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Microcontroller-Based Real-Time

QRS Detection
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The authors describe the design of a system for real-time
detection of QRS complexes in the electrocardiogram
based on a single-chip microcontroller (Motorola
68H(CE11). A systematic analysis of the instrumentation
requirements for QRS detection and of the various de-
sign techniques is also given. Detection algorithms us-
ing different nonlinear fransforms for the enhancement
of QRS complexes are evaluated by using the ECG data-
base of the American Heart Association. The results
show that the nonlinear transform involving multiplica-
tion of three adjacent, sign-consistent differences in the

etection of QRS complexes in the electrocar-
diogram (ECG) is necessary for the operation
of many medical instruments. For exampie,
cardiac pacemakers sense the electrical activ-
ities in the atrium and ventricle.! The delivery of electri-
cal stimulus is often inhibited when a spontaneous R
wave is detected. For imaging the pumping heart using
either x-rays’ or magnetic resonance,” ECG-gated acqui-
sition is common, either to compensate for the low fem-
poral resolution of an imaging system or to enhance the
signal-to-noise ratio by averaging images over several
cardiac cycles. When an intraaortic balioon pump is used
to assist a failing heart,* the inflation and deflation of the
balloon must be synchronized with the cardiac cycle;
the R wave of the ECG provides the key reference for
the timing control of an intraaortic balloon pump.
Although much research has been devoted to the de-
velopment of both analog and digital QRS detectors,®
reliable detection of QRS complexes remains a chal-
lenge: QRS detection in the clinical environment is diffi-
cult because: 1) The wave shape of the QRS complex
varies significantly in health and in disease’ 2) Several
other signals in the ECG recording, such as an elevated
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time domain gives a good performance and a quick re-
sponse. When implemented with an approprigte sam-
pling rate, this algorithm is also capable of rejecting
pacemiaker spikes. The eight-bit single-chip microcon-
troller provides sufficient throughput and shows g satis-
factory performance. Implementation of multiple detec-
tion algorithms in the same system improves flexibility
and reliability. The low chip count in the design also
favors maintainability and cost-effectiveness. (BIOMED}-
CAL INSTRUMENTATION & TECHNOLOGY 1992;26:477-484)

T wave or a premature ventricular confraction, may be
morphologically similar to a QRS complex. 3) Various
types of noise (e.g., caused by a pacemaker, an electro-
surgical tool, power line interference, or patient motion)
interfere with QRS detection. 4) The quality and the
frequency bandwidth of recorded ECGs may vary signifi-
cantly, depending upon the purpose of the recording
(diagnosis or monitoring) and the recording environ-
ment (e.g., in an ambulance, in an operating room, dus-
ing exercise or at rest, with or without telemetry).?

Conventional QRS detectors based upon analog elec-
tronics generally fail to provide the flexibility of handling
large variations in the ECG wave shape and in the sig-
nal-noise condition. A computer-based QRS detector, on
the other hand, may suffer from slowness in response
because of the throughput limitation imposed by the
underlying hardware and the involvement of software
for implementing the detection algorithm. The increas-
ing complexity of hardware and the involvement of soft-
ware not only change the design of a QRS detection
algorithm dramatically but also raise concerns about
reliability and fanit tolerance.

The purpose of this study was twofold. First, the in-
strumentation requirements for QRS detection were sys-
tematically analyzed, {o provide a guideline for the de-
sign of a computer-based QRS detector. Second, a real
time QRS detector based on a single-chip mierocon-
troller {the Motorola 68HCR11) was developed to exem-
plify techniques for algorithm design, performance eval-
uation, and enhancement of system reliability and
maintainability.
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Figure 1. A typical ECG waveform and different types of inter-
ference.

