 ;

5 unsigned char LCD_update , LED_count , LED_count1 , buttondelay ;

6 int dummy ;

7

8

9 /* ********Prototype func t i on s *********** */

10 void backlight (unsigned char state) ;

11 void SetPosition (unsigned char position) ;

12 void PrintLine (rom unsigned char *string , unsigned char numChars) ;

13 void PrintNum (unsigned char value , unsigned char position) ;

14 void SetupSerial () ;

15 void SetupADC (unsigned char channel) ;

16 void delay_ms (unsigned char x) ;

17 void ClearScreen () ;

18

19 void _highPriorityInt (void) /***** high p r i o r i t y i n t e r r up t s e r v i c e rou t ine ←↩
******** */

20 {

21 checkflags :

22 if (INTCONbits . TMR0IF == 1) { // When there i s a t imer0 over f low , t h i s loop ←↩
runs

23 INTCONbits . TMR0IE = 0 ; // Disab le i n t e r rup

24 INTCONbits . TMR0IF = 0 ; // Reset t imer 0 i n t e r r up t f l a g to 0

25 if (buttondelay != 0) buttondelay−−; // Delay to debounce pushbutton

26 switch (function) {

27 case 0 : // ECG s imula t i on

28 TMR0H = 0xFC ; // Reload Timer 0 f o r 1 ms count

29 TMR0L = 0x17 ; // 0xFFFF−0xFC17 = 0x3E8 = 1000

30 switch (mode) { // ECG Simulat ion from Lab #2

31 case 0 : // P wave up

32 counter++;

33 output++;

34 if (counter == 30) mode++;

35 break ;

36 case 1 : // P wave f l a t

37

38 case 13 :

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

21

39

40 break ;

41 }

42 break ;

43 case 1 : // Echo

44 TMR0H =0xEF ; // Reset t imer count : high−order and low−order bytes

45 TMR0L = 0xB8 ; // 0xFFFF−0xEFB8 = ←↩
1047 = 4167 => 4.167ms => 240Hzoutput = ReadADC(); //ReadA/DandsendittooutputGO = 1; //RestartADCforthenextsamplingcyclebreak; case2 : //LAB3−DERIV ATIV ETMR0H = 0xEF ; //Resettimercount : high− orderandlow − orderbytesTMR0L = 0xB8; //0xFFFF − 0xEFB8 =←↩
1047 = 4167 => 4.167 ms => 240 Hz

46

47

48

49

50

51

52 data1 = data0 ; // Save the prev ious sample in data1

53 data0 = ReadADC () ; // Read ADC and save the pre sent sample in data0

54 dumb = data0 ;

55 dumb −= data1 ; // Backward d i f f e r e n c e : data0 − data1

56 dumb += 128 ; // Sh i f t b a s e l i n e up

57 if (dumb > 255) dumb = 255 ;

58 if (dumb < 0) dumb = 0 ;

59 output = dumb ;

60 break ;

61 }

62 PORTD = output ; // Output to the D/A via the p a r a l l e l port D

63 INTCONbits . TMR0IE = 1 ; // Enable t imer i n t e r r up t

64 }

65 if (INTCON3bits . INT1IF == 1) { // When the button (pin 34) i s pushed , t h i s ←↩
i n t e r r up t i s c a l l e d

66 INTCON3bits . INT1IE = 0 ; // Disab le i n t e r r up t

67 INTCON3bits . INT1IF = 0 ; // Reset i n t e r r up t f l a g

68 if (buttondelay == 0) { // I f buttondelay i s not 0 , i t ' s a switch bounce

69 function++; // Increment the func t i on mode

70 if (function == 3) {

71 function = 0 ; // Back to ECG s imu la t i on mode

72 output = 50 ;

73 mode = counter = 0 ;

74 }

75 LCD_update = 1 ; // S igna l the main program to update LCD

76 buttondelay = 200 ; // Delay by 100 t imer pe r i od s to debounce switch

77 }

78 INTCON3bits . INT1IE = 1 ; // Enable i n t e r r up t

79 goto checkflags ; // Check again in case the re i s a t imer i n t e r r up t

80 }

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

22

81 }

82

83 void Transmit (unsigned char value) { /* ************ Send an ASCII Character←↩
to USART ************** */

