ELE314 Linear Systems and Signals Exam \#3 Summer 2017 Name:

1. (D) The pole-zero plot of a digital filter shows two poles at $0.25 \pm 0.75 j$ and two zeros at 0 and -1. What is its $H(z)$? (A) $\frac{z^{2}+1}{z^{2}+0.5 z+0.625}$, (B) $\frac{z^{2}-0.5 z+0.625}{z^{2}-z}$,
(C) $\frac{z^{2}+z}{z^{2}+0.5 z+0.625}$,
(D) $\frac{z^{2}+z}{z^{2}-0.5 z+0.625}$,
(E) none of the above.
$H(z)=\frac{z(z+1)}{(z-0.25+0.75 \mathrm{j})(z-0.25-0.75 \mathrm{j})}=\frac{z^{2}+z}{(z-0.25)^{2}+0.75^{2}}=$

$$
\frac{z^{2}+z}{z^{2}-0.5 z+0.0625+0.5625}=\frac{z^{2}+z}{z^{2}-0.5 z+0.625}
$$

2. (D) For the above problem, what is the filter equation?
(A) $y[n]=x[n]+x[n-2]-0.5 y[n-1]-0.625 y[n-2]$,
(B) $y[n]=x[n]-0.5 x[n-1]+0.625 x[n-2]+y[n-1]$,
(C) $y[n]=x[n]+x[n-1]-0.5 \mathrm{y}[n-1]-0.625 y[n-2]$,
(D) $y[n]=x[n]+x[n-1]+0.5 y[n-1]-0.625 y[n-2]$, (E) none of the above.

$$
\begin{aligned}
& H(z)=\frac{Y(z)}{X(z)}=\frac{1+z^{-1}}{1-\left(0.5 \mathrm{z}^{-1}-0.625 \mathrm{z}^{-2}\right)} \Rightarrow Y(z)\left[1-\left(0.5 \mathrm{z}^{-1}-0.625 \mathrm{z}^{-2}\right)\right]=X(z)\left(1+z^{-1}\right) \\
& \Rightarrow Y(z)=X(z)\left(1+z^{-1}\right)+Y(z)\left(0.5 \mathrm{z}^{-1}-0.625 \mathrm{z}^{-2}\right) \\
& \Rightarrow y[n]=x[n]+x[n-1]+0.5 \mathrm{y}[n-1]-0.625 y[n-2]
\end{aligned}
$$

3. (\mathbf{B}) For the above problem, what does its $\left|H\left(e^{i \omega}\right)\right|$ look like?

(E) none of the above.
$H\left(e^{j \omega}\right)=\frac{e^{j \omega}\left(e^{j \omega}+1\right)}{e^{2 j \omega}-0.5 e^{j \omega}+0.625}=\frac{e^{j \omega}(\cos \omega+j \sin \omega+1)}{\cos 2 \omega+j \sin 2 \omega-0.5 \cos \omega-0.5 j \sin \omega+0.625}=$
$\frac{e^{j \omega}(\cos \omega+1+j \sin \omega)}{(\cos 2 \omega-0.5 \cos \omega+0.625)+j(\sin 2 \omega-0.5 \sin \omega)}=$

$$
\left|H\left(e^{j \omega}\right)\right|=\frac{\sqrt{(\cos \omega+1)^{2}+\sin ^{2} \omega}}{\sqrt{(\cos 2 \omega-0.5 \cos \omega+0.625)^{2}+(\sin 2 \omega-0.5 \sin \omega)^{2}}}
$$

The system is substantially underdamped as indicated by the prominent peak, which is related to the two poles close to the unit circle.
4. (A) For the above problem, what is its Direct Form 2 realization?
(A)
(B)
(C)
(D)

(E) none of the above.

$H(z)=\frac{1+z^{1}}{1-\left(0.5 \mathrm{z}^{1}-0.625 \mathrm{z}^{2}\right)} \Rightarrow$| $a_{1}=0.5$ | $b_{0}=1$ |
| :--- | :--- |
| $a_{2}=-0.625$ | $b_{1}=1$ |

5. (B) If $H(z)=\frac{\frac{\sqrt{2}}{2} z^{-1}}{1-\sqrt{(2)} z^{-1}+z^{-2}}$, what is $h[n]$? (Hint: Use the ZT Table.)
(A) $h[n]=\sin \left(\frac{\pi n}{2}\right)$,
(B) $h[n]=\sin \left(\frac{\pi n}{4}\right)$,
(C) $h[n]=\cos \left(\frac{\pi n}{2}\right)$,
(D) $h[n]=\cos \left(\frac{\pi n}{4}\right)$,
(E) none of the above.