INSTRUMENTATION REQUIREMENTS
FOR QRS DETECTION

The detection algorithm is the most important compo-
nent in the design. The hardware and software specifica-
tions must be developed on the basis of, and in support
of, the detection algorithm. However, it is unlikely that
any single QRS detection algorithm will satisfy all instru-
mentation requirements and perform satisfactorily in a
variety of clinical environments. The following instru-
mentation requirements should be considered in the
algorithm design.

Real-time

A realtime algorithm determines whether or not a
QRS complex is present while the ECG is sampled on a
continuing basis. More specifically, the execution time
of the detection software must not exceed one sampling
period. A real-time algorithm must be causal, i.e., only
present and past data may be used. By contrast, a non—
real-time algorithm processes data previously acquired
and stored; thus, it does not have to be causal. The ECG
has a frequency bandwidth between 0.05 Hz and 150 Hz.
However, the frequency bandwidth of recorded ECGs
may be reduced by the recording device. For example,
the ECG channel from a bedside monitor may have a
cutoff frequency as low as 40 Hz. A common sampling
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rate for QRS detection is around 250 Hz. This imposes
an upper bound of 4 ms on the execution time of the
detection software.

Response Time

Some instruments may require an early decision with
a detection point before the peak of the R wave, while
others accept a late decision with a detection point after
the appearance of the complete QRS complex. The re-
quirement for response time determines how many sam-
ples on the QRS complex can be used in the decision
process. There is a tradeoff between response time and
robustness. The detection decision is more robust when
more information is gathered from the QRS complex at
the sacrifice of response time.

Noise Rejection

The types of noise that are present and how they
should be rejected are also important considerations in
the algorithm design. Different types of noise in re-
corded ECGs are illustrated in Figure 1. Some instru-
ments do not trigger on premature ventricular contrac-
tions (PVCs), while others do. Rejection of pacemaker
spikes is often required, while in some circumstances
of ventricular pacing, the pacemaker spike is the only
available signal to trigger the instrument because nor-
mal R waves are absent. Thus, the noise-rejection capa-
bility not only is an important feature to implement but
also should be implemented such that user intervention
is possible.

Receiver Operating Characteristics

Certain parameters in a detection algorithm affect the
sensitivity of QRS detection. If sufficient test data are
available, the receiver operating characteristics (ROC)
of a detection algorithm can be established by plotting
the true detection rate vs. the false detection rate.® If
other conditions remain unchanged, increasing the sen-
sitivity of a detection algorithm increases the true detec-
tion rate and decreases the false detection rate. In the
case of QRS detection, the appropriate operating point
on the ROC curve depends on the instrument and its
application. For example, if the deflation of an intraaortic
balloon is triggered by the R wave, a false negative
(missed detection) is less tolerable than a false positive
(spurious detection). This is because a missed detection
of an R wave would obstruct left ventricular ejection by
leaving the balloon inflated during systole. On the other
hand, a spurious detection would deflate the balloon
prematurely and would only decrease the assistance pro-
vided by the intraaortic balloon.
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Dynamic Range

The dynamic range of a QRS detection algorithm is
defined as the range of the input signal magnitude within
which the algorithm gives an acceptable performance.
in the clinical environment, the magnitudes of ECGs at
the input of QRS detectors may vary over a considerable
range. An algorithm is more robust if it has a relatively
broad dynamic range. For digital QRS detection, the
dynamic range depends nof only on the algorithm itself
but also on the degree of quantization of the input signal.

QRS DETECTION ALGORITHMS

Review of Past Research

As Figure 2 shows, a fypical QRS detection algorithm
contiains three stages of processing: linear filtering, non-
linear transform, and decision.”® The linear-filtering
stage usually includes an operation of digital differentia-
tion. The nonlinear4ransform stage traditionally in-
volves a moving average of the signal squares, which
provides an estimate of the signal énergy. Then, the
output of the nonlinear fransform is compared with a
threshold in the decision stage.

