ELE 314 Linear Systems and Signals - Introduction

Ying Sun
A linear time-invariant (LTI) system is a system that satisfies the properties of linearity and time-invariance. A linear system supports superposition: A linear combination of individual inputs results in the same linear combination of the corresponding individual outputs. As shown in the figure, if $y_{l}(t)$ and $y_{2}(t)$ are the outputs of $x_{l}(t)$ and $x_{2}(t)$, respectively, the input $a x_{l}(t)$ $+b x_{2}(t)$ results in the output $a y_{1}(t)+b y_{2}(t)$, where a and b are scaler constants. A time-invariant system holds the same input-output relationships over time. If the input is delayed by a time period of T , the output remains the same but with the same amount of delay. In other words, input $x(t+T)$ results in output $y(t+T)$.

A LTI system is completely characterized by its impulse response $h(t)$, which is the output corresponding to the impulse input $\delta(t)$. The convolution is a linear operation that defines the input-output relationship:

$$
\begin{aligned}
& y(t)=x(t) \otimes h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau= \\
& \int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau
\end{aligned}
$$

Example 1: The impulse response of a LTI system is: $h(t)=e^{-t} u(t)$, where $u(t)$ is the unit step function. If the input is a square function $x(t)=u(t)-u(t-1)$, determine the output $y(t)$.

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau= \\
& \int_{-\infty}^{\infty}[u(\tau)-u(\tau-1)] e^{-(t-\tau)} d \tau= \\
& \begin{cases}0, & t<0 \\
\int_{0}^{t} e^{-(t-\tau)} d \tau, & 0 \leq t<1 \\
\int_{0}^{1} e^{-(t-\tau)} d \tau, & t \geq 1\end{cases} \\
& y(t)= \begin{cases}0, & t<0 \\
1-e^{-t}, & 0 \leq t<1 \\
(e-1) e^{-t}, & t \geq 1\end{cases}
\end{aligned}
$$

Linearity: $x_{l}(t) \longrightarrow y_{l}(t)$
$x_{2}(t) \longrightarrow y_{2}(t)$
then $a x_{l}(t)+b x_{2}(t) \longrightarrow a y_{l}(t)+b y_{2}(t)$

Time-invariance:

$$
x(t-T) \longrightarrow y(t-T)
$$

Convolution in the time domain is equivalent to multiplication in the frequency domain. The figure shows the LTI system in the frequency domain. $H(s)$ is the transfer function, which is the Laplace transform of the impulse response $h(t) . H(s)$ is the ratio of the LT of the output over
 the LT of the input:

$$
H(s)=\frac{Y(s)}{X(s)} \quad \text { and } \quad Y(s)=H(s) X(s)
$$

From the Laplace transforms table, we see that $e^{a t} \rightarrow \frac{1}{s-a}$. Thus, the transfer function in Example 1 is: $H(s)=\frac{1}{s+1}$. Later on, we will see that this is a first-order low-pass filter.

Example 2: For a LTI, show that $y(t)=h(t) \otimes x(t)$ results in $Y(s)=H(s) X(s)$.

$$
\begin{aligned}
& Y(s)=\int_{0}^{\infty} y(t) e^{-s t} d t=\int_{0}^{\infty} \int_{-\infty}^{\infty} x(\tau) h(t-\tau) e^{-s t} d \tau d t=\int_{-\infty}^{\infty} x(\tau)\left[\int_{0}^{\infty} h(t-\tau) e^{-s t} d t\right] d \tau= \\
& \int_{-\infty}^{\infty} x(\tau) e^{-s \tau}\left[\int_{-\tau}^{\infty} h(t-\tau) e^{-s(t-\tau)} d(t-\tau)\right] d \tau=\int_{-\infty}^{\infty} x(\tau) e^{-s \tau} H(s) d \tau=H(s) X(s)----- \text { QED }
\end{aligned}
$$

Example 3: The "square" function shown on the right (top) is a nonlinear time-invariance system. The "time-scale" function shown on the right (bottom) is a linear time-varying system.

Square function

Linearity: $y_{1}(t)=x_{1}^{2}(t) ; \quad y_{2}(t)=x_{2}^{2}(t)$
$\left[a x_{1}(t)+b x_{2}(t)\right]^{2}$ does not equal to

$a x_{1}^{2}(t)+b x_{2}^{2}(t)$ in general. Thus, linearity is not satisfied.
Time-invariance: Delay the input, the output is $x^{2}(t+T)$.
Delay the output, the output is also $x^{2}(t+T)$. Thus, time-invariance is satisfied.

Time-scale function

Linearity: $y_{1}(t)=x_{1}(t) / t ; \quad y_{2}(t)=x_{2}(t) / t$
$\left[a x_{1}(t)+b x_{2}(t)\right] / t$ is the same as $a x_{1}(t) / t+b x_{2}(t) / t$. Thus, linearity is satisfied.
Time-invariance: Delay the input, the output is $x(t+T) / t$. Delay the output, the output is also $x(t+T) /(t+T)$, which is different. Thus, time-invariance is not satisfied.