84 while (! PIR1bits . TXIF) continue ; // Wait u n t i l USART i s ready

85 TXREG = value ; // Send the data

86 while (! PIR1bits . TXIF) continue ; // Wait u n t i l USART i s ready

87 delay_ms (2) ; // Wait f o r 2 ms

88 }

89 void ClearScreen () { /* ******************* Clear LCD Screen ←↩
*********************** */

90 Transmit (254) ; // See data shee t s f o r S e r i a l LCD and HD44780

91 Transmit (0 x01) ; // Ava i l ab l e on our course webpage

92 }

93 void backlight (unsigned char state) { /* *************** Turn LCD Back l ight on/←↩
o f f ****************** */

94 Transmit (124) ;

95 if (state) Transmit (0 x9D) ; // I f s t a t e == 1 , back l i gh t on

96 else Transmit (0 x81) ; // otherwise , back l i gh t o f f

97 }

98 void SetPosition (unsigned char position) { /* ***************** Set LCD Cursor ←↩
Pos i t i on ***************** */

99 Transmit (254) ;

100 Transmit (128 + position) ;

101 }

102 void PrintLine (rom unsigned char *string , unsigned char numChars) { /* ******* ←↩
Print cha rac t e r s t r i n g ****************** */

103 unsigned char count ;

104 for (count=0; count<numChars ; count++) Transmit (string [count]) ;

105 }

106 void PrintNum (unsigned char value , unsigned char position) { /* ********** Print ←↩
number at p o s i t i o n ****************** */

107 unsigned char units , tens , hundreds ;

108 SetPosition (position) ; // Set at the pre sent po s i t i o n

109 hundreds = value / 100 ; // Get the hundreds d i g i t , convert to ASCII ←↩
and send

110 if (hundreds != 0) Transmit (hundreds + 48) ;

111 else Transmit (20) ; // I f hundreds = 0 , d i sp l ay a space

112 tens = value − hundreds * 100 ; // Get the tens d i g i t

113 tens /= 10 ;

114 Transmit (tens + 48) ; // Convert to ASCII and send

115 units = value − hundreds * 100 ; // Get the un i t s d i g i t

116 units −= tens * 10 ;

117 Transmit (units + 48) ; // Convert to ASCII and send

118 }

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

23

119 void SetupSerial () { /****** Set up the USART Asynchronous Transmit (pin ←↩
25) ****** */

120 TRISC = 0x80 ; // Transmit and re c e i v e , 0xC0 i f t ransmit only

121 SPBRG = 25 ; // 9600 BAUD at 4MHz: 4 ,000 ,000/(16 x9600) − 1 = ←↩
25 .04

122 TXSTAbits . TXEN = 1 ; // Transmit enable

123 TXSTAbits . SYNC = 0 ; // Asynchronous mode

124 RCSTAbits . CREN = 1 ; // Continuous r e c e i v e (r e c e i v e r enabled)

125 RCSTAbits . SPEN = 1 ; // S e r i a l Port Enable

126 TXSTAbits . BRGH = 1 ; // High speed baud ra t e

127 }

128 void main () /* ************************ main program ←↩
******************************* */

129 {

130 mode = function = counter = buttondelay = LED_count = 0 ; // I n i t i a l i z e

131 output = 50 ;

132 LCD_update = 1 ;

133 TRISD = 0b00000000 ; // Set a l l port D pins as outputs (connected to D/A)

134 TRISB = 0b00000010 ; // RB1 as input f o r pushbutton , o the r s outputs

135 SetupADC (0) ; // Ca l l SetupADC() to s e t up channel 0 , AN0 (pin 2)

136 SetupSerial () ; // Set up USART Asynchronous Transmit f o r LCD d i sp l ay

137 backlight (1) ; // turn back l i gh t on

138 ClearScreen () ; // Clear s c r e en and s e t cur so r to f i r s t p o s i t i o n

139 SetPosition (0) ; // Set cur so r p o s i t i o n to the beg inning o f l i n e 1

140 PrintLine ((rom unsigned char *)"Hello BME361 :)" , 15) ;

141 SetPosition (67) ; // Go to beg inning o f Line 2

142 PrintLine ((rom unsigned char *)"Team ???" , 8) ; // Put your trademark here

143 delay_ms (255) ; // Take a deep breath . . .

