Cascade Connection

h(1)= (D@ hy (1))
* In the frequency domain
H(jQ) = Hi(JH,(JQ) |
and in the s-domain
(H(s)= Hy(s)H,(s)
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Parallel Connection

* In the frequency domain
(H(JQ) = H,(J) + Hy ()|
and in the s-domain
(H(s)= Hy(s)+ Hy(s)|

@ == 1o P (D) =IO+ Ry 1)
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Feedback Connection

Feed-forward path

w02 0 P 50
T

Reverse path

* Input-output relation

[8(1) + g(0® (1O y(1) = f(1)Ox(r)
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Feedback Connection

» Taking the CTFT of both sides we get

[1+GRF(JD)IY (j€2) = F(j)X(j€2)
* Therefore
Y(j2) =( PR

— 7 IX(jQ
1+F<jQ>G(jsz>) S

» Hence, in the frequency-domain

. Y(jQ F(jQ
H(jo)=TUD_TUS)
X(jQ) 1+F(jG(Q)
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Feedback Connection

F(s)

and in the s-domain,| H(s)= ——"> —
1+ F(s)G(s)

Example — We determine the impulse
response /4(?) of an analog feedback system
for which

f([) =0.25 6([) +0 256_4t‘u([) <— Feed-forward path
g([) = _36(1) + 9e_51‘u(t) <— Reverse path
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Feedback Connection

 Corresponding frequency responses are
given by

F(jQ) =025+ 02 _ J2+3
JjQ+4 4(jQ+4)

G(j@)=3s O 23Q+D)
JR+5  jQ+5
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Feedback Connection

 The frequency response of the feedback
system is thus given by

Hiy- FUD  _je+s
1- F(Q)G(Q) jQ+10

* Its transfer function is given by

s+5
H(s)=
() s+10
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Feedback Connection

The partial-fraction expansion form of H(s)
is given by
5

H(s)=1-
) s+10

The frequency response of the feedback
system is thus

H(Q)=1- >
JjQ+10
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Feedback Connection

» The inverse CTFT of H(jQ2) yields the
impulse response

h(t) = (1) - 5~ u(r)
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Inverse LTI Analog System

Two causal LTI analog systems with
impulse responses g(f) and A(f) are inverses
of each other if

8OO h(r) = 6(1)
Using the convolution integral property of
CTFT we have

GUQH(jQ)=1

CTFTof g(r) CTFT of h(r)
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Inverse LTI Analog System

 In terms of their transfer functions we have

» Hence, for a causal LTI analog system with
a transfer function H(s), the transfer
function H~!(s) of its inverse causal LTI
analog system is

R
B O=56
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Inverse LTI Analog System

Note: If H(s) is causal stable LTI analog
system, its inverse system will be a stable
system if it has the same number of zeros as
poles with all zeros in the left-half s-plane
Example: Consider the causal stable LTI
analog system with a transfer function

s+4

H(s)="""
() s+2
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Inverse LTI Analog System

* The transfer function of its inverse system is
therefore given by

H_I(S)= 1 _S+2

H(s) s+4

* Since the zero of H(s) is in the left-half
s-plane, H _l(s) is stable
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Steady-State Response

 The output signal y(f) of a stable LTI analog
system characterized by a constant
coefficient differential equation consists of
two parts:
particular solution
y(t) = yc(t) + Yp (1) Qutput for given
complementary solution < input x()
output for x(¢) =0
14
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Sinusoidal Steady-State
Response

» Consider a causal stable LTI system with a
real valued impulse response /(%)

e Let X(t)=Acos(Q,t+¢),—o<t<+»

* Using the trigonometric identity we have
%(r) = g(r) + g*(t) where g(t) = %Ae”’efgot
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Sinusoidal Steady-State
Response

+ Now for an input e/ | the output is given
by H(jQ,)e/%!

» Hence, linearity property of the system,
output for an input g(t) = %Aejq)ejgv’ is

w1 =L AePH(jQ,)e%!
=1 Ae?|H(jQ, e 0 0)e it
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Sinusoidal Steady-State
Response
* Output for an input g*(r) = %Ae‘J%-JQ(J is
Vi) = L AemIPHT(jQ, )em 1!
= %Ae‘j‘p‘H(—jQD )‘e_jg(go )e_jgot
= % Ae—j(b‘ H(jQ, )‘g—jH(Qo)e—jQOt
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Sinusoidal Steady-State
Response

* Hence, for an input x(¢) = Acos(Q,t +¢),
the output is given by

() = v(1) +v*(1) ‘ '
= L Ae/|H(jQ, e 0 )e /20!