The appropriate linear filtering on the ECG for the
purpose of QRS detection has been thoroughly investi-
gated > A band-pass filter with a pass band between 5
and 15 Hz is generally acceptable. A 60-Hz (or 50-Hz)
notch filter is also useful for suppressing power-line in-
terference. However, linear filtering alone is not suffi-
cient to eliminate other types of noise, including motion
artifacts, pacemaker spikes, and electrosurgical inferfer-
ence, These types of noise typically have frequency spec-

tra overlapping in part with that of the QRS complex. -

Thus, suppressing these inferferences by low-pass filter-
ing would also obscure the R wave itself. An appropriate
nonlinear fransform tuned to the wave shape of the QRS
complex, on the other hand, can significantly enhance
the signal-to-noise ratio prior to threshold detection.
This is why the nonlinear fransform plays a very im-
portant role in QRS detection.

The frequency domain behavior of linear filtering can
be completely characterized by using Fourier analysis.
By contrast, analytical tools for studying the time-
domain nonlinear operations on signals are very limited.
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Some heuristic-based nonlinear operations!! and mor
phologic filters™ have been applied to the problem of
QRS detection in the past. Our preliminary study® has
shown that two-point backward difference multiplication
can be used as a nonlinear transform for early detection
of R waves. However, the use of various nenlinear irans-
forms to suppress neise and to enhance QRS complexes
remains an area where further investigation is needed.

Proposed Nonlinear Transforms

We systematically compared the QRS detection algo-
rithms based on five nenlinear transforms. All five trang-
forms invelve some operations of multiplying consecu-
tive samples. To provide a common ground for
comparison, the backward difference is used as the lin-
ear fiitering stage. Let u, denofe the current ECG sam-
ple. The derivative of the ECG is approximated by the
first-order backward differenee, x,, given by:

Let y, denote the output from the nonlinear transform.
The five nonlinear transforms under investigation are
defined as follows:

Vo = X% @
Vo = XuXp g (3)
XX, H XX, . >0 {4
Yo = 0, otherwise
Vi 7 XoXp . (Xp g (5)
XX o X o0 1§ Xy Xp— 1y X 2 {6)
Y, = sign consistent
0, otherwige
Adaptive Thresholding

An adaptive threshold is used in the decision stage. A
refractory period (fypically 100 ms) i set immediately
after the detection of an R wave to prevent multiple
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{riggers on the same QRS complex. The adaptive thresh-
old is used to increase the sensitivity of QRS detection
as the elapsed time from the last R wave increases.
Immediately following the refractory period the thresh-
old for detecting the next R wave is set at the maximum
of y, during the past refractory period. From this point

om, the threshold is halved whenever a fixed time period
elapses. This predetermined time period is called the
time constant for threshold decay. The threshold is not
allowed to decay below a lower bound. The lower bound
“floats™ above the noise level by an adaptation scheme
based on the noise level of previous cycles. The average
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of y, during the last cardiac cycle {excluding the refrac-
tory period) is computed. The lower bound is updated
by the average y, plus half of the previous lower bound.
This averaging scheme is equivalent to a first-order infi-
nite impulse response (IIR) flter.

Comparison with an Existing Algorithm

To provide a performance reference to the above five
algorithms, we also implemented the algorithm devel-
oped by Okada. The Okada algorithm was chosen be-
cause its response time is comparable to that of the
proposed algorithms, Some other algorithms™ may pro-
vide better performance, but they either are not for real
time or have much longer response times (the detection
point can be as late as a few hundreds of milliseconds
after the R wave}. The Okada algorithm contains several
nonlinear operations, including the nultiplication of
each point by the square of a moving average of several
adjacent points. Its computational complexity, in terms
of processing time, is about four times that of the three-
point with sign consistency algorithm (equation 6). The
Okada algorithm employs a constant threshold through-
out the cardiac cycle; the threshold is set at 1/32 of the
maximum of the nonlinear transform output.

