ELE314 Linear Systems and Signals Exam \#3 Summer 2017 Name:
Open book/notes (10 questions, 10 points each)

1. () The pole-zero plot of a digital filter shows two poles at $0.25 \pm 0.75 j$ and two zeros at 0 and
-1. What is its $H(z)$?
(A) $\frac{z^{2}+1}{z^{2}+0.5 z+0.625}$, (B) $\frac{z^{2}-0.5 z+0.625}{z^{2}-z}$,
(C) $\frac{z^{2}+z}{z^{2}+0.5 z+0.625}$,
(D) $\frac{z^{2}+z}{z^{2}-0.5 z+0.625}$,
(E) none of the above.

(A) $y[n]=x[n]+x[n-2]-0.5 \mathrm{y}[n-1]-0.625 y[n-2]$,
(B) $y[n]=x[n]-0.5 x[n-1]+0.625 x[n-2]+y[n-1]$,
(C) $y[n]=x[n]+x[n-1]-0.5 \mathrm{y}[n-1]-0.625 y[n-2]$,
(D) $y[n]=x[n]+x[n-1]+0.5 y[n-1]-0.625 y[n-2]$, (E) none of the above.
2. () For the above problem, what does its $\left|H\left(e^{i \omega}\right)\right|$ look like?
$(\mathrm{A})\left|\left|\mathrm{H}\left(\mathrm{e}^{j \omega}\right)\right|\right.$

(E) none of the above.
3. () For the above problem, what is its Direct Form 2 realization?
(A)
(B)
(C)
(D)

(E) none of the above.

$$
\frac{\sqrt{2}}{2} z^{-1}
$$

5. () If $H(z)=\frac{2}{1-\sqrt{(2)} z^{-1}+z^{-2}}$, what is $h[n]$? (Hint: Use the ZT Table.)
(A) $h[n]=\sin \left(\frac{\pi n}{2}\right)$,
(B) $h[n]=\sin \left(\frac{\pi n}{4}\right)$,
(C) $h[n]=\cos \left(\frac{\pi n}{2}\right)$,
(D) $h[n]=\cos \left(\frac{\pi n}{4}\right)$,
(E) none of the above.
6. () The Direct form 2 realization of a filter is shown below. What is its filter equation?
(A) $y[n]=x[n]+0.36 x[n-2]+0.36 y[n-2]$,
(B) $y[n]=x[n]-0.36 x[n-2]-0.36 y[n-2]$,
(C) $y[n]=x[n]+0.36 \mathrm{x}[n-1]+0.36 y[n-1]$,
(D) $y[n]=x[n]-0.36 x[n-1]-0.36 y[n-1]$,
(E) none of the above.

7. () For the above problem, what is the pole-zero plot?

(E) none of the above.
8. () The loop gain of a feedback control system is $G(s) H(s)=\frac{s(s-1)}{\left(s^{2}+s+1.25\right)(s+1)}$. What is its root locus for negative feedback?
(A)

(B)

(E) none of the above.
9. () A state-space representation is developed for the 2 nd-order differential equation $\ddot{y}(t)+2 \dot{y}+5 y=2 x$ by choosing the state variables: $s_{1}=y ; s_{2}=\dot{y}$. The state equation in matrix form is $\underline{\dot{s}}=A \underline{s}+\underline{b} x$. What is the plant matrix A ? (A) $\left[\begin{array}{rr}0 & 1 \\ -2 & -5\end{array}\right], \quad$ (B) $\left[\begin{array}{ll}0 & 1 \\ 2 & 5\end{array}\right]$,
(C) $\left[\begin{array}{rr}0 & 1 \\ -5 & -2\end{array}\right]$,
(D) $\left[\begin{array}{ll}0 & 1 \\ 5 & 2\end{array}\right]$,
(E) none of the above.
10. () For the above problem, what is the input vector \underline{b} ?
(A) $\left[\begin{array}{l}0 \\ 2\end{array}\right]$,
(B) $\left[\begin{array}{c}0 \\ -2\end{array}\right]$,
(C) $\left[\begin{array}{l}0 \\ 1\end{array}\right]$,
(D) $\left[\begin{array}{c}0 \\ -1\end{array}\right]$,
(E) none of the above.
