Work in Progress - Multi-University Development and Dissemination of Online Laboratories in Probability Theory, Signals and Systems, and Multimedia Computing

Abstract - This collaborative effort involves five universities, namely, Arizona State University, the University of Washington-Bothell, the University of Texas at Dallas, the University of Rhode Island, and the University of Central Florida. The paper describes educational technology innovations and software extensions that enable the online software Java-DSP to be used in three courses at five different universities. The project includes educational innovations, software extensions to support on-line computer laboratories in four courses at five universities, and a dissemination and assessment plan.

Index Terms – DSP, Java, online labs, signals

INTRODUCTION

Java-DSP (J-DSP) (http://jdsp.asu.edu) is an educational program that enables on-line simulations and web-based computer laboratories. J-DSP is based on an object-oriented programming environment that enables students to establish and run DSP simulations on the internet. The initial version of J-DSP has been developed in the ASU MIDL lab and tested in a senior-level Electrical Engineering Digital Signal Processing (DSP) course (EEE 407). The J-DSP Version 1 (CD-ROM ISBN 0-9724984-0-0) is approximately 42,000 lines of Java code. Papers on J-DSP addressing several DSP related areas have been published previously in archival conference proceedings and journals [1-15].

This work in progress paper presents sponsored work aimed at developing, disseminating, and assessing several new J-DSP capabilities. The project involves five universities and includes significant educational technology innovations that enable Java-DSP (J-DSP) [1] to be used in 4 courses at 5 different universities. The project tasks consist of the following:

a) educational innovation that upgrades the J-DSP GUI,
b) a software development task to extend the mathematical and signal processing functionality of J-DSP,
c) a comprehensive on-line laboratory exercise development task engaging all the Co-PIs at the different universities,
d) a dissemination and assessment plan that involves five universities which committed to testing and providing feedback on the new J-DSP GUI and all exercises and content,
e) a comprehensive pilot test of a new multi-site laboratory concept that allows students in the five universities to run real time distributed on-line simulations,
f) dissemination of all results, practices, and concepts developed

ASU is the lead university, and will execute all the software development tasks. The ASU group will also develop exercises, assessment instruments and dissemination materials. UWB will develop and assess all the computer exercises on the Multimedia Computing course; URI, UCF UTD will work on their Signals and Systems courses.

EDUCATIONAL INNOVATION

Several educational technology innovations will be made available to the education community including:

- integrating seamlessly web lectures, simulations, animations in one unique learning environment, Fig. 2.
- synchronizing simulations with streaming lectures; keywords in lectures activate simulations using J-DSP scripts [3]
- capabilities for geographically distributed laboratories; students from different universities will be able to integrate and run simulations concurrently from different locations;
- J-DSP scribe tools; capabilities for the lab instructor to monitor student actions on J-DSP from a remote location in order to provide feedback on-line

1 Andreas Spanias, Venkatraman Atti, Ravi Chilimula, Susan Haag, Antonia Papandreou-Suppappola, Cihan Tepedelenlioglu, and Junshan Zhang are with Arizona State University
2 Faye Bodreaux-Bartels is with the Department of Electrical Engineering at the University of Rhode Island
3 Michael Stiber is with the Department of Electrical Engineering at the University of Washington-Bothell
4 Takis Kasparis is with the Department of Electrical and Computer Engineering at the University of Central Florida
5 Philip Loizou is with the Department of Electrical Engineering at the University of Texas at Dallas

0-7803-9077-6/05/$20.00 © 2005 IEEE

35th ASEE/IEEE Frontiers in Education Conference
F3G-3
A COLLABORATIVE J-DSP LABORATORY

In addition to the online labs developed for the different courses, Fig. 1, we plan to create a laboratory that will enable students at UWB, UTD, UCF, URI and ASU to work concurrently on a distributed real time web lab. The new J-DSP infrastructure will enable collaborative web simulations from different locations. The J-DSP features that will enable collaborative simulations are called J-DSP Scripts [3]. We plan at least one collaborative lab to demonstrate a simple voice-over IP concept (Vo-IP). Vo-IP enables telephony over the internet and involves concepts from DSP and Networks.”

REMARKS

A summary of a collaborative NSF EMD project was presented. New J-DSP functions and experiments are being developed and beta sites are being established at five different universities. During the conference presentation the most recent developments in this project will be presented.

ACKNOWLEDGMENT

This project is sponsored by NSF EMD 0443137.

REFERENCES

A summary of a collaborative NSF EMD project was presented. New J-DSP functions and experiments are being developed and beta sites are being established at five different universities. During the conference presentation the most recent developments in this project will be presented.