1. () Which of the following is a nonlinear time-varying system?
(A) $y(t)=\sqrt{x(t)}$,
(B) $y(t)=\sin [x(t)]$,
(C) $y(t)=\sin [x(t)]+t$,
(D) $y(t)=\sin [x(t)]+\cos [x(t)]$,
(E) none of the above.
2. () The impulse response of a LTI system $h(t)$ is shown on the right. The input $x_{1}(t)$ is a square pulse, which is 1 for $0 \leq t \leq 1$ and 0 , otherwise. The output $y_{1}(t)=$?

(E) none of the above.

3. () For the above problem, what is the Laplace transform of the square pulse $x_{1}(t)$? (A) $s\left(1+e^{-s}\right)$, (B) $s\left(1-e^{-s}\right)$,
(C) $\frac{1-e^{-s}}{s}$,
(D) $\frac{1+e^{-s}}{s}$,
(E) none of the above.

4. () With the same $h(t)$ of the above problem, the input is now a sine wave $x_{2}(t)=\sin \pi t$. The output $y_{2}(t)=$? (A) $-2 \cos \pi t$, (B) $-\cos \pi t+\sin \pi t$, (C) $\cos 2 \pi t$, (D) $2 \sin \pi t$, (E) none of the above.
5. () The pole-zero plot of a LTI system is shown on the right. Assume that the magnitude of the DC gain is unity. What is the transfer function $H(s)$? (A) $\frac{s+2}{(s-1)(s-2)}$,
(B) $\frac{s-2}{(s+1)(s+2)}$,
(C) $\frac{s(s+2)}{(s+1)(s+2)}$,
(D) $\frac{s-2}{(s-1)(s-2)}$,
(E) none of the above.

6. () For the above problem, the red and green lines help to visualize the magnitude of the frequency response. What kind of filter is this? (A) low-pass, (B) high-pass, (C) band-pass, (D) band-stop, (E) none of the above.
7. () For the above problem, what is the impulse response $h(t)$? (A) $\left(3 e^{-2 t}+7 e^{-t}\right) u(t)$,
(B) $\left(2 e^{-2 t}-5 e^{-t}\right) u(t)$, (C) $\left(e^{-2 t}+3 e^{-t}\right) u(t)$,
(D) $\left(4 e^{-2 t}-3 e^{-t}\right) u(t)$,
(E) none of the above.
8. () The transfer function of a LTI system is $H(s)=\frac{2}{s^{2}+2 s+5}$, what is its impulse response
$h(t) ?$
(A) $\left(e^{-2 t} \sin t\right) u(t)$,
(B) $\left(e^{-2 t} \cos t\right) u(t)$,
(C) $\left(e^{-t} \sin 2 \mathrm{t}\right) u(t)$,
(D) $\left(e^{-t} \cos 2 \mathrm{t}\right) u(t)$,
(E) none of the above.
9. () The factored form of $H(s)$ is changed to the partial-fraction form according to: $\frac{s}{(s+3)(s+2)}=\frac{a}{s+3}+\frac{b}{s+2} . \quad \mathrm{a}=? \quad$ (A) $-2, \quad$ (B) $2, \quad$ (C) $-3, \quad$ (D) $3, \quad$ (E) none of the above.
10. () For the above problem, $\mathrm{b}=$? (A) -2 , (B) 2 , (C) -3 , (D) 3 , (E) none of the above.
