
Arduino
in a Nutshell
Jan Borchers

Version 1.6 (Jan 24, 2013)

 for Arduino Uno R3 & Arduino IDE 1.0.3

Latest version at: hci.rwth-aachen.de/arduino

http://hci.rwth-aachen.de/borchers
http://hci.rwth-aachen.de/borchers

ACKNOWLEDGEMENTS

Thanks to Jeff and Drake for playing with the

Arduino last night, and almost completing our

plans for world domination through an army of

robots doing our bidding (insert finger wiggling

and evil laugh here). I wrote this booklet in

about four hours after getting home last night,

and illustrated it this morning. It closely follows

our adventures into Arduinoland.

The Arduino team continues to do an awesome job

providing this easy-to-use electronics platform, and all

schematics were created using the excellent software

from Fritzing.org. Jim Hollan at UCSD is a great host,

and my students back in Germany are bravely suffering

through (enjoying?) the time with me away on sabbatical.

This booklet is dedicated to Ina who is always

wonderfully supportive of her geek.

San Diego, Aug 9, 2012

For great feedback, thanks to the arduino-teachers,

Sketching In Hardware and i10 mailing lists, especially

CTP, David Mellis (Arduino), Gerald Ardito, Jonathan

Oxer (shieldlist), Linz Craig (SparkFun), Michael Shiloh,

Nick Ward, Patricia Shanahan, and Thorsten Karrer!

2 Arduino in a Nutshell

I. INTRODUCTION

The Arduino is a family of

microcontroller boards to simplify

electronic design, prototyping

and experimenting for artists,

hackers, hobbyists, but also many

professionals. Use it as brains for your robot, to build a

new digital music instrument, or to make your house plant

tweet you when it’s dry. Know a little programming, but

no electronics? This book will get you started quickly.

Arduinos (we use the standard Arduino Uno R3) contain

an ATmega microcontroller — that’s a complete computer

with CPU, RAM, Flash memory, and input/output pins,

all on a single chip. Unlike, say, a Raspberry Pi, it’s

designed to attach all kinds of sensors, LEDs, small

motors and speakers, servos, etc. directly to these pins,

which can read in or output digital or analog voltages

between 0 and 5 volts. The Arduino connects to your

computer via USB, where you program it in a simple

language (C/C++, similar to Java) inside the free

Arduino IDE by uploading your compiled code to the board.

Once programmed, the Arduino can run with the USB

link back to your computer, or stand-alone without it —

no keyboard or screen needed, just power.

Arduino in a Nutshell 3

II.!GETTING STARTED:
! ! BLINK AN LED!

1.Get the MAKE Ultimate Micro-

controller Pack with an Arduino Uno

R3 from makershed.com or your local RadioShack

($149). Also get a standard USB A-B cable and a 9V

battery. Or, for just the parts we’ll use here, get the

Wish List at sparkfun.com/wish_lists/46366 ($64).

SparkFun’s Inventor’s Kit or Adafruit’s Experimenta-

tion Kit also have most parts we need, and more.

2. Download and install the Arduino IDE for Mac, Linux

or Windows from arduino.cc. Windows users also

need to install a driver .INF file, see the website.

3. Connect your board via USB, launch the Arduino

app, select Arduino Uno from the Tools:Board menu,

select the new serial port from Tools: Serial Port

(/dev/tty.usbmodem... on Macs), open the sketch

(program) File:Examples:01.Basics:Blink, and click the

➲ toolbar button to upload it to your board.

After some flickering, its tiny yellow LED should blink

regularly (1 second on, 1 second off). You’ve

programmed your first microcontroller! Change the

durations in delay() and upload to see the effect.

4 Arduino in a Nutshell

http://www.makershed.com/Ultimate_Microcontroller_Pack_p/msump.htm
http://www.makershed.com/Ultimate_Microcontroller_Pack_p/msump.htm
https://www.sparkfun.com/wish_lists/46366
https://www.sparkfun.com/wish_lists/46366
http://arduino.cc
http://arduino.cc

III. RUN WITHOUT A COMPUTER

1. Disconnect the USB cable from your board.

2. Put the 9V battery into the battery case (takes some

fiddling).

3. Plug the barrel plug from the battery case into the

round socket on the Arduino, and turn on the switch

on the battery case if it has one.

