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Nuclear Magnetic Resonance (NMR) is a nuceli (Nuclear) specific spectroscopy that has far reaching
applications throughout the physical sciences and industry. NMR uses a large magnet (Magnetic) to
probe the intrinsic spin properties of atomic nuclei. Like all spectroscopies, NMR uses a component of
electromagnetic radiation (radio frequency waves) to promote transitions between nuclear energy
levels (Resonance). Most chemists use NMR for structure determination of small molecules. 

Introduction

In 1946, NMR was co-discovered by Purcell, Pound and Torrey of Harvard University and Bloch,
Hansen and Packard of Stanford University. The discovery first came about when it was noticed that
magnetic nuclei, such as 1H and 31P (read: proton and Phosphorus 31) were able to absorb radio
frequency energy when placed in a magnetic field of a strength that was specific to the nucleus. Upon
absorption, the nuclei begin to resonate and different atoms within a molecule resonated at different
frequencies. This observation allowed a detailed analysis of the structure of a molecule. Since then,
NMR has been applied to solids, liquids and gasses, kinetic and structural studies, resulting in 6 Nobel
prizes being awarded in the field of NMR. More information about the history of NMR can be found in
the NMR History page. Here, the fundamental concepts of NMR are presented.

A brief historical account of the Nobel Prize Laureates clearly shows the track of the discovery,
development, and applications of NMR spectroscopy.

1. Otto Stern, USA: Nobel Prize in Physics 1943, "for his contribution to the development of
molecular ray method and his discovery of the magnetic moment of the proton"

2. Isidor I. Rabi, USA: Nobel Prize in Physics 1944, "for his resonance method for recording the
magnetic properties of atomic nuclei"

3. Felix Bloch, USA and Edward M. Purcell, USA: Nobel Prize in Physics 1952, "for their
discovery of new methods for nuclear magnetic precision measurements and discoveries in
connection therewith"

4. Richard R. Ernst, Switzerland: Nobel Prize in Chemistry 1991, "for his contributions to the
development of the methodology of high resolution nuclear magnetic resonance (NMR)
spectroscopy

5. Kurt Wüthrich, Switzerland: Nobel Prize in Chemistry 2002, "for his development of nuclear
magnetic resonance spectroscopy for determining the three-dimensional structure of biological
macromolecules in solution"

6. Paul C. Lauterbur, USA and Peter Mansfield, United Kingdom: Nobel Prize in Physiology or
Medicine 2003, "for their discoveries concerning magnetic resonance imaging"

Theory
Spin and Magnetic Properties

The nucleus consists of elementary particles called neutrons and protons, which contain an intrinsic
property called spin. Like electrons, the spin of a nucleus can be described using quantum numbers of
I for the spin and m for the spin in a magnetic field. Atomic nuclei with even numbers of protons and
neutrons have zero spin and all the other atoms with odd numbers have a non-zero spin. Furthermore,



all molecules with a non-zero spin have a magnetic moment, μ, given by μ �� γI, where γ is the
gyromagnetic ratio, a proportionality constant between the magnetic dipole moment and the angular
momentum, specific to each nucleus. The gyromagnetic ratios for several common nuclei is listed
below.

Nuclei Spin Gyromagetic
Ratio (MHz/T)

Natural
Abundance (%)

1H 1/2 42.576 99.9985

13C 1/2 10.705 1.07
31P 1/2 17.235 100
27Al 5/2 11.103 100
23Na 3/2 11.262 100
7Li 3/2 16.546 92.41

29Si 1/2 -8.465 4.68

17O 5/2 5.772 0.038
15N 1/2 -4.361 0.368

The magnetic moment of the nucleus forces the nucleus to behave as a tiny bar magnet. In the
absence of an external magnetic field, each magnet is randomly oriented. During the NMR experiment
the sample is placed in an external magnetic field, B�, which forces the bar magnets to align with (low
energy) or against (high energy) the B�. During the NMR experiment, a spin flip of the magnets
occurs, requiring an exact quanta of energy. To understand this rather abstract concept it is useful to
consider the NMR experiment using the nuclear energy levels.