From the ZT Table: $\quad \sin \omega n \quad \Leftarrow z \Rightarrow \quad H(z)=\frac{z^{-1} \sin \omega}{1-2 z^{-1} \cos \omega+z^{-2}}$
Let $\omega=\frac{\pi}{4} . \quad \Rightarrow \quad \cos \frac{\pi}{4}=\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$. Thus, $h[n]=\sin \left(\frac{\pi n}{4}\right)$.
6. (A) The Direct form 2 realization of a filter is shown below. What is its filter equation?
(A) $y[n]=x[n]+0.36 \mathrm{x}[n-2]+0.36 y[n-2]$,
(B) $y[n]=x[n]-0.36 x[n-2]-0.36 y[n-2]$,
(C) $y[n]=x[n]+0.36 \mathrm{x}[n-1]+0.36 y[n-1]$,
(D) $y[n]=x[n]-0.36 \mathrm{x}[n-1]-0.36 y[n-1]$,
(E) none of the above.

$a_{1}=0$	$b_{0}=1$
$a_{2}=0.36$	$b_{1}=0$
	$b_{2}=0.36$

$$
\begin{aligned}
& H(z)=\frac{Y(s)}{X(s)}=\frac{1+0.36 z^{-2}}{1-0.36 z^{-2}} \Rightarrow \\
& Y(s)\left(1-0.36 \mathrm{z}^{-2}\right)=X(s)\left(1+0.36 z^{-2}\right) \quad \Rightarrow
\end{aligned}
$$

$$
Y(s)=X(s)\left(1+0.36 z^{-2}\right)+Y(z) 0.36 z^{-2} \quad \Rightarrow y[n]=x[n]+0.36 \mathrm{x}[n-2]+0.36 y[n-2]
$$

7. (B) For the above problem, what is the pole-zero plot?

(E) none of the above.

Zeros at: $s= \pm 0.6 j$; Poles at: $s= \pm 0.6$.
8. (A) The loop gain of a feedback control system is $G(s) H(s)=\frac{s(s-1)}{\left(s^{2}+s+1.25\right)(s+1)}$. What is its root locus for negative feedback?

(C)

(E) none of the above.

$$
G(s) H(s)=\frac{s(s-1)}{\left((s+0.5)^{2}+1\right)(s+1)}=\frac{s(s-1)}{(s+0.5+j)(s+0.5-j)(s+1)}
$$

Zeros at: $0,-1 ;$ Poles at: $-0.5 \pm j,-1$.

9. (C) A state-space representation is developed for the 2 nd-order differential equation $\ddot{y}(t)+2 \dot{y}+5 y=2 x$ by choosing the state variables: $s_{1}=y ; s_{2}=\dot{y}$. The state equation in matrix form is $\underline{\dot{s}}=A \underline{s}+\underline{b} x$. What is the plant matrix A ? (A) $\left[\begin{array}{rr}0 & 1 \\ -2 & -5\end{array}\right], \quad$ (B) $\left[\begin{array}{ll}0 & 1 \\ 2 & 5\end{array}\right]$, (C) $\left[\begin{array}{rr}0 & 1 \\ -5 & -2\end{array}\right], \quad$ (D) $\left[\begin{array}{ll}0 & 1 \\ 5 & 2\end{array}\right], \quad$ (E) none of the above.
10. (A) For the above problem, what is the input vector \underline{b} ?
(A) $\left[\begin{array}{l}0 \\ 2\end{array}\right]$,
(B) $\left[\begin{array}{c}0 \\ -2\end{array}\right]$,
(C) $\left[\begin{array}{l}0 \\ 1\end{array}\right]$,
(D) $\left[\begin{array}{c}0 \\ -1\end{array}\right]$,
(E) none of the above.
$\ddot{y}(t)=-2 \dot{y}-5 y+2 x$
$s_{1}=y \quad \Rightarrow \quad \dot{s}_{1}=\dot{y}=s_{2}$
$s_{2}=\dot{y} \quad \dot{s}_{2}=\ddot{y}=-5 y-2 \dot{y}+2 x=-5 s_{1}-2 s_{2}+2 x$
Thus, the state-space representation is given by

$$
\left[\begin{array}{l}
\dot{s_{1}} \\
\dot{s_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-5 & -2
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
2
\end{array}\right] x
$$

The system equation is $\underline{\dot{s}}=A \underline{s}+\underline{b} x$, where
the plant matrix $A=\left[\begin{array}{cc}0 & 1 \\ -5 & -2\end{array}\right]$, and the input vector $\underline{b}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$.