4. Your sketch starts running as soon as the board is

powered up, and the LED blinks, until you turn off

power — no computer needed! That’s a great way to

build small, autonomous systems around an Arduino.

The Arduino converts the 9V from the battery down to 5V

using a regulator on the board. You can also connect

anything from 7–12 volts DC to the barrel plug socket

(2.1 mm / 5.5 mm diameter, center positive), or stick

cables directly into the Vin and GND (Ground) pins to

power the board from 7–12 volts — great if you don’t

have a barrel plug on your power source.

Don’t attach a 5V power source directly to the +5V pin

though — it’s a voltage output pin only, and you may fry

your onboard regulator. Use the USB connector instead.

Arduino in a Nutshell 5

IV. CONNECT A BIG LED

1.Always disconnect or turn

off your power source before

you change your circuit to

avoid shorts. They may shut

down your USB port, or

worse.

2. Bend and stick the longer lead (+) of any red, yellow

or green LED into Digital Pin 13 on the Arduino. Stick

its shorter lead (—) into the GND pin next to pin 13,

as shown.

3. Connect USB — now your big LED blinks too.

The “Blink” sketch outputs a high signal (5V) on pin 13

using digitalWrite(led,HIGH); waits for 1000 ms (1 s)

using delay(1000); then outputs a low signal (0V) and

waits another second. This makes your LED blink. The

yellow onboard LED is also connected to pin 13, so it

blinks along.

Every Arduino sketch has one setup() method that runs

once whenever the Arduino powers up or resets, and a

loop() function that is repeated after that until the board

is powered off or reset again. No OS, no multiple apps!

6 Arduino in a Nutshell

Made with Fritzing.org

V. ADD A RESISTOR

Connecting an LED directly to 5V and GND will usually

fry it because of too much current flowing through it. It

survived only because the Arduino can’t provide more

than 40 mA (milliamps) of current on each pin.

That’s still more than the 20 mA standard LEDs like and

need, however. LEDs also drop (consume) around 2V of

“forward” voltage (Vf). For precise values, google, e.g.,

“SparkFun red 5mm LED” (SparkFun sells great basic

components and documents them well). To limit the

current, add a resistor before or after the LED.

What’s the right resistor value? The Arduino pins provide

5V. 2V are dropped by the LED. That leaves 3V to drop

over the resistor, at a current of 20 mA. Ohm’s law (I use

the picture on the right to remember it) says

U (voltage) = R (resistance) x I (current), or

R = U / I = 3 V / 20 mA = 3 V / 0.02 A = 150 Ω.

Choose the next bigger resistor you have; in our case it’s

330 Ω (Orange–Orange–Brown–Gold). Use the color

code table in the Make Pack booklet, google “resistor

color codes”, or get Adafruit’s simple Circuit Playground

app or the comprehensive Electronic Toolbox Pro app for

your iPhone/iPad.

Arduino in a Nutshell 7

 U
 R I

http://www.sparkfun.com
http://www.sparkfun.com
http://adafruit.com/circuitplayground
http://adafruit.com/circuitplayground
http://itunes.apple.com/us/app/electronic-toolbox-pro/id339158729?mt=8
http://itunes.apple.com/us/app/electronic-toolbox-pro/id339158729?mt=8

Disconnect USB. In the mini

solderless breadboard, each

vertical column of 5 holes is

connected inside the board.

Stick the LED, 330 Ω resistor

and jumper wires in as shown.

Current will now flow from

Arduino pin 13 through the

resistor and the LED to GND

when pin 13 is HIGH.

Connect USB. Your LED will glow slightly less bright than

before, but will last forever. The current is now around 3

V / 330 Ω = 9 mA. Current is the same everywhere in a

simple closed circuit without branches. So it doesn’t

matter if you put the resistor before or after the LED.

8 Arduino in a Nutshell

Made with Fritzing.org

Tip: Always use red wires for connections to 5V, black

wires for connections to GND, and other colors using a

schema you like. I use yellow wires for outputs to LEDs,

green wires for outputs to motors and servos, and blue

wires for sensor inputs. It’ll help avoid confusion, short-

circuits, and fried components. Trust me; I’ve been there.

VI.!DIGITAL INPUT:
! ! ! READ A BUTTON

Disconnect USB. Add a

pushbutton, 10 kΩ resistor

(Brown—Black—Orange—

Gold) and wires as shown.