Figure 1. Application of a magnetic field to a
randomly oriented bar magnet. The red arrow
denotes magnetic moment of the nucleus. The
application of the external magnetic field aligns the
nuclear magnetic moments with or against the
field.

Nuclear Energy Levels
As mentioned above, an exact quanta of energy must be used to induce the spin flip or transition. For
any m, there are 2m+1 energy levels. For a spin 1/2 nucleus, there are only two energy levels, the low
energy level occupied by the spins which aligned with B��and the high energy level occupied by spins
aligned against B0. Each energy level is given by

E=−mℏγB0
where m is the magnetic quantum number, in this case +/- 1/2. The energy levels for m>1/2, known as 
quadrupolar nuclei, are more complex. The energy difference between the energy levels is then

ΔE=ℏγB0
where ��is Planks constant = 6.62606957 × 10-34 m2 kg / s.

A schematic showing how the energy levels are arranged for a spin=1/2 nucleus is shown below. Note
how the strength of the magnetic field plays a large role in the energy level difference. In the absence
of an applied field the nuclear energy levels are degenerate. The splitting of the degenerate energy
level due to the presence of a magnetic field in known as Zeeman Splitting.



Figure 2: The splitting
of the degenerate
nuclear energy levels
under an applied
magnetic field. The
green spheres
represent atomic nuclei
which are either aligned
with (low energy) or
against (high energy)
the magnetic field.

Energy Transitions (Spin Flip)
In order for the NMR experiment to work, a spin flip between the energy levels must occur. The energy
difference between the two states corresponds to the energy of the electromagnetic radiation that
causes the nuclei to change their energy levels. For most NMR spectrometers, B�� is on the order of
Tesla (T) while γ is on the order of ���. Consequently, the electromagnetic radiation required is on the
order of Hz. The energy of a photon is represented by

E=hν
and thus the frequency necessary for absorption to occur is represented as:

ν=
γB0
2π

For the beginner, the NMR experiment measures the resonant frequency that causes a spin flip. For
the more advanced NMR users, the sections on NMR detection and Larmor frequency should be
consulted.

Figure 3: Absorption of radio frequency
radiation to promote a transition
between nuclear energy levels, called a
spin flip.

Nuclear Shielding
The power of NMR is based on the concept of nuclear shielding, which allows for structural
assignments. Every atom is surrounded by electrons, which orbit the nucleus. Charged particles
moving in a loop will create a magnetic field which is felt by the nucleus. Therefore the local electronic
environment surrounding the nucleus will slightly change the magnetic field experienced by the
nucleus, which in turn will cause slight changes in the energy levels! This is known as shielding. Nuclei
that experinece differnet magnetic fields due to the  local electronic interactions are known as
inequivalent nuclei. The change in the energy levels requires a different frequency to excite the spin
flip, which as will be seen below, creates a new peak in the NMR spectrum. The shielding allows for
structural determination of molecules.



Figure 4: The effect that
shielding from electrons has on
the splitting of the nuclear energy
levels. Electrons impart their own
magnetic field which shields the
nucleus from the externally
applied magnetic field. This
effect is greatly exaggerated in
this illustration.

NMR Spectrum
The shielding of the nucleus allows for chemically inequivalent environments to be determined by
Fourier Transforming the NMR signal. The result is a spectrum, shown below, that consists of a set of
peaks in which each peak corresponds to a distinct chemical environment. The area underneath the
peak is directly proportional to the number of nuclei in that chemical environment. Additional details
about the structure manifest themselves in the form of different NMR interactions, each altering the
NMR spectrum in a distinct manner. The x-axis of an NMR spectrum is given in parts per million
(ppm). 

Figure 5: 31P spectrum of phosphinic
acid. Each peak corresponds to a
distinct chemical environment while the
area under the peak is proportional to
the number of nuclei in a given
environment.

Relaxation
Relaxation refers to the phenomenon of nuclei returning to their thermodynamically stable states after
being excited to higher energy levels. The energy absorbed when a transition from a lower energy
level to a high energy level occurs is released when the opposite happens. This can be a fairly
complex process based on different timescales of the relaxation. The two most common types of
relaxation are spin lattice relaxation (T1) and spin spin relaxation (T2). 

