Transistor Circuits

Ying Sun's Lecture Notes

Choose $R_L = 620 \Omega$, voltage across R_L is 10 mA x 620 = 6.2 V. $V_{CE} = 5$ V at the operating point, voltage across R_E is given by $V_{CC} - 6.2$ V $- V_{CE} = 0.8$ V. Thus, R_E should be set at 0.8 V / 10 mA = 80 \Omega. The bias current I_{bias} is typically set at 10 times of I_B, or 1 mA. V_{BE} is a constant voltage of 0.7 V. Thus, R_2 is (0.8 V + 0.7 V) / 1 mA = 1.5 K Ω . R_1 should be set at (12 V - 1.5 V) / (1 mA + 100 uA) = 9.5 K Ω . The voltage gain is given by: $A_{VE} = \frac{V_{Out}}{2} = \frac{\Delta V_C}{2} = -\frac{R_L}{2} = -6200 / (800 = -7.75)$

$$A_V = \frac{V_{01}}{V_{in}} = \frac{\Delta V_C}{\Delta V_B} = -\frac{R_C}{R_E} = -620\Omega / 80\Omega = -7.75$$

For the AC part (small-signal analysis), the two capacitors block the DC bias voltages from the input and the output. Vout is 180⁰ out of phase with Vin. RE serves as a negative feedback for this amplifier. More on next page.

Small-Signal Analysis

The I-V characteristics of a transistor is highly nonlinear. However, if the transistor is biased at an appropriate operating point with DC voltages, a linear input-output relationship can be achieved for small-magnitude AC signals. Thus, this is called the small-signal analysis.

Transistor as a Switch

We use the buzzer circuit on our PIC board as an example. V_{BE} is always 0.7 V. So I_B = $(5V - 0.7V) / 10 \text{ K}\Omega = 430 \text{ }\mu\text{A}$, which sets the transistor into saturation or "turns it on". At saturation, V_{CE} is 0.2 V and I_C is about 20 mA. I_{LED} = $(5V - 0.7V - 0.2V) / 470 \Omega = 2.5 \text{ mA}$. I_{buzz} = 20 mA - 2.5 mA = 17.5 mA. A 5V buzzer is typically rated at 20 mA. Thus, this transistor switch provides a sufficient current to turn on the buzzer as well as the LED.

The transistor can operate in the nonlinear regions (cut-off and saturation), which acts like an on-off switch.