Orient the button so the pins

that are closer are next to

each other. These connect

when you push it; the pins

below each other are

always connected.

Change the Blink code so it only blinks the LED while pin

2 is LOW: Define a global integer (int) variable

pushbutton. Set it to 2 in your setup(). In your loop()

code, use if (digitalRead(button)==LOW) {...}. Don’t

forget the curly braces and the double equal sign. Now,

the LED will only blink while you press the pushbutton!

We are using pin 2 as a digital input to detect if its

voltage is closer to GND or 5V. Every digital pin 0..13

can be an input or output pin. While input is the default,

it’s good style to add pinmode(pushbutton,INPUT); to

your setup() function to make it more readable.

Remember to end each statement with a semicolon.

Arduino in a Nutshell 9

Made with Fritzing.org

The 10 kΩ resistor is a pullup resistor. It provides a

defined voltage (5V) to pin 2 when the button switch is

open (it “pulls it up to 5V”). Otherwise pin 2 would be

connected to nothing, or “floating”, and pick up random

electromagnetic noise like an antenna, leading to

unpredictable HIGH/LOW values when you read it.

When you push the button, it pulls pin 2 low (connects it

to GND = 0V), and a small current flows through the

resistor and switch to GND. All 5V then “drop” across

the resistor. Arduino inputs themselves just “measure” the

voltage on their pins while consuming hardly any current.

VII. INTERNAL PULLUP RESISTORS

Remove the 10 kΩ pullup resistor from the board. Now

your LED may be blinking or not, since pin 2 is floating.

Change setup() to say pinMode(button, INPUT_PULLUP);

and upload. This connects an internal pullup resistor to

that pin inside the ATmega chip. It works like your

external pullup resistor, but you can simplify your circuit.

10 Arduino in a Nutshell

Tip: For help with any function, click on it, then select the

Help:Find In Reference menu. I also use the language

reference at arduino.cc/en/Reference a lot; more

tutorials are at arduino.cc/en/Tutorial/Foundations.

http://arduino.cc/en/Reference
http://arduino.cc/en/Reference
http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Tutorial/Foundations

VIII.! READING ANALOG
! ! ! ! ! VALUES

Disconnect USB. Remove the

pushbutton and connect a

force-sensitive resistor, the

10 kΩ resistor and wires to

analog input A0 as shown.

You’ve created a voltage

divider. Normally the force

sensor has a resistance much

higher than 10 kΩ, so A0 gets

pulled to near 0V by the

10 kΩ resistor. Press on the

force sensor, and you lower its

resistance. It can go way

below 10 kΩ, and the voltage on A0 then goes up to

almost 5V. So: more pressure — higher voltage. That’s

how you can read continuous (analog) values.

Load File:Examples:03. Analog:AnalogInput. It uses

analogRead(...) to read the voltage on A0, and turns the

LED on and off with a delay determined by that voltage

— the harder you press, the slower the LED will blink.

analogRead() returns values from 0 (0V) to 1023 (5V).

Arduino in a Nutshell 11

Made with Fritzing.org

IX. DEBUGGING USING SERIAL OUTPUT

It’s hard to really see what values you’re getting from the

force sensor through the analog pin just by looking at the

blink frequency of that LED. To see the actual numbers,

open File:Examples:01.Basics:AnalogReadSerial. Upload

it, then click on the magnifier toolbar button in the top

right to open the Serial Monitor

window. You’ll see values

changing as you press the sensor.

The code uses Serial.begin(9600) to open a serial

connection back to your computer in setup(), and

Serial.println(...) to output (“print”) numbers to that serial

connection, which end up in the Serial Monitor window

on your screen. It’s also possible to send data back to

the Arduino that way, using Serial.read(...).

12 Arduino in a Nutshell

X.! ANALOG OUTPUT
! ! ! AND PWM

Disconnect USB. Move the

yellow wire from pin 13 to pin

11. Pin 11 has a tilde (~) on

the board, which means it can

output analog values.

Change your loop() to control

the LED with analogWrite(...).

Analog values for output go

from 0 to 255, not 1023, so

divide the value from

analogRead(...) by 4 before

writing it to the LED pin.

Connect USB and upload your code. Now

you can control the brightness of your LED

by pressing on the force sensor.

