1. (A) The figure on the right shows a negative feedback configuration of two continuous-time LTI systems with the individual transfer functions: $F(s)=\frac{1}{s+1}$, and $G(s)=\frac{1}{s+1}$. What is the overall transfer function $H(s)$? (A) $\frac{s+1}{s^{2}+2 s+2}$,

(B) $\frac{s}{s^{2}+2 s+1}$,
(C) $\frac{1}{s^{2}+2 s+2}$,
(D) $\frac{s+1}{s^{2}+2 s+1}$,
(E) none of the above.
$H=\frac{F}{1+G F}=\frac{1 /(s+1)}{1+\frac{1}{s+1} \frac{1}{s+1}}=\frac{s+1}{(s+1)^{2}+1}=\frac{s+1}{s^{2}+2 \mathrm{~s}+2}$
2. (\mathbf{B}) For the above problem, what is the pole-zero plot of the overall system?
(A)

(E) none of the above.
$H=\frac{s+1}{(s+1)^{2}+1}=\frac{s+1}{(s+1+j)(s+1-j)} \quad$ Zero: $-1 ;$ poles: $-1 \pm j$
3. (C) The figure on the right shows a negative feedback system $x(t)$ with $F(s)=1$. If we want the overall transfer function $H(s)$ to be $\frac{s+1}{s+2}$, what should $G(s)$ be?
(A) $\frac{s}{s+1}$,
(B) $\frac{s}{s+2}$,
(C) $\frac{1}{s+1}$,
(D) $\frac{1}{s+2}$,
(E) none of the above.

$H=\frac{F}{1+G F}=\frac{1}{1+G}=\frac{s+1}{s+2} \Rightarrow G=\frac{s+2}{s+1}-1=\frac{1}{s+1}$
4. (D) The step response of a 2nd-order continuous-time LTI system is shown below. Which of the following is its pole-zero plot?

(E) none of the above.

From the graph, $T_{p}=3.14 s ; \quad O S=0.21$
$\omega_{d}=\frac{\pi}{T_{p}}=1 ; \quad \alpha=-\frac{\ln 0.21}{T_{p}}=\frac{1.56}{3.14}=0.5$
poles at: $\quad-\alpha \pm j \omega_{d}=-0.5 \pm j$; zeros at ∞.
5. (A) The filter equation for a digital filter is given by $y[n]=\frac{1}{4} x[n]-\frac{1}{4} x[n-1]-\frac{1}{2} y[n-1]$.
What is its transfer function $H(z)$?
(A) $\frac{z-1}{4 z+2}$,
(B) $\frac{z+1}{4 z-2}$,
(C) $\frac{z-2}{4 z+1}$,
(D) $\frac{z+4}{2 z+1}$,
(E) none of the above.

$$
Y\left(1+z^{-1}\right)=\frac{1}{4} X\left(1-z^{-1}\right) ; \quad H=\frac{1}{4} \frac{1-z^{-1}}{1+\frac{1}{2} z^{-1}}=\frac{z-1}{4 z+2} \Rightarrow \text { pole at }-1 / 2 ; \text { zero at } 1 .
$$

6. (C) For the above problem, what is its pole-zero plot?

(B)

(E) none of the above.
7. (A) For the above problem, what does its $\left|H\left(e^{i \omega}\right)\right|$ look like?

(E) none of the above.

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\frac{1}{4} \frac{e^{-j \omega}-1}{e^{j \omega}+1 / 2}= \\
& \frac{1}{4} \frac{(\cos \omega-1)+j \sin \omega}{(\cos \omega+1 / 2)+j \sin \omega} \Rightarrow \\
& \left|H\left(e^{j \omega}\right)\right|= \\
& \frac{1}{4} \frac{\sqrt{(\cos \omega-1)^{2}+\sin ^{2} \omega}}{\sqrt{(\cos \omega+1 / 2)^{2}+\sin ^{2} \omega}}
\end{aligned}
$$

8. (\mathbf{D}) The pole-zero plot of a digital filter on the right shows two poles at $\pm 0.5 j$ and a double zero at -1 . What is its $H(z)$?
(A) $\frac{z^{2}+1}{z^{2}+0.5}$, $\begin{array}{lll}\text { (B) } \frac{z^{2}-2 z+1}{z^{2}-0.25}, & \text { (C) } \frac{z^{2}+0.25}{z^{2}-2 z+1}, & \text { (D) } \frac{z^{2}+2 z+1}{z^{2}+0.25},\end{array}$ (E) none of the above.

Zeros at $-1,-1$; poles at $+0.5 \mathrm{j},-0.5 \mathrm{j}$.

$$
\begin{aligned}
& H(z)=\frac{(z+1)^{2}}{(z+0.5 \mathrm{j})(z-0.5 \mathrm{j})}=\frac{z^{2}+2 \mathrm{z}+1}{z^{2}+0.25}=\frac{1+2 z^{-1}+z^{-2}}{1+0.25 z^{-2}}=\frac{Y(z)}{X(z)} \\
& Y(z)\left(1+0.25 z^{-2}\right)=X(z)\left(1+2 z^{-1}+z^{-2}\right) \Rightarrow \\
& y[n]=x[n]+2 x[n-1]+x[n-2]-0.25 y[n-2]
\end{aligned}
$$

9. (D) For the above problem, what is the filter equation?
(A) $y[n]=x[n]+x[n-2]+0.25 y[n-2]$,
(B) $y[n]=x[n]-2 x[n-1]+x[n-2]+0.25 y[n-2]$,
(C) $y[n]=x[n]+0.25 x[n-2]+y[n-1]-y[n-2]$,
(D) $y[n]=x[n]+2 x[n-1]+x[n-2]-0.25 y[n-2]$, (E) none of the above.
10. ($\mathbf{B})$ For the above problem, what does its $\left|H\left(e^{i \omega}\right)\right|$ look like?

(E) none of the above.
$H\left(e^{j \omega}\right)=\frac{(\cos \omega+j \sin \omega+1)^{2}}{(\cos \omega+j \sin \omega)^{2}+0.25}=\frac{\left[(\cos \omega+1)^{2}-\sin ^{2} \omega\right]+2 j(\cos \omega+1) \sin \omega}{\left(\cos ^{2} \omega-\sin ^{2} \omega+0.25\right)+2 \mathrm{j} \cos \omega \sin \omega} \Rightarrow$
$\left|H\left(e^{j \omega}\right)\right|=\frac{\sqrt{\left[(\cos \omega+1)^{2}-\sin ^{2} \omega\right]^{2}+4[(\cos \omega+1) \sin \omega]^{2}}}{\sqrt{\left(\cos ^{2} \omega-\sin ^{2} \omega+0.25\right)^{2}+4(\cos \omega \sin \omega)^{2}}}$