Evaluation of Algorithm Performance

The ECG database compiled by the American Heart
Association was used to test the algorithms. Figure 3
shows examples of the QRS detection performances of
the six algorithms. A segment of ECG signal sampled at
250 Hz is shown at the top. For each algorithm the
output from the nonlinear transform is plotted, overlap-
ping with the adaptive threshold. The trigger output
from the threshold detection is alse shown. Due to the
presence of noise in the last two beats, spurious triggers
are observed for all algorithms except the threepoint
with sign consistency algorithm {(algorithm 3). The
three-point algorithms (algorithms 4 and 5) reject the
noise better than do the one-point and two-point algo-
rithms (algorithms 1 to 3}, as indicated by the cleaner
baseline and the clearer separation between the signal
and the background. The effect of the sign consistency
constraint is the elimination of some sparsely occurring
noise spikes. The Okada algorithm also has good noise-
rejection capability; the spurious frigger could be
avoided if the threshold adaptation scheme were used.

Receiver Operating Characteristics with Respect
fo Dynamic Range _

To provide a quantitative assessment of the algo-
rithms’ performances, the false positives and false nega-

BIOMEDICAL INSTRUMENTATION & THCHNOLOGY

Table 1. Detection Performances of
Three Algorithms Operating at Their Best
Quantization Levels

1 — ¥FN* FP{ ¥N + FP Delay

Algorithm Quantization A G0 (53] {(ns)
3-point, sign

consistency 8-bil 89.2 29 36 24
2-point 10-bit 943 368 425 -2.2
Okada 12-bit 976 14 38 324

*False negative.
+False positive.

tives for each algorithm were recorded when the quanti-
zation level was varied between six and 12 bits. The
digital version of the AHA Arrhythmia ECG database
was sampled at 250 Hz with 12-bit quantization. The
sampling rate is fixed and cannot be varied, but the
degree of quantization can be easily increased by drop-
ping the low-order bits. The AHA ECG database contains
80 tapes. The following eight tapes were used in the
evaluation: 1207, 2202, 3202, 4204, 5208, 6203, 7208, and
8209. One tape from each series was included; the selec-
tion of tapes was otherwise arbitrary. In all, 34,060 beats
were included in the evaluation. A valid detection must
fall into the window that begins 50 ms before and ends
160 ms after the R wave marked by the AHA annotation.
The window is shifted by the average processing delay
for each algorithm so that, so far as detection accuracy
is concerned, an algorithm is not penalized for slowness
in response. The method used for performance evalua-
tion has been described in detail.

Only algorithm 5 (three-point with sign consistency)
and algorithm 6 {Okada’s algorithm) performed satisfac-
forily. Algorithms 1 to 4 are, in general, too sensitive;
although they gave reasonable true detection rates, their
false detection rates were very high. For simplicity, in
addition to algorithms 5 and 6, we show only the result
of algorithm 3 (two-point), as a representative for the
rest of the algorithms. Table 1 surnmarizes the detection
performances of the three algorithm, each operating at
its best quantization level. The false-positive (FP) rate
and the false-negative (FN) rate are defined as:

_ number of spurious triggers 44
PP = - amber of beats analyzed 1000%)
FN = number of missed triggers % 100 % 8

aumber of beats analyzed

The false detection rate is the same as the FP rate. The
true detection rate is defined by {1 — FN). A single
performance index (FP + FN) is formed by weighting
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Figure 4. False negatives vs. false positives for Okada’s algo-
rithm (Okada), the two-point algorithm (2-point), and the
three-point with sign consistency algorithm (3-point). The de-
grees of quantization are varied as shown by the numbers of
bits adjacent to individual plotted points.

FN and FP equally. The best performance was that of
the three-point with sign consistency algorithm (3.6%),
closely followed by the Okada algorithm (3.8%).