Arduino uses Pulse-Width Modulation (PWM) to create

analog values — it’ll turn the output on (5V) and off (0V)

at 500 Hz, and increase the duty cycle (relative on-time)

of that square wave signal to represent higher analog

values. 500 Hz is too fast for the human eye, so the LED

looks like it’s always on, just more or less bright.

Arduino in a Nutshell 13

Made with Fritzing.org

XI.! CONTROLLING
! ! ! SERVOS

Disconnect USB, and add a

servo to your setup:

Connect its black or dark

brown lead to GND, its red

lead to 5V, and its orange,

yellow or white lead (the

“signal” lead) to pin 9, by

sticking jumper wires into

the servo connector.

Load the sample sketch

File:Examples:Servo:Knob

(it’s further down in the

list). Instead of the

potentiometer (an adjustable resistor) mentioned in the

code we’ll just use the force sensor voltage divider we

already have to provide an analog value to input A0.

Run the code, and you can control the angular turning

position of the servo by pressing on the sensor.

Internally, servos are also controlled by PWM — the

longer the signal, the further to the right they turn,

usually in a range of 0..180 degrees.

14 Arduino in a Nutshell

Made with Fritzing.org

However, the Servo library for Arduino takes care of all

this. Note the #import statement, the Servo object

declaration, and how the sample code then sends data to

the servo using angular values. You can easily declare,

create, and control two or more Servo objects this way —

essential for your robot!

Servos can take around 0.5–1s to reach their target

position. For a simple walking movement, you can just

send the maximum angle, wait, then send the minimum

angle, wait, and so on.

Arduino in a Nutshell 15

Tip: If you run out of 5V pins on the Arduino, bring 5V

over to a column on the breadboard, and connect things

from there (similar for GND). Use red and black wires to

keep your sanity! On larger breadboards like the large

one in the MAKE Pack, use the horizontal connector rows

(“rails”) along the top and bottom — put 5V only to the

top red rail, and GND only to the bottom blue rail, to

avoid plugging things into the wrong one.

XII. SHIELDS

Shields are PCBs that stack on top of the Arduino and

connect to all Arduino pins to add all kinds of hardware

features. There are shields to play MP3 files, for WiFi,

Bluetooth, Ethernet, Zigbee, MIDI, GPS, to log data,

drive big motors, etc. — shieldlist.org lists over 200!

Good shields are stackable — they have the same female

header pins as the Arduino on top.

The MAKE Pack contains a kit for a

MakerShield prototyping shield

(see photo). Solder it together (URL

for instructions on the pack), stick

the mini breadboard onto it, and

you have a very useful board with

some built-in LEDs, buttons, even a

potentiometer for quick experiments. It’s not a perfect fit

for the Arduino, but it works well enough. SparkFun has a

similar ProtoShield.

RadioShack also carries a simpler, but more modern

prototyping shield designed by the Arduino team, to

solder your own parts onto. In the future, look for shields

like that one, with 18 pins at the top, which is the new

Arduino standard.

16 Arduino in a Nutshell

http://shieldlist.org
http://shieldlist.org
http://www.makershed.com/MakerShield_p/msms01.htm
http://www.makershed.com/MakerShield_p/msms01.htm
http://www.sparkfun.com/products/7914
http://www.sparkfun.com/products/7914

XIII. SOME POINTERS

To learn more about Arduino and build fun projects,

check out these resources:

arduino.cc is your first stop for help with the IDE, the

Arduino language reference, board specifications, new

boards and software versions, excellent mostly up-to-date

tutorials, and libraries for a lot of stuff you may want to

hook up to your Arduino.

Sparkfun.com has great components, shields, sensors,

breakout boards, etc. They support open-source

hardware and have all schematics online. Decent pricing,

great community. Epic Friday New Product Post videos.

Adafruit.com is smaller but similar, with great products,

learning resources and community support.

MAKE Magazine has an Arduino blog with great tutorial

videos at blog.makezine.com/arduino/ and lots of

Arduino projects at makeprojects.com/c/Arduino. The

paper magazine is also great fun, especially with kids.

RadioShack.com has all essential parts, a bit pricey, but

lets you check online if a part is available at your local

store around the corner — perfect for those last-minute

needs that always seem to come up.