+% Ae_j¢‘H(jgo)‘e_je(gn)e_jgnt
= AH(Q, )¢ 19@ VeI 4 ¢8I )~19.1)
3(1) = AJH (JQ,)|cos(Qt +6(2,) +¢) |
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Sinusoidal Steady-State
Response

* Therefore, the output is a sinusoidal signal
of the same frequency as the input except
for an amplitude scaled by |[H(jRQ,)| and a
phase lag of 6(2,) radians

* The derivation of the expression for the
output assumes that the input signal has
been present for all values of time in the
range —oo <t <+
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Sinusoidal Steady-State
Response

« Example — The frequency response of a
causal stable analog system is given by

_2(j+3

(jQ)+6

» We determine its steady-state response y(¢)
for an input given by

X(t) =5co0s(20t +0.3)

H(j)

20

Copyright © 2015, S. K. Mitra

Sinusoidal Steady-State
Response

 The frequency response for Q = 20 is given

by .
H(j20)=>*940 _ 87614 jo.4128
6+ j20

« Its magnitude and phase at € =20 are

|H(j20) =/1.87612 +0.4128% =1.9210
arg{H(j20)} = tan~'(0.4128/1.8761) = 0.2166

21
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Sinusoidal Steady-State
Response
* Therefore
$(1) = 5%x1.921cos(20¢ +0.2166 +0.3)
=9.605cos(207 +0.5166)

22
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Steady-State Response to a
Causal Input

 Thus, the LTI system is in the steady state
throughout this range of time

Response to a Causal Input
« In practical applications, the input is a
causal signal applied at a finite instant of
time
« It is of interest to develop the expression for
the output signal for a causal input
23
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Steady-State Response to a
Causal Input

* We assume that the input is a causal
exponential signal applied at time ¢ = 0:

x() = e/ u(r)
» Asx(f) =0 for ¢ < 0, for a causal system the
output y(#) =0, for £ <0
* Thus we have for t =0

() = [ A(TeT20- s - )l
0

24
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Steady-State Response to a
Causal Input

which reduces to
t . )
y(0)= (f h(r)e-fmdr)e-fgf
0

asw(t-t)=0fort><

» We rewrite the above equation as
y0)= (f h(r)e‘fQ’dr)efQ’ - ( J h(r)e-fgfdr)eigf
0 t
t—Y—J

25 H(j<2)
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Steady-State Response to a
Causal Input

* First term in the expression for y(¢) is the
steady-state response

Vo5 () = ( ) h(r)e—fgfdr)eﬁ?’
0
and the second term is the transient response
V(D)= —(f h(r)e-fmdr)efgf
t

26
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Steady-State Response to a
Causal Input

* Note

‘ytr (t)‘ =

[ h(T)e~ /" dr
t

< [N = [|(z)de
t 0

* For a causal and stable LTI analog system,
the impulse response is absolutely
integrable, and hence the transient response
y;-(t)is a bounded signal

27
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Steady-State Response to a
Causal Input

« Ast—oo, [h(T)e dr =0
t

indicating that the transient response
approaches zero value as ¢ gets very large

+ In most practical situations, the system is
assumed to have reached the steady-state as
the transient response becomes extremely
small after a finite amount of time

28
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Phase and Group Delays

 Recall that for a sinusoidal input signal
X(t)=Acos(Qyt +¢) ,—o <t <, the
output signal of a causal stable LTI analog
system with a frequency response H(j<2) is
given by
§(1) = AH (jQ,)|cos(Q,t + 0(RQ,) + ¢)
and thus has a phase lead of
0(€2,) = arg{H (j&,)}

Copyright © 2015, S. K. Mitra
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Phase and Group Delays

* A measure of the time delay of the phase is
called the phase delay and is given by

0(<2,)
Q,

where the minus sign indicates phase lag

Tp(go) ==

30
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Phase and Group Delays

 Usually the input signal to a frequency-
selective LTI analog system is composed of
an weighted combination of many
sinusoidal signals with different angular
frequencies that are not harmonically
related

