ELE314 Linear Systems and Signals Exam #2 Summer 2017 Name:

Open book/notes (10 questions, 10 points each)

- e(t)x(t)The figure on the right shows a negative feedback v(t)1. () configuration of two continuous-time LTI systems with the F(s)individual transfer functions: $F(s) = \frac{1}{s+1}$, and $G(s) = \frac{1}{s+1}$. G(s)What is the overall transfer function H(s)? (A) $\frac{s+1}{s^2+2s+2}$, (B) $\frac{s}{s^2+2s+1}$, (C) $\frac{1}{s^2+2s+2}$, (D) $\frac{s+1}{s^2+2s+1}$, (E) none of the above. 2. () For the above problem, what is the pole-zero plot of the overall system? (A) (E) none of the above. 3. () The figure on the right shows a negative feedback system x(t)
 - 3. () The figure on the right shows a negative feedback system with F(s) = 1. If we want the overall transfer function H(s) to be $\frac{s+1}{s+2}$, what should G(s) be? (A) $\frac{s}{s+1}$, (B) $\frac{s}{s+2}$, (C) $\frac{1}{s+1}$, (D) $\frac{1}{s+2}$, (E) none of the above. $(G(s)) = \frac{1}{s+1}$, (D) $\frac{1}{s+2}$, (E) none of the above.
- 4. () The step response of a 2nd-order continuous-time LTI system is shown below. Which of the following is its pole-zero plot?

5. () The filter equation for a digital filter is given by $y[n] = \frac{1}{4}x[n] - \frac{1}{4}x[n-1] - \frac{1}{2}y[n-1]$. What is its transfer function H(z)? (A) $\frac{z-1}{4z+2}$, (B) $\frac{z+1}{4z-2}$, (C) $\frac{z-2}{4z+1}$, (D) $\frac{z+4}{2z+1}$, (E) none of the above.

7. () For the above problem, what does its $|H(e^{i\omega})|$ look like?

9. (a) For the above problem, what is the inter equation?
(A)
$$y[n]=x[n]+x[n-2]+0.25 y[n-2]$$
,
(B) $y[n]=x[n]-2x[n-1]+x[n-2]+0.25 y[n-2]$,
(C) $y[n]=x[n]+0.25 x[n-2]+y[n-1]-y[n-2]$,
(D) $y[n]=x[n]+2x[n-1]+x[n-2]-0.25 y[n-2]$, (E) none of the above.

10. () For the above problem, what does its $|H(e^{i\omega})|$ look like?

