Name:
Due date: \qquad

ZT Properties, Signal Flow Graph, Root Locus Analysis, and State Space Analysis

ZT properties

Example 1: Show that

$$
\begin{aligned}
& x[n]=u[n] \quad \Leftarrow z \Rightarrow(z)=\frac{1}{1-z^{-1}} \\
& X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=-\infty}^{\infty} u[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n}
\end{aligned}
$$

Geometric Series:
$a_{0} \sum_{n=0}^{N-1} r^{n}=a_{0} \frac{1-r^{N}}{1-r}$
for $r \neq 0$

This is a geometric series with a ratio of z^{-1}, which converges for $|z|>1$.

$$
X(z)=\frac{1-z^{-\infty}}{1-z^{-1}}=\frac{1}{1-z^{-1}}
$$

Example 2: Prove the Differentiation in z-domain property (\#8):

$$
n x[n] \Leftarrow z \Rightarrow-z \frac{d X(z)}{d z} \quad \text { ROC: } R_{X} \text { except at } z=0
$$

Take the derivative of $X(z)$ with respect to z :
$\frac{d X(z)}{d z}=\frac{d}{d z} \sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=-\infty}^{\infty} x[n]-n z^{-n-1}=-z^{-1} \sum_{n=-\infty}^{\infty} n x[n] z^{-n}$
$-z \frac{d X(z)}{d z}=\sum_{n=-\infty}^{\infty} n x[n] z^{-n}$
Thus, $\quad n x[n] \Leftarrow z \Rightarrow \quad-z \frac{d X(z)}{d z}$

Homework 5a: (1\%) Prove the Summation in time-domain property (\#8):

$$
\sum_{k=-\infty}^{n} x[k] \Leftarrow z \Rightarrow \quad \frac{1}{1-z^{-1}} X(z) \quad \text { ROC: at least } R_{X} \cap\{|z|>1\}
$$

(Hint: Use the result from Example 1. Arrange the time-domain expression as the convolution between $x[n]$ and $u[n]$.)

Signal Flow Graph

Example 1: For the pole-zero plot shown on the right, find $H(z)$ and realize the filter with Direct Form II.

$$
H(z)=\frac{(z-0)(z+1)}{(z-0.5)(z+0.5+0.5 \mathrm{j})(z+0.5-0.5 \mathrm{j})}=
$$

$$
\frac{z^{2}+z}{(z-0.5)\left(z^{2}+z+0.5\right)}=\frac{z^{2}+z}{z^{3}+0.5 z^{2}-0.25}=\frac{z^{-1}+z^{-2}}{1+0.5 z^{-1}-0.25 z^{-3}}=\frac{z^{-1}+z^{-2}}{1-\left(-0.5 z^{-1}+0.25 z^{-3}\right)},
$$

which fits the form of

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{N} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}, \text { with } \begin{array}{ll}
\begin{array}{l}
a_{1}=-0.5 \\
a_{2}=0
\end{array} & b_{0}=0 \\
a_{3}=0.25 & b_{2}=1 \\
\hline
\end{array}
$$

Thus, the Direct Form 2 realization is as shown.

Homework 5b: (1\%) What is the filter equation for the Direct Form 2 realization shown on the right?

Root Locus Analysis

Homework 5c: (1\%) Plot the root locus for $1+K G(s) H(s)=0$, where
the loop gain is given by $G(s) H(s)=\frac{s+1}{s^{2}+s+1.25}$.
You can use RootLocs, which is a freeware downloadable from \ll http://www.coppice. myzen.co.uk/RootLocs_Site/RootLocs.html>.

State Space Analysis

Homework 5d: (2\%) An LTI system is characterized by a second-order differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+y(t)=x(t)
$$

(i) Find the transfer function $H(s)$ by use of the traditional method.
(ii) Derive the state-space representation.
(iii) Find $H(s)$ by use of the state-space method.