144 delay_ms (255) ;

145 delay_ms (255) ;

146 delay_ms (255) ;

147 delay_ms (255) ;

148 delay_ms (255) ;

149 T0CON = 0b10001000 ; // Setup the t imer c on t r o l r e g i s t e r f o r i n t e r r up t

150 // b i t 7 = GIE − g l oba l i n t e r r up t enable

151 // b i t 5 = TMROIE − Timer 0 over f l ow in t e r r up t enable

152 // b i t 2 = TMR0IF − Timer 0 i n t e r r up t f l a g

153 INTCON = 0b10100000 ;

154 INTCON2bits . INTEDG1 = 0 ; // Enable pin 34 (RB1/INT1) f o r pushbutton ←↩
i n t e r r up t

155 INTCON3bits . INT1IE = 1 ; // Enable INT1 in t e r r up t

156 ADCON1 = 0b00000101 ; //Make PORTB b i t s d i g i t a l

157 while (1) {

158 if (LCD_update == 1) {

159 LCD_update = 0 ;

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

24

160 ClearScreen () ;

161 SetPosition (1) ;

162 PrintLine ("Function: " , 10) ;

163 switch (function) {

164 case 0 :

165 PrintNum (function , 11) ;

166 SetPosition (64) ;

167 PrintLine ((rom unsigned char *)"ECG Simulation" , 14) ;

168 break ;

169 case 1 :

170 PrintNum (function , 11) ;

171 SetPosition (64) ;

172 PrintLine ((rom unsigned char *)"Echo" , 4) ;

173 break ;

174 case 2 :

175 PrintNum (function , 11) ;

176 SetPosition (64) ;

177 PrintLine ((rom unsigned char *)"Derivative" , 10) ;

178 break ;

179 }

180 }

181 LED_count++;

182 LED_count1 = LED_count & 0xF0 ;

183 PORTB = LED_count1 ;

184 delay_ms (62) ; // LED count to RB4−RB7 at 1 Hz

185 }

186 }

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

25

Table of ASCII Codes:

Figure 4.2: ASCII table for generating letters, numbers and symbols.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Lab 5: Introduction to Soldering: ECG

Printed Circuit Board

**If you have never used a soldering iron before please do a few practice rounds before starting this

lab**

PURPOSE: Introduce students to the use of a soldering iron.

GOAL: Today you will be creating an ECG ampli�er on a previously designed printed circuit board. To

complete this task you must create the circuit shown in the schematic on a printed circuit board. Each

group will be given a set of leads which will be connected via electrodes to one member of your group.

This will enable you to collect real data which you will be able to view on an oscilloscope.

You will need to build the circuit by following the procedure portion of the lab. Once you have the ECG

PCB completely soldered, you may move onto the Tasks portion of the lab.

MATERIALS:

� Printed Circuit Board (P.C.B.)

� Soldering Iron Station

� All components listed in table 5.1

� ECG Leads (Right Arm, Left Arm, Left Leg)

� Battery and battery clip

� Auxiliary jack connector (14" audio jack)

COMPONENTS:

� (2) 8-Pin Sockets (U3 and U4)

� 14- Pin Socket (U1)

� Mono Audio Jack

� 2 and 4 pin Headers

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

27

Figure 5.1: Table of parts. Note that some parts listed on the PCB are no longer used - they are crossed
out in this table.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

28

Figure 5.2: Schematic of PCB layout.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

29

PROCEDURE:

1. Using the Printed Circuit Board you are given, create the circuit seen in the schematic. To complete

this circuit all you need to do is �nd the component on the schematic, match it up to the corresponding

label on the P.C.B., and solder the component to the board.

**Note 1: You will NOT be soldering the larger chip components (324, 741, 7660, 620) directly to

the PCB - instead you will be soldering 8 and 16-pin sockets to the board and then inserting the com-

ponents into the sockets when you have completed soldering the board. *Note 2: The values of R1 and

R3 (27 kΩ) must be exactly matched - be sure to check these resistors before soldering!**

2. Make sure you have all the necessary components, and that they are oriented correctly.

**Note: if you do not know/remember the pin assignment for a certain component, look up the datasheet

and use it as a reference.**

3. There are four jumper wires that need to be added to the circuit: one grounding wire on the

front, and three signal wires on the back.

