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Laplace Transform

The Laplace transform is named after French mathematician and astronomer
Pierre-Simon Laplace (1749-1827), who used a similar transform in his work on
probability theory. Laplace's use of generating functions was similar to what is
now known as the z-transform and he gave little attention to the continuous
variable case. The theory was further developed in the 19th and early 20th
centuries by Lerch, Heaviside, and Bromwich. The current widespread use of the
transform came about during and soon after World War II replacing the earlier
Heaviside operational calculus. The advantages of the Laplace transform had been
emphasized by Doetsch to whom the name Laplace Transform is apparently due
[Wikipedia].

Laplace Transform (LT):     X ( s)=∫
0

∞

x (t )e−st dt        

Inverse LT:    x (t )= 1
2π j ∫

σ− j∞

σ+ j∞

X ( s)est ds , where   s=σ+ jω , ∣∫
−∞

∞

x (t )e−st dt∣<∞

z-transform

The basic idea now known as the z-transform was known to Laplace, and it was re-introduced in 1947 by
W. Hurewicz and others as a way to treat sampled-data control systems used with radar. It gives a tractable way
to solve linear, constant-coefficient difference equations. It was later dubbed "the z-transform" by Ragazzini and
Zadeh in the sampled-data control group at Columbia University in 1952.

z-Transform (ZT):    X ( z )= ∑
n=−∞

∞

x [n ] z−n       

Inverse ZT:    x [n]= 1
2π j∮ X (z ) zn−1dz ,  where  z=r e jω , ∣∑

−∞

∞

x [n] z−n∣<∞

Fourier Analysis

The representation of a periodic signal by its harmonics was first studied by
the French mathematician and physicist Jean-Baptiste Joseph Fourier (1768–
1830). The Fourier series analysis was initially concerned with periodic signals. It
was later expanded to non-periodic signals by using the Fourier transform. The
Fourier transform has many theoretical and practical applications, which provide
the foundation for areas such as linear systems and signal processing. 

A Fourier series is a way to represent a periodic function as the weighted sum
of simple oscillating functions, namely sines and cosines. Why sines and cosines?
The answer is related to the phase component (time delay) mentioned previously.
As shown by the figure on the right, the sine and the cosine form a so-called
orthogonal basis; They are separated by a phase angle of 90 degrees (π /2). Any
angle can be represented by a linear combination of them. By definition a linear
combination of sine and cosine is a sin 2π t+b cos 2π t , where a and b are

1



constants.

In the following, we will present the formulas for the Fourier series, which
utilize the notions of calculus and complex variables. If you don't have these
mathematical background,s it's quite alright and please just try to follow the
notations.

It is somewhat cumbersome to carry the coefficients for both sine and cosine.
Thus, we introduce the complex exponential from another important
mathematician Leonhard Euler. The famous Euler's number e is an irrational
number: e = 2.71828182845904523 (and more). The Euler's formula represents
sine and  cosine with a complex exponential:

e jx = cos x+ j sin x , where j = √−1 .

A special case of the above formula is known as Euler's identity:

e j π + 1 = 0 .

These relationships are illustrated with the unit circle as shown in the figure at the
lower-right.

Finally, we present the Fourier series. A time-domain periodic signal f (t )
with the fundamental frequency of f 0  can be represented by a linear combination
of complex exponentials,:

f (t )= ∑
n=−∞

∞

cne
jn 2π f 0t

The Fourier coefficients cn  specify the weight on each harmonic in the
frequency-domain. The Fourier coefficients are computed according to:

  cn=
1
T ∫

−T /2

T /2

x (t )e− jn 2π f 0t dt , 

where T=1/ f 0  is the period of the signal.
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