BME362 3 credits , Spring 2021
Lec.: Th 5-7:45PM Beaupre 105 and WebEx
BME363 1 credit , Spring 2021
Labs: Tu, Th 11-1:45PM Fascitelli 110

John DiCecco, PhD

Tel: 401-219-1021 E-mail: diceccoj@ele.uri.edu

Department of Electrical, Computer and Biomedical Engineering University of Rhode Island, Some non-Engineering Building, Kingston, BI 02881

week	date	lecture topics	Reference
1	1/28	introduction to biomedical instrumentation design	Ch. 1, 2
		basic electronics: diodes	
		transistors	
2	2/4	i-v characteristics and bias of transistors	Ch. 2
		transistor circuits	
		noninvasive measurement of arterial oxygen saturation	notes/handout
3	2/11	pulse oximetry, photoplethysmogram (PPG) circuit	notes/handout
		applications of PPG	
		electrical safety: current levels for various electrical hazards	
4	2/18	circuit breaker, ground fault circuit interrupter; CITI training	notes/handout
		FDA regulations on medical devices, IRB, IDE, 510k, PMA	handout
		engineering standards, IEC 60601 Medical electrical equipment	handout
5	2/25	Exam 1	Ch. 3
		AAMI EC11 and other standard examples, CITI certificate due	notes/handout
6	3/4	review of electrocardiogram (ECG) and ECG amplifier	Ch. 3
		amplifiers for biopotentials	Ch. 3
		design with embedded and handheld systems	Ch. 6
7	3/11	introduction to Android Studio IDE and SDK tools	notes/handout
		Java programming for Android devices	
		performance evaluation of QRS detection	
8	3/18	receiver operating characteristic (ROC) analysis	notes/handout
		false positive and false negative, sensitivity and specificity	notes/handout
		introduction to data communication using packet switching	handout
9	3/25	Exam 2	
		TCP/IP and Bluetooth protocols	handout
10	4/1	flow measurement: electromagnetic flow probe, ultrasonic flow	notes/handout
		probe mean flow measurement by indicator dilution method	
		Fick principle for measuring cardiac output	
11	4/8	pacemaker, biventricular pacing, cardioverter defibrillator	handout
		left ventricular assist device (LVAD), artificial heart	
		neuronal action potentials and ionic currents	notes/handout
12	4/15	voltage clamp, current clamp, dynamic clamp, & patch clamp	notes/handout
		the Universal Clamp project	
		DNA sequencing technologies	
13	4/22	microarray technologies	
		microfluidic systems, polydimethylsiloxane (PDMS) devices	notes/handout
		biochips for point-of-care diagnostics	
14	4/29	Distribute Exam $#3$ (return by 5/6)	

Text 1: Medical Instrumentation: Application and Design, John G. Webster (Ed.), Any edition. **NOTE** This is the same textbook used in BME 360.

Text 2: Diodes and Transistors - University of California, Berkeley, Dept. EECS, 2007. **Grading**: Exam #1 (33%), Exam # 2 (33%), Exam # 3 (34%). Open book, notes.

Catalog Description

BME 362: Fundamentals of diagnostic and therapeutic devices, engineering standards, and regulations for medical devices; basic electronics, safety, noise rejection, and biomedical signal processing; design of embedded and handheld systems. (Lec. 3); Pre: (BME 360 and BME 361) or permission of instructor.

BME 363: Hands-on applications of electronics, embedded and handheld devices to biomedical instrumentation systems including electrocardiogram, photoplethysmogram, motion sensor, and electronic stethoscope. (Lab. 3) Prerequisites: Concurrent enrollment in BME 362 or permission of instructor.

ABET Student Outcomes

BME 362:

A: an ability to apply knowledge of mathematics, science, and engineering B: an ability to design and conduct experiments, as well as to analyze and interpret data F*: an understanding of professional and ethical responsibility (* assessment data required) J: a knowledge of contemporary issues

BME 363:

B: an ability to design and conduct experiments, as well as to analyze and interpret data C*: an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

D*: an ability to function on multidisciplinary teams

G*: an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

(* indicates that assessment data will be collected.)

Laboratories

- 1. PIC18F4525 Breadboard Upgrade
- 2. Intro to Android Studio / Waveform Display
- 3. Photoplethysmogram (PPG) Circuit
- 4. BMI Calculation
- 5. Mode Change Button on Android
- 6. Beat-to-Beat Heart Rate from PPG
- 7. Real-time Video Processing

Classroom Protocol

Our course webpages are at https://www.ele.uri.edu/courses/bme362/ and https://www.ele.uri.edu/course which will be constantly updated for handouts, announcements, and sample exams.

Accommodations for Special Needs

Any student with a documented disability is welcome to contact me as early in the semester as possible so that we may arrange reasonable accommodations. As part of this process, please be in touch with Disability Services for Students Office at 302 Memorial Union, Phone 401-874-2098.