To further probe the issue of FN-FP tradeoffs, Figure
4 shows FN versus FP for each of the three algorithms.
Notice that, by definition, the ROC curve is plotted with
(1 = FN) versus FP. We use FN instead of (1 — FN)
because points corresponding to low FN and low FP are
shown with better resolution on the logarithmic scales.
In Figure 4 the theoretical best performance corres-
ponds to the point at origin. The closer a point is to the
origin, the better the performance is. If a point is closer
to the FP axis than the FN axis, the algorithm gives
more spurious triggers than missed triggers, which is
the case for the three-point with sign consistency algo-
rithm. The three-point with sign consistency algorithm
shows a relatively broad dynamic range. In fact, a higher
degree of quantization seems to help prevent spurious
detections; the best performance was that obtained with

eight-bit quantization in this test. The point of detection
was, on average, 2.4 ms after the annotation mark. The
Okada algorithm, on the other hand, generally showed
more false negatives than false positives. Its dynamic
range is relatively narrow; performance deteriorated
abruptly as the number of bits dropped below 12. It also
has a longer response time; the point of detection was,
on average, 32.4 ms after the annotation mark.

MICROCONTROLLER-BASED
QRS DETECTOR

Hardware

As Figure 5 shows, the QRS detector consists of three
components, i.e., a single-chip microcomputer (Mo-
torola 68HC811E2), a crystal oscillator, and a power-on
reset circuit. The 68HC811 chip contains an eight-bit,
6,800-family microprocessor. This processor supports
eight-bit integer arithmetic, including multiplication and
division. No floating-point instruction is available. When
running under the “single-chip” mode, it becomes a self-
contained computer system equipped with on-chip ran-
dom-access memory (RAM), electrically erasable pro-
grammable read-only memory (EEPROM), and a 16-bit
timer. It communicates with the outside world via serial
and parallel 1I/O ports and an eight-bit, eight-channel
analog-to-digital converter.

Development System

The development system consists of an IBM Personal
Computer and a Motorola 6811 evaluation module
(M6SHC11EVM). An assembly source program is cre-
ated on the PC and cross-assembled into an ASCII-coded
(Motorola Srecord) machine program. The program is
down-loaded to the evaluation module via an RS-232 con-
nection. The evaluation module has the in-circuit emula-
tion capability that allows one to test and debug the
program using the same I/0 environment as the target
device has. The evaluation module is also capable of
erasing, programming, and verifying the contents of

RESET -
CIRCUIT .
(MAX660) -
| PROCESSOR
i ¥ > SRR
Figure 5. System hardware for the QRS detector c:y’;?zﬂ_ R e FA p——— TRIGGER
based on the 68HC811 microcontroller. osc b A PARALLEL >
| 2 KB EEPROM VO PORT
4]
R Hansie
| 8BIT | o \ ECG
| PARALLEL || PARALLEL| | 8-CHANNEL |
| vo PORT I /O PORT | | 8-BIT A/D [
I SRanET Ty wwwm})
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EEPROM on a 68HC811 chip. On the target device (.e.,
the QRS detector) an 8&MHz crystal oscillator chip is
used. This clock is internally divided by 4, and the re-
sulting system clock rate is 2 Mz External switches
are connected to one of the parallel 1/0 ports. These
switches are used to select different detection algo-
rithms stored in the EEPROM.

Software

A main program is initlated upon the power-on reset.
The main program sets the 16-bit timer to generate peri-
odic interruptions at the chosen sampling rate. The QRS
detection algorithm is implemented in an interrupt ser-
vice routine. The following is the pseudo code for an
algorithm using equation 4 as the nonlinear transform:

1.0 Reset the timer interrupf flag.
2.0 Assign old u,to u, _; and get new u, from A/D. Start
A/D for next sample.
3.0 Assign old x, 10 x,_; and compute x, = 1, — u,_ ..
4.0 IF x, and x, .. ; have the same sign
THEN

5.0 IF refractory = TRUE
THEN

5.1 threshold = maximum (v, threshold).
5.2 Count the refractory period, IF expired
THEN
5.2.1 refractory = FALSE.
5.2.2 trigger = (.
5.3 Count the threshold decay period, IF expired
THEN
5.3.1 Reset decay counter.
5.3.2 threshold = threshold/2.
54 1F v, > threshold
THEN
54.1 refractory = TRUE.
5.4.1 Reset refractory counter.
542 irigger = 1.
6.0 Output trigger.
7.0 Return from inferrupt.