Figure 6: The process of relaxation

To understand relaxation, the entire sample must be considered. By placing rhe nuclei in an external
magnetic field, the nuclei create a bulk magnetization along the z-axis. The spins of the nuclei are also
coherent. The NMR signal may be detected as long as the spins are coherent with one another. The
NMR experiment moves the bulk magnetization from the z-axis to the x-y plane, where it is detected.



Spin-Lattice Relaxation (T1)
T1 is the time it takes for the 37% of bulk magnetization to recovery along Z-axis from the x-y plane.
The more efficient the relaxation process, the smaller relaxation time (T1) value you will get. In solids,
since motions between molecules are limited, the relaxation time (T1) values are large. Spin-lattice
relaxation measurements are usually carried out by pulse methods. 

Spin-Spin Relaxation (T2)
T2 is the time it takes for the spins to lose coherence with one another. T2 can either be shorter or
equal to T1.

Applications
The two major areas where NMR has proven to be of critical importance is in the fields of medicine 
and chemistry, with new applications being developed daily

Medicine
Nuclear magnetic resonance imaging, better known as magnetic resonance imaging (MRI) is an
important medical diagnostic tool used to study the function and structure of the human body. It
provides detailed images of any part of the body, especially soft tissue, in all possible planes and has
been used in the areas of cardiovascular, neurological, musculoskeletal and oncological imaging.
Unlike other alternatives, such as computed tomography (CT), it does not used ionized radiation and
hence is very safe to administer.

Figure 7: 1H MRI of a human head showing the soft tissue such as
the brain and sinuses. The MRI also clearly shows the spinal column
and skull.

Chemistry
In many laboratories today, chemists use nuclear magnetic resonance
to determine structures of important chemical and biological
compounds. In NMR spectra, different peaks give information about
different atoms in a molecule according specific chemical
environments and bonding between atoms. The most common
isotopes used to detect NMR signals are 1H and 13C but there are
many others, such as 2H, 3He, 15N, 19F, etc., that are also in use. 

Other Fields
NMR has also proven to be very useful in other area such as environmental testing, petroleum
industry, process control, earth’s field NMR and magnetometers. Non-destructive testing saves a lot of
money for expensive biological samples and can be used again if more trials need to be run. The
petroleum industry uses NMR equipment to measure porosity of different rocks and permeability of
different underground fluids. Magnetometers are used to measure the various magnetic fields that are
relevant to one’s study.



Problems
1. Calculate the magnetic field, B� that corresponds to a precession frequency of 600 MHz for 1H.
2. What is the field strength (in tesla) needed to generate a 1H frequency of 500 MHz?
3. How do spin-spin relaxation and spin-lattice relaxation differ from each other?
4. The 1H NMR spectrum of toluene shows that it has two peaks because of methyl and aromatic 

protons recorded at 60 MHz and 1.41 T. Given this information, what would be the magnetic 
field at 400 MHz? 

5. What is the difference between 13C and 1H NMR?

Solutions
1. B� = 14.1 T.
2. Using the equation used in problem 1 and solving it for B� we get a field strength of 11.74 T.
3. Look under relaxation.
4. Since we know that the NMR frequency is directly proportional to the magnetic strength, we

calculate the magnetic field at 400 MHz: B� = (400 MHz / 60MHz) x 1.41 T = 9.40 T.
5. Look under applications.
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Price

Here is a used one, for example, asking for
$29,995:  Bruker DSX-300WB NMR
system. Capabilities include liquid and
solid state NMR and NMR micro-imaging,
which includes:

Bruker (SPE) Solid Phase Extraction
dispense ProSPEKT-2

Bruker BMSO-unit
Bruker (DAD) diode array detector
Bruker Avance 300MHz NMR magnet
Bruker Avance Digital NMR controllers
Bruker HPPR Signal Preamplifier
Two (2) Computers w/TopSpin and HyStar

software
10-12 probes, numerous cables, numerous

books and manuals, large volume of extra parts, transfer tubes, shims, dewar, chiller, etc.
NMR magnet has been professional decommissioned. Magnet/consoles/probes/parts will be 

professionally custom boxed/crated for shipping. We can recommend qualified 
installing/commissioning companies for the system.