(U5, Pin 2 → U1, Pin 9) (U5, Pin 3 → U1, Pin 10) (U5, Pin6 → U1, Pin 8) (R13, Right side →
R17, Left side)

*There are four capacitors, and two chips that are no longer used. These should be left blank. Ca-

pacitors 1 and 12 are also not labeled on the PCB but are labeled in �gure 5.3a. These should be what

the �nal product looks like.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

30

(a) Populated PCB. Note the wire placement. (b) Blank PCB shown with the wire placement and the
capacitor orientations.

Figure 5.3: PCB images with and without components.

(a) Note the placement of the wires you'll need to solder. (b) The soldered wires.

Figure 5.4: Back of PCB images without components. Note wire placement.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

31

TASKS:

1. Now you can connect the leads to your p.c.b. To do this you need to attach electrodes to you

or one of your group members. The leads will be connected on the right arm, left arm, and left leg.

Figure 5.5a above indicates the most successful diagram, but you may want to vary these slightly to

obtain best results. These leads are attached to the alligator clips, then to the four-pin connector on

the p.c.b.

2. In order to see a visible ECG, the circuit needs to be attached to the oscilloscope. Connect the

socket end of the audio jack to the p.c.b, and the other end to the oscilloscope.

3. Last, connect your battery to the p.c.b.

4. You should now be able to see a functional ECG, similar to the one shown in �gure 5.5.

(a) Recommended electrode
placement.

(b) Oscilloscope showing waveform.

Figure 5.5: Electrode attachment recommendation and resulting ECG waveform.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Lab 6: Digital Filters: Low Pass, High

Pass, Median, and 60 Hz Notch

PURPOSE: To create digital �lters using C++ coding instead of building them on your breadboard.

The advantages to using digital �lters are that they can be easily designed, tested, and changed without

a�ecting the circuitry (hardware), whereas an analog �lter can only be changed by redesigning the cir-

cuit. Another advantage is that digital �lters are extremely stable and are not a�ected by the external

environment and subject to temperature or component error like analog �lter circuits.

GOAL: Today you will be adding code for High Pass, Low Pass, Median, and 60 Hz Notch �lters to your

previously existing code. To do this you must �rst add the given Low Pass Filter program to your mas-

ter program and then modify it to produce the three programs described in the Tasks portion of the Lab.

PROCEDURE:

Hardware

1. You will be using both the circuit and p.c.b. from Lab 5.

Software

1. Open MPLAB and add Low Pass Filter program to your already existing master program.

TASKS:

1. You were given the code for a Low Pass Filter - now you need to modify that code to create

High Pass, Median, and 60 Hz Notch Filters.

Low Pass (LP) Filters eliminate all frequencies above the predetermined cut-o� frequency; while leaving

the frequencies below the cut-o� unchanged.

High Pass (HP) Filters are the opposite of a LP - they eliminate all frequencies below the predetermined

cut-o� frequency; while leaving the frequencies above it unchanged.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

33

Median Filters are smoothing and moving �lters which are used to eliminate noise while preserving the

edge values of your data.

60Hz Notch Filters also eliminate noise but only noise at 60 Hz.

All of these �lters will help clean up your ECG signal.

2. Once you have �nished the three new �lters you can add them to your master program.

3. You also need to add four new modes to your program for the LP, HP, Median, and 60 Hz Notch

�lters, as well as add some code for the LCD Display.

4. Once you have programmed your code you can connect leads to one of your group members and

run the signal through your ECG p.c.b. and then through your four new �lters. The pushbutton will

allow you to switch between �lters.

5. You should be able to view and ECG waveform after it has run through your �lters on the oscilloscope.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Lab 7: QRS Detection

PURPOSE: To brings students one step closer to a fully functional heart rate meter. With the use of a

buzzer and the QRS code, students will hear a beeping sound every time a peak is detected. By doing

this, we will be almost �nished creating a heart rate meter similar to the ones used by hospitals.

GOAL: To combine the ECG printed circuit board you created in Lab 5, with a previously written

QRS Detection Program. This program was written to detect the QRS peak of an ECG waveform; the

program sends a signal through the PIC to a Buzzer and LED every time a certain threshold has been

reached. This will create the "beep�beep�beep" you hear on a hospital heart rate meter.

MATERIALS:

� TDB-12PN Buzzer

� LED

� 2N2222 NPN Transistor

� 470 Ω Resistor

� 10 kΩ Resistor

SCHEMATIC:

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

35

Figure 7.1: Schematic of completed circuit.