Evaluation

Three QRS-detection algorithms were implemented
“on a 68HC811EZ microcontrolier. The first (three-point
with sign consistency) employs equation 6 and a sam-
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the trigger outputs of the microcontroller-based QKS detector
with three detection algorithms. The ECG and pacemaker
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Figure 7. Comparison of the response times of the three QRS
detection algorithms. The waveform on the fop is a2 QRS com-
plex shown on an expanded time scale. The elapsed time from
the @ wave to the detection point is shown for each QRS
detection algorithe

pling rate of 200 Iiz. The second (two-point) employs
equation 3 and a sampling rate of 500 Hz. The second
algorithm does not distinguish a pacemaker spike from
an R wave, while the first does. The third algorithm is
the Okada algorithm implemented with a sampling rate
of 250 Hz. The sampling rate was chosen for each algo-
rithm to achieve its best performance. Because we were
unable to optimize the sampling rate for each algorithm
using the digital AHA ECG database, the sampling rates
were chosen empirically and are not necessarily eptimal.

Via an external switch connected to one of the parallel
1/0 ports of the microcontrolier, the selection of which
algorithm {o use is entered. The three programs com-
bined occupy 872 bytes, less than half of the total on-
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chip EEPROM. The execution time for any of the three
algorithms is less than 0.2 ms.

Figure 6 shows an example of the ECG input and the
trigger ouiputs for the three algorithms. The ECG signal
with pacemaker spikes was generated by a patient dy-
namics simulator (Model 130, Cardiac Assist, BSC,
Mansfield, MA). The three-point with sign consistency
algorithm rejects pacemaker spikes and triggers on R
waves. Both the two-point algorithm and the Okada algo-
rithm trigger on pacemaker spikes. Figure 7 shows the
differences in the detection points for the three algo-
rithms. In this example, the two-point algorithm gives
the fastest response, with a detection point at 7 ms after
the Q wave. The three-point with sign consistency algo-
rithm triggers around the peak of the R wave, at 25 ms
after the Q wave. The Okada algorithm triggers shortly
after the R wave, at 30 ms after the  wave.

CONCLUSION

The detection algorithm is the most critical compo-
nent in the design of a computer-based QRS detector,
and strongly influenees the architecture of the hardware.
Specifically, we have arrived at the following conclu-
sions: 1} Certain nonlinear transforms on the ECG signal

and heuristics for setting the defection threshold im-
prove the sensitivity and reliabilify of QRS detection.
The incorporation of these transforms and heuristics
into the detection algorithm is much easier with soft-
ware than with hardware. 2) Among the algorithms un-
der investigation, only the three-point with sign consis-
tency and the Okada algorithm performed acceptably.
The former tended to give more false positives than false
negatives, while the Jatter behaved in reverse, The three-
point with sign consistency algorithm was superior in
the categories of response fime, computational simplic-
ity, and dynamic range. 3) With a proper detection algo-
rithm an eight-bil single-chip microcontroller provides
sufficient computing power and reliable performance for
real-iime QRS detection. 4) Multiple detlection algo-
rithms can be implemented on the same chip 1o cope
with waveform variations in recorded ECGs. 5) The
number of discrete components of the hardware can be
as low as three. The low chip count together with the
availability of on-chip electrically erasable programma-
ble ROM make the system very maintainable and cost-
effective. 6) Although not demonsirated in this study,
fault tolerance can be easily achieved with multiple algo-
rithms in the same processor and multiple processors
in the same system. [
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