* Each sinusoidal signal present in the input
undergo different phase delays

Copyright © 2015, S. K. Mitra

Phase and Group Delays

* In such cases, the time delay between the
output and input signals is determined using
an alternate parameter given by

doQ)
daQ

* The parameter 7,(€2) is known as the group
delay

Tg(g) ==

32
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3B

Phase and Group Delays

 For the computation of the group delay, the
phase function 0(€2) is assumed to have
been unwrapped

» The physical difference between the phase
delay and the group delay is illustrated in
the next slide
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Phase and Group Delays

A(1)cos@y1)
< At

A(t-1)c0sQ (1 - 1)

p

Amplitude

- Al

T

34
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Ideal LTI Analog Systems

+ In practice, the analog signal as a linear
combination of many, often infinite, number
of sinusoidal analog signals

» Some applications require analog filters
that passes components with frequencies in
a specified range without distortion and
block components outside this range

Copyright © 2015, S. K. Mitra

Ideal Analog Filters

* The key to the design of analog filters is
y(1) = AH(jQ, ) cos(Q,t +0(RQ,) + ¢)
from which it can be seen that the value of
the magnitude function at a given angular
frequency @, determines the value of the
output response of the filter at that
frequency Q,

36
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Ideal Analog Filters

* To pass sinusoidal components of the input
in a specified frequency range, ideally the
magnitude function should have a value of 1
in that frequency range

» To block signal components outside the
specified frequency range, the magnitude
function should have a value 0 in that
frequency range

37
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Ideal Analog Delay

 The system implementing the time shifting
operation y(t) = x(¢t —t,) for a positive value
of 7,

« Tts impulse response is h(t) = 0(t —t,)

« Its frequency response is thus

H(jQ) = e /%o

* Note: |H(jQ)|=1 and 8(Q) = -Q,

38
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Ideal LTI Analog Systems

Since |H(jQ)| =1, any input analog signal
appears at the output of the delay without
any distortion of its amplitude

» The group delay of an ideal analog delay

system is

vy @--20D

dQ

39
Copyright © 2015, S. K. Mitra

Basic Analog Filters

Ideal Lowpass Analog Filter

Q=Q, a0
H Q ‘ 1
LP(.] ) { , ‘Q‘>Qc
* Passband: 0=Q=Q, @ 0 @
+ Stopband: Q, <Q<»
Cutoff frequency

40
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Basic Analog Filters

Ideal Highpass Analog Filter

. 0, Q<Q .
Hpp(jQ)= {1 o QC Hyp(j2)
9 = — 1 —
* Passband: Q. <Q < o @
e Stopband: 0=Q=Q,
Cutoff frequency

41
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Basic Analog Filters

Ideal Bandpass Analog Filter

<Q<Q
Hpp(j2)= {0 0= <Cg12d‘ a‘nd \sczz\>szcz
+ Passband: Hpp(f&2)
Qe = ‘Q‘ =Q: 1
» Stopbands:
0=Q<Q, 02 Q10 Qi G2 @
Q<< sl

» Cutoff frequency
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Basic Analog Filters

Ideal Bandstop Analog Filter

.~ 0, Q. <9 <Q

Hps(/2)= {1, 0<[Q<Q, and [Q=Q.,
» Stopband: Hps (/)

Qu=Q=Q, !
» Passbands:

0=Q<Q, Q0010 Qa2 2

~
4 Qep <Q<o0 Cutoff frequency
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Basic Analog Filters

Impulse Response

Expressions for the impulse responses of the

above four ideal filters can be computed by

applying the inverse CTFT to their

frequency responses

For example, the impulse response of the

ideal lowpass filter is
hp() =D s

Tt

Copyright © 2015, S. K. Mitra
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Basic Analog Filters

Note: hyp(t)is not absolutely integrable
Hence, the ideal lowpass analog filter is not
BIBO stable

Also, hyp(t) is of doubly infinite length
from -0 <7 <00, implying that the ideal
lowpass analog filter is not a causal system

Copyright © 2015, S. K. Mitra
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Basic Analog Filters

The remaining three ideal filters also have a
noncausal impulse response of doubly
infinite length which are not absolutely
summable making these filters unstable