Figure 7.2: 2N2222 Transistor

PROCEDURE:

Hardware

1. Using your breadboard, add the highlighted section seen in the schematic to your previously ex-

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

36

isting circuit.

**NOTE: The Buzzer is very loud, so in order to mute this device it is advisable that you cover the top

hole with masking tape or another similar material.**

Software

1. Open MPLAB and add the QRS Detection program to your master program.

2. Connect theMPLAB ICD3 programmer to the ICSP Header and to the PC, and download the

program onto the PIC.

3. Disconnect theMPLAB ICD3 programmer from the ICSP Header.

TASKS:

1. Now that the output from your ECG p.c.b. is connected to pin 2 of the PIC, you can attach

the ECG leads to one of your group members and the signal should run through the ECG circuit and

then through the QRS Detection Program in your PIC. If your circuit is functioning correctly your LED

and Buzzer will be turned on and o� continuously.

2. You can now test your circuit using an oscilloscope; connect channel 1 at the output of your ECG

p.c.b., and channel 2 at pin 36 of the PIC. This will show you the ECG signal as well as the function of

the QRS Detection Program. **NOTE: The group member who is connected to the ECG should remain

as still as possible.**

You will be using an algorithm known as the Multiplication of Backward Di�erences. As the name

implies, rather than running a forward derivative, we'll be performing a backward derivative (in discrete

time, a derivative is well approximated by a di�erence, i.e. a subtraction.) Those di�erences are then

multiplied, providing a very robust peak detector. The following code will help implement the algorithm.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Lab 8: Heart Rate Meter

PURPOSE: In this lab you will be combining all the work you have done throughout the semester to

create a functional heart rate meter with an LCD screen that displays eight separate modes.

GOAL: To create the �nal mode of your project and combine it with all previous components.

PROCEDURE:

Hardware

1. You will be using the circuit you constructed in Lab 7. If you would like to view a larger ver-

sion of the schematic it can be found in the �le Final Schematic.

TASKS:

1. You will now need to add another mode for the Heart Rate Meter; this mode will correspond to

the data from the QRS Detection. You will also need to write code for the LCD Display:

To do this you must write a function to take points from the input signal, create three consecutive

positive di�erences, take the average, and then create an algorithm which uses this data to display the

beats per minute on your LCD screen.

At this time your program should include the following eight modes:

1. ECG Simulation 2. Echo 3. Derivative 4. LP Filter 5. HP Filter 6. Median Filter 7. 60 Hz

Notch Filter 8. Heart Rate Meter

The names of modes 1 -7 should be displayed on the LCD screen as you switch between modes. Mode

8 should display the name, as well as beats per minute.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Appendix A: Introduction to MPLab -

Learning Exercise

A.1 Creating a New Project in MPLAB

In the MPLABX start-screen, click the Quick Start icon and follow the instructions.

Figure A.1: There are comprehensive instructions to guide you to creating your �rst project successfully.

A.2 Constructing your Circuit and Connecting the Programmer

A schematic for the circuit is shown below:

**Note: Before connecting the PIC, plug in the battery and test to make sure the correct voltages are

visible at the appropriate locations. A clear sign that the wrong voltage is being supplied to the PIC is

the D/A converter will heat up very rapidly. Supplying the wrong voltage to the PIC can permanently

damage it, so continually check voltages throughout your use to prevent this from happening.**

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

39

Figure A.2: Minimum working example (MWE) circuit.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

Appendix B: Oscilloscopes 101

By now, you have undoubtedly seen an oscilloscope. You may even have played a bit with more of the

knobs and buttons than just the auto-set. However, you may not know how to set all the parameters to

insure that you will see the signal you're interested in seeing. For instance, having the oscilloscope set

to AC coupling instead of DC coupling will give a completely di�erent waveform. If that last sentence

has you scratching your head, keep reading.

There is a fairly comprehensive tutorial written by the folks at Tektronix (the company that makes the os-

cilloscopes we use) at www.tek.com/Measurement/App_Notes/XYZs/03W_8605_2.pdf. It's 64 pages long

and worth a look. As shorter, more compact reference can be found at http://oscilloscope-tutorials.

com/Oscilloscope/controls.asp. We'll address some of the key points and most often overlooked set-

tings when using an oscilloscope - and keep it to just a few pages.