Arduino in a Nutshell 17

http://arduino.cc
http://arduino.cc
http://Sparkfun.com
http://Sparkfun.com
http://Adafruit.com
http://Adafruit.com
http://blog.makezine.com/arduino/
http://blog.makezine.com/arduino/
http://makeprojects.com/c/Arduino
http://makeprojects.com/c/Arduino
http://RadioShack.com
http://RadioShack.com

Digikey.com, Mouser.com, and Farnell.com are

professional electronic component vendors. They carry

and have datasheets for everything, at the best prices if

you know what you’re looking for, but they are

overwhelming to beginners — try SparkFun, MakerShed,

Adafruit or RadioShack at first.

Fritzing.org has a nice free tool to document your

Arduino breadboard designs, and to design shields that

can then be made by submitting your files to an online

PCB maker. I used it for all the Arduino diagrams here.

In general, if you want to hook up X to an Arduino,

google “Arduino X” and you’re likely to find a solution. :)

Look for the above sites among the search results.

There are countless Arduino books out there; the gentlest

is probably Massimo Banzi’s Getting Started With

Arduino (he designed the Arduino board). The PDF is ten

bucks at the Makershed. Tom Igoe’s Making Things Talk

is excellent and beautifully designed, focusing on making

Arduinos and other electronic devices connect and share

information. Arduino Bots and Gadgets is interesting if

you want to build robots. However, all Arduino books

become outdated quickly because the Arduino boards

and IDE have changed slightly almost every year so far.

Look for a book edition that’s no older than a year.

18 Arduino in a Nutshell

http://Digikey.com
http://Digikey.com
http://Mouser.com
http://Mouser.com
http://Farnell.com
http://Farnell.com
http://Fritzing.org
http://Fritzing.org

For a current book on basic electronics (not

Arduino), there is no better choice than Make:

Electronics by Charles Platt. Beautifully illustrated,

starts with the basics, very accessible and fun.

And experiment #1 is licking a 9V battery. I read

it cover to cover to refresh my electronics knowledge.

In general, OReilly.com has excellent books on Arduino

and other techie topics, with DRM-free versions for iPads

and in PDF, lifetime access and dropbox syncing,

frequent updates of their PDF editions, 3-for-2 deals, and

special pricing if you own the printed book.

There are dozens of different Arduino boards out there.

Stick with those documented on arduino.cc at first. Their

new Leonardo board, e.g., can act as a USB keyboard or

mouse, the new Due is faster, and SparkFun’s Arduino

Pro Micro (right) is a great tiny option, but for a

beginner they’re not quite as smooth to use yet.

Without a doubt this version of

this guide will become outdated

just as quickly as all those

books. Check back at the URL on

the front cover for updates, and

meanwhile, have fun hacking

and making with Arduino!

Arduino in a Nutshell 19

http://oreilly.com
http://oreilly.com

About the author

Jan Borchers is a professor of computer science and head of the
Media Computing Group at RWTH Aachen University. He works in
human-computer interaction, usability, and digital fabrication, and has
taught Arduino to students and kids since 2008.

Feel free to use this booklet for yourself, with your
friends, or in noncommercial classes. Instead of
hosting a local copy, please link back to the URL on
the cover so we can keep old versions from floating around. I’ll keep
older versions of the booklet there for reference. Thanks!

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit creativecommons.org/licenses/by-nc-nd/3.0/. For other
uses, including commercial or derivative works, contact the author.

Version history

2013-01-24 (1.6): Added target audience, author info, premium
headers on wishlist. Updated pushbutton declaration. Updated
for IDE 1.0.2 & 1.0.3. Cosmetic corrections throughout.

2012-08-17 (1.5): Corrected button use in Ch.VI. Changed title page,
tips layout, last page layout.

2012-08-15 (1.4): Added shieldlist.org.

2012-08-15 (1.3): Updated acknowledgements, Java reference, +5V
pin, enabling pullups, page footers, layout. Added Creative
Commons license terms.

2012-08-15 (1.2): Added: cropmarks, boldface in first chapters,
Raspberry Pi, SparkFun wish list, other starter kits, Electronic
Toolbox, Arduino Pro Micro, Make: Electronics cover, double-
sided layout for binding. Edited: shields, O’Reilly, title, headings.

2012-08-12 (1.1): Added: missing sensor wire in ch. X+XI diagrams,
Circuit Playground, different boards, version history. Fixed typos.

2012-08-09 (1.0): Initial release, see Acknowledgements.

20 Arduino in a Nutshell

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

