
ELE314 Linear Systems and Signals Exam #1a Summer 2017 Name:

Open book/notes (10 questions, 10 points each)

1. () Which of the following is a nonlinear time-varying system? (A) $y(t)=\sqrt{x(t)}$, (B) $y(t)=\sin[x(t)]$, (C) $y(t)=\sin[x(t)]+t$, (D) $y(t)=\sin[x(t)]+\cos[x(t)]$, (E) none of the above.

- 4. () With the same h(t) of the above problem, the input is now a sine wave $x_2(t) = \sin \pi t$. The output $y_2(t) = ?$ (A) $-2\cos \pi t$, (B) $-\cos \pi t + \sin \pi t$, (C) $\cos 2\pi t$, (D) $2\sin \pi t$, (E) none of the above.
- 6. () For the above problem, the red and green lines help to visualize the magnitude of the frequency response. What kind of filter is this? (A) low-pass, (B) high-pass, (C) band-pass, (D) band-stop, (E) none of the above.
- 7. () For the above problem, what is the impulse response h(t)? (A) $(3e^{-2t}+7e^{-t})u(t)$, (B) $(2e^{-2t}-5e^{-t})u(t)$, (C) $(e^{-2t}+3e^{-t})u(t)$, (D) $(4e^{-2t}-3e^{-t})u(t)$, (E) none of the above.

- 8. () The transfer function of a LTI system is $H(s) = \frac{2}{s^2 + 2s + 5}$, what is its impulse response h(t)? (A) $(e^{-2t}\sin t)u(t)$, (B) $(e^{-2t}\cos t)u(t)$, (C) $(e^{-t}\sin 2t)u(t)$, (D) $(e^{-t}\cos 2t)u(t)$, (E) none of the above.
- 9. () The factored form of H(s) is changed to the partial-fraction form according to: $\frac{s}{(s+3)(s+2)} = \frac{a}{s+3} + \frac{b}{s+2}.$ a = ? (A) -2, (B) 2, (C) -3, (D) 3, (E) none of the above.
- 10. () For the above problem, b = ? (A) -2, (B) 2, (C) -3, (D) 3, (E) none of the above.