Name: \qquad Due date: \qquad

Example 1:

For a LTI system, the impulse response $h(t)$ and input $x(t)$ are $h(t)=x(t)=u(t)-u(t-1)$. Plot and obtain a mathematical expression for the output $y(t)$.

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau= \\
& \left\{\begin{array}{ll}
0, & t<0 \\
\int_{0}^{t} d \tau & 0 \leq t<1 \\
\int_{t-1}^{1} d \tau & 1 \leq t<2 \\
0, & t \geq 2
\end{array}= \begin{cases}0, & t<0 \\
{[\tau]_{0}^{t},} & 0 \leq t<1 \\
{[\tau]_{t-1}^{1},} & 1 \leq t<2 \\
0, & t \geq 2\end{cases} \right. \\
& y(t)= \begin{cases}0, & t<0 \\
t, & 0 \leq t<1 \\
2-t, & 1 \leq t<2 \\
0, & t \geq 2\end{cases}
\end{aligned}
$$

Example 2:

For a LTI system, the impulse response is a square pulse between 0 and $\pi h(t)=u(t)-u(t-\pi)$, and the input is a sine wave $x(t)=\sin (t)$. Plot and obtain a mathematical expression for the
 output $y(t)$.
$\mathrm{y}(\mathrm{t})$ should also be a periodical signal with a period of 2π.

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau= \\
& \int_{-\infty}^{\infty} \sin (t-\tau)[u(\tau)-u(\tau-\pi)] d \tau= \\
& \int_{0}^{\pi} \sin (t-\tau) d \tau=[-\cos (t-\tau)(-1)]_{0}^{\pi}= \\
& \cos (t-\pi)-\cos t=-2 \cos t
\end{aligned}
$$

Note: from Trigonometry Table:

$$
\begin{aligned}
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \cos (t-\pi)=\cos t \cos \pi+\sin t \sin \pi=-\cos t
\end{aligned}
$$

Homework 2a: (1\%)

For a LTI system, the impulse response is a square pulse between 0 and $1 h(t)=u(t)-u(t-1)$. The input $x(t)$ a square pulse between 0 and $2 x(t)=u(t)-u(t-2)$. Plot and obtain a mathematical expression for the output $y(t)$.

Homework 2b: (1\%)

For a LTI system, the impulse response is a square pulse between 0 and $\pi / 2 h(t)=u(t)-u(t-\pi / 2)$, and the input is a sine wave $x(t)=\sin (t)$. Plot and obtain a mathematical expression for the output $y(t)$.

Homework 2c: (2\%)

For a LTI system, the impulse response is a square pulse between 0 and $1 \quad h(t)=u(t)-u(t-1)$. The input $x(t)$ a triangular pulse between 0 and 2, given below. Plot and obtain a mathematical expression for the output $y(t)$.

$$
x(t)=\left\{\begin{array}{lr}
0, & t<0 \\
t, & 0 \leq t<1 \\
2-t, & 1 \leq t<2 \\
0, & t \geq 2
\end{array}\right.
$$