B.1 Time Scale

We begin with the time scale setting since this is the one that is most likely to be misunderstood. Each

block on the vertical axis of the oscilloscope (there are grid lines in the horizontal and vertical axes,

called ticks) has a time scale. This means that each block represents a certain period of time. If the time

scale is set to 10 microseconds and there are 10 blocks on the screen, the signal on the screen represents

100 microseconds of the signal. If the signal you are interested in viewing is very long, upwards of a

second (such as a QRS complex), it would be necessary to set the time scale resolution to 0.1 seconds

in a 10 block window.

B.2 Volt Scale

Obviously, the volt scale allows you to make the signal you are viewing appear bigger or smaller as a

result of changing the scale. But what often presents a problem is that the probe you are using may

have a gain setting of 10 times the signal you are using. This is handy if you are measuring really low

amplitude signals, nanovolts or less. But for most signals, your probe should be set to 1 times gain.

Regardless of which setting you are using, make sure the oscilloscope setting matches the same value as

the probe.

B.3 Coupling

There are three types of coupling: AC, DC, and ground coupling. AC coupling allows you to see a signal

at 0 mean (no DC bias or o�set) and allows for faithful representation of an oscillatory signal. If one

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

41

were to have a pure sinusoid that was riding on a 5 volt DC bias and viewed the sinusoid in AC coupling

mode, the signal would appear on the scope to be oscillating about 0 volts. Use this mode if all you

want to view is the oscillatory pattern.

Similarly, if you are viewing DC signals, i.e. signals composed of discrete DC values, you should use DC

coupling. This does not mean that you will not see oscillatory patterns. On the contrary, if your signal

has oscillations but are described at speci�c DC o�sets (like a simulated QRS complex) you will be able

to determine where the signal is rising and falling against its DC o�set. If one were to look at such a

signal in AC coupled mode, the signal would oscillate about 0 volts and would look di�erent than the

DC mode.

Ground coupling literally ties the signal you are trying to measure to ground. It really is just a way to

measure your signal against ground. Remember, ground is a relative term, it may not be 0 volts.

B.4 Trigger

Triggering is very helpful when you want to see a stable waveform. Often, digital oscilloscopes have

di�culty sampling a high-frequency signal fast enough to maintain the waveform structure (�g. B.1).

By setting the moving the trigger cursor (ellipse) up to the waveform, the oscilloscope freezes the

waveform at the �rst rising edge encountered by the cursor (�g. B.2). This oscilloscope, like others,

allows for a host of triggering options.

Similar results can be achieved with the run/stop button. The problem with this approach is that there

is a delay between the time you press the button and the capture. This leads to the possibility of

capturing a portion of the waveform that was not intended.

B.5 Autoset

The longtime favorite of students around the globe. The oscilloscope's software analyzes the signal,

looking for DC bias, rising and falling edges, and frequency content. Once it has these parameters

calculated, it sets the oscilloscope tick spacing (in both voltage and time) and sets the correct type of

coupling, which will generally either be AC or DC. It MAY NOT be the best way to view your signal,

but can often get you close so that your "tuning" will be minimized.

B.6 Other Functions

Some oscilloscopes have a built-in math function that allows you to perform some type of transformation,

such as a Fourier transform (�g. B.3). You typically also have control over where to place your cursors

to allow you to reference your signal in some tighter interval. The more expensive the oscilloscope, the

more options. Measuring very fast signals (high frequency, maybe transient) with high bandwidth often

means very expensive oscilloscopes. For instance, to measure high frequency laser light (10s of gigahertz)

it is not uncommon for oscilloscopes to cost upwards of $100k.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

42

Figure B.1: Waveform appears smeared or blurred.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

43

Figure B.2: Stable waveform.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

44

Figure B.3: Fourier transform of the signal in �gure B.2. Notice that the time scale is set to 500 Hz per
block and the �rst peak occurs at the second block, i.e. 1000 Hz. This is to be expected as the signal
is a 1 kHz square wave. The other peaks are referred to as the harmonics and occur at ODD integer
multiples of the fundamental.

University of Rhode Island, Department of Electrical, Computer, and Biomedical Engineering copyright © 2016All rights reserved. Duplication for
purposes of any kind is strictly forbidden.

