Negative Capacitance – Using Positive Feedback to Compensate for Microelectrode Capacitance

Ying Sun

The standard technique for recording action potentials from a neuron is to insert a microelectrode, which is made from a glass pipette by using an electrode puller. The microelectrode tapers and becomes very small at the tip (~1 μ m). The microelectrode has a large resistance R_e as well as a large stray capacitance C_e with respect to the surrounding bath solution.

The equivalent circuit is shown on the right, where $R_m =$ membrane resistance, $C_m =$ membrane capacitance, $v_s =$ voltage signal to be measured, and $v_i =$ input voltage to the amplifier. The equivalent circuit can be further reduced, where the source impedance Z_s includes R_e , R_m and C_m . If v_s is a square pulse, v_i would show a low-pass filtered waveform because of the presence of C_e . To recover the lost higher frequency components, an amplifier is designed such that the output voltage v_o resembles v_s v_s , as illustrated.

A technique typically used for this situation is based on a positive feedback circuit that creates a "negative capacitance" to cancel out C_e . As shown in the equivalent circuit, the gain of the amplifier is A_v , where $v_o = A_v \times v_i$. A positive feedback is created by connecting C_f from the output to the positive input terminal of the amplifier.

Let *i* be the current through C_f , we have

$$v_{i} = v_{o} + \frac{1}{C_{f}} \int i \, di = A_{v} v_{i} + \frac{1}{C_{f}} \int i \, di$$

$$(1 - A_{v}) v_{i} = \frac{1}{C_{f}} \int i \, di \implies v_{i} = \frac{1}{(1 - A_{v})C_{f}} \int i \, di$$
where $A_{v} = \frac{1}{C_{f}} \int i \, di \implies 1 = -\frac{1}{1}$

Choose $A_v = 1 + \frac{C_e}{C_f} \implies \frac{1}{(1 - A_v)C_f} = \frac{1}{-C_e}$.

The final equivalent circuit is shown on the right, where the negative capacitance $-C_e$ cancels out the electrode capacitance C_e , if the gain of the positive feedback A_v is properly set.

The gain should be set at $A_v = 1 + C_e/C_f$ in order to reproduce the square wave. Too low or too high a gain would affect the wave shape as shown on the right.