Filters with an ideal “brick wall” frequency
response cannot be realized in practice

Copyright © 2015, S. K. Mitra
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Basic Analog Filters

To develop a stable and realizable filter, a
transition band between the passband and
stopband is included in the frequency
response specification of the filter

Also the magnitude response characteristic
in the passband and the stopband are
allowed to vary within a very small range
called “ripples”
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Ideal Analog Differentiator

This system implements the differentiation
operation Ax(t)
)= —"—2
n=—
Taking the CTFT of both sides we arrive at
its frequency response

Hprr (j2) = jQ
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Ideal Analog Differentiator

* Plots of the magnitude and phase functions
are shown below

Ideal Analog Differentiator

* From the magnitude function plot, it can be
seen that high-frequency components of the
input signal of a differentiator are amplified
more compared to the low-frequency
components

Hence, a differentiator can be used to amplify
portions of the input signal exhibiting sharp
transitions

50
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Concept of Filtering

* Consider the ideal highpass filter of Slide
No. 41 with an input signal given by

X(1) = Acos(Q41) + Bcos(Q,t) where
0<Q)<Q. <Qy <»

Note: Acos(Q¢) is in the stopband of the
filter and Bcos(Q;¢) is in the passband of
the filter

51
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Concept of Filtering

» From Slide No. 29 we note that the output
of the highpass filter is

5(1) = AH(jQ) Jcos(@yt +6(Q))
+B/H (jQy)|cos(Qa1 +0(Q,))
= Bcos(Qx1 +0(RQ)))
as|H(jQ))|= 0 and|H(jQ,) =1

52
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A Simple Design Example

Example: Design a LTI analog lowpass
filter with a dc gain of 0 dB and a gain of
-1 dBat 100 Hz

Assume . @
H(jQ)=-
jQ+b

with a and b real and positive numbers

53
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A Simple Design Example

* Square-magnitude function is given by
2

HGQP = HGQH(-jQ)= -4
|H (jQ) (])(J)b2+92

* The gain function is given by
G(Q) =10logo|H(jQ)* dB

54 .
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A Simple Design Example

* Design specifications:

0, Q=0
G(Q)= {-20, Q = 27(100)
or, equivalently,

7o 1, Q=0
[HGL) ={0.01, Q= 2007

S5
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A Simple Design Example

2 a?
* Now |H(jQ) =b—2=1 = a=0b
* Next, we set
a2
———5=001
a“ +(200m)
which yields a = 63.1484

|H(j2007) =

56
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A Simple Design Example

* Thus, the frequency response of the filter is

. 63.1484
H(jQ)=—+"——
jQ +63.1484

dB

o 100 200 300
Frequency, Hz

57
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Realizable Analog Filters

* We describe next a few low-order causal
LTT analog filters with frequency responses
approximating the ideal frequency
responses presented earlier

* These low-order filters often provide

satisfactory performances in many
applications

58
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Analog Lowpass Filters

 Transfer function of a stable causal first-
order analog lowpass filter is

HLP(S)= QC ’Qc >0
s+Q

c

* Its gain response is

2
GLp(Q)=10logo|H 1p (jQ) = 1010g10(

59 .
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C
Q% +Q2

|

Analog Lowpass Filters

dc gain Gyp(0)=10 logjo(l)=0 dB
* GainatQ=Q, is

G(R.)=10 log;p(1/2)=-3.0103 dB
* As the gain of the filter at Q = Q_is about

3 dB below the dc gain, Q.is called the 3-dB
cutoff frequency of the lowpass filter

60
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Analog Lowpass Filters

« Example: Design a first-order analog
lowpass filter with a 3-dB cutoff frequency
of 400 Hz

e The 3-dB cutoff angular frequency is thus

Q. =2m(400) =2513.3

* Hence,

2513.3
Hyp(s)=

s+2513.3
61
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Analog Lowpass Filters

* Plots of the magnitude and gain functions of
the lowpass filter are shown below

. R 0

Magnitude
s o o
2 5 &
Gain, in dB
Lo
5 &

o
N
8
3

3
36
3
3

10° 10
Frequency, in Hz Frequency, in Hz
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Analog Highpass Filters

 Transfer function of a stable causal first