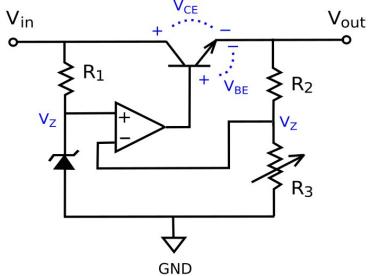
Voltage Regulator Example

Ying Sun


Voltage Regulator Circuit

V_{in} is 9V. We want to regulate V_{out} at **o**-5V. We use a zener diode of 3.3 V as shown in the attached data sheet.

1) Determine R₁.

 R_1 provides the bias current to keep the zener diode at the constant breakdown voltage V_Z . According to the data sheet, for $V_Z = 3.3$ V, the operating current I_{ZT} Should be 76 mA. Thus,

$$R_1 = \frac{V_{\rm in} - 3.3 \, V}{76 \, \text{mA}} = 75 \, \Omega$$

2) If R_2 is chosen to be 10 $K\Omega$, what should R_3 be?

$$V_Z = V_{\text{out}} \frac{R_3}{R_2 + R_3} \implies R_3 = \frac{R_2 V_Z}{V_{\text{out}} - V_Z} = 10 \, K \, \Omega \, \frac{3.3 \, V}{5.0 \, V - 3.3 \, V} = 19.4 \, K \, \Omega$$

Thus, R_3 should be set at 19.4 $K\Omega$.

Zener Diode

1N4728A-1N4764A

Features:

- High reliability.
- · Very sharp reverse characteristic.
- Low reverse current level.
- V₇-tolerance ±5%.

Applications:

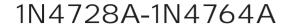
Voltage stabilization

Absolute Maximum Ratings $T_i = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Power dissipation	T _{amb} ≤ 50°C	P _v	1	W
Z-current	-	I _z	P_v/V_z	mA
Junction temperature	-	T _j	200	°C
Storage temperature range	-	T _{stg}	-65 to +175	

Maximum Thermal Resistance $T_i = 25^{\circ}C$

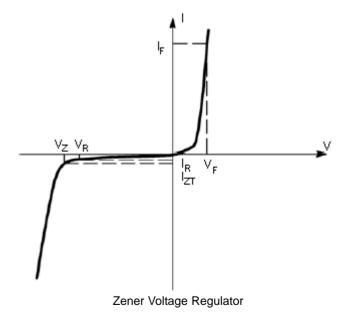
Parameter	Test Conditions	Symbol	Value	Unit
Junction ambient	$I = 9.5$ mm (3/8 inches) $T_L = constant$	R_{thJA}	100	K/W


Stresses exceeding maximum ratings may damage the device. Maximum ratings are stress ratings only. Functional operation above the recommended operating conditions is not implied. Extended exposure to stresses above the recommended operating conditions may affect device reliability.

Electrical Characteristics $T_j = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Maximum	Unit
Forward voltage	I _F = 200mA	V _F	1.2	V

Zener Diode

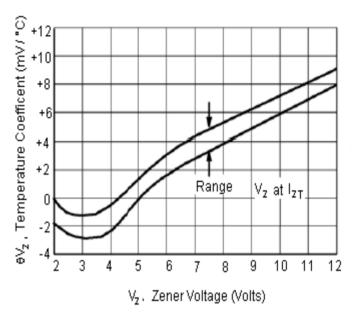

Specification Table

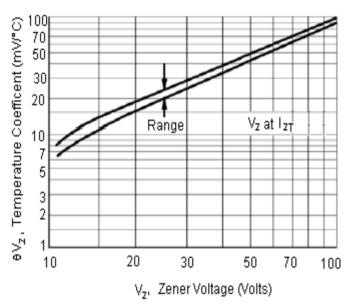
Description	V _{Znom} 1)	I _{ZT}	for r _{ziT}	r _{ziK} :	at I _{ZK}	I _R a	t V _R	Part Number	
Description	V	mA	Ω	Ω	mA	μА	V Part Number		
Zener Diode	3.3	76	< 10			< 100		1N4728A	
Zener Diode	3.6	69	_ < 10	< 400		< 100		1N4729A	
Zener Diode	3.9	64	< 9			< 50	1	1N4730A	
Zener Diode	4.7	53	< 8	< 500	1			1N4732A	
Zener Diode	5.1	49	< 7	< 550	0	'			1N4733A
Zener Diode	5.6	45	< 5	< 600					2
Zener Diode	6.2	41	< 2	- < 700				3	1N4735A
Zener Diode	6.8	37	< 3.5				< 10	4	1N4736A
Zener Diode	7.5	34	< 4					5	1N4737A
Zener Diode	8.2	31	< 4.5			0.5		6	1N4738A
Zener Diode	9.1	28	< 5					7	1N4739A
Zener Diode	10	25	< 7	1	0.25	1	7.6	1N4740A	
Zener Diode	62	4	< 125	< 2000	0.25	< 5	47.1	1N4759A	

¹⁾ Based on DC-measurement at thermal equilibrium while maintaining the lead temperature (T_L) at 30°C, 9.5mm (3/8 inches) from the diode body.

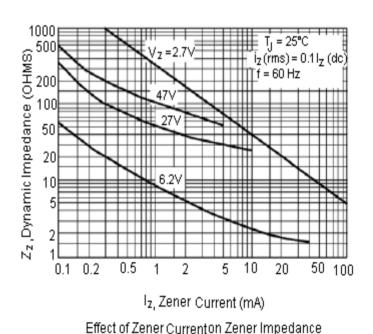
Characteristics ($T_j = 25$ °C unless otherwise specified)

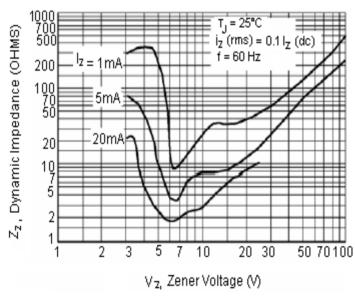
Symbol	Parameter		
V _Z	Reverse zener voltage at I _{ZT}		
I _{ZT}	Reverse current		
Z _{ZT}	Maximum zener impedance at I _{ZT}		
I _{ZK}	Reverse current		
Z_{ZK}	Maximum zener impedance at I _{Zk}		
I _R	Reverse leakage current at V _R		
V_R	Breakdown voltage		
I _F	Forward current		
V _F	Forward voltage at I _F		




Zener Diode

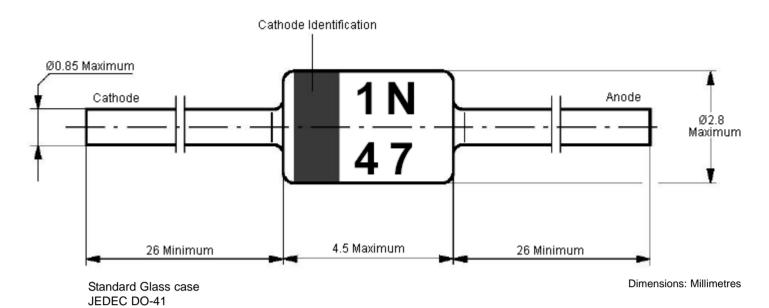
1N4728A-1N4764A


Characteristics (T_i = 25°C unless otherwise specified)

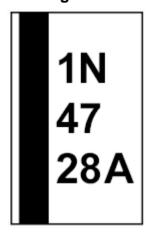


Temperature Coefficients

(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)



Effect of Zener Voltage on Zener Impedance



Zener Diode 1N4728A-1N4764A

Marking

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2011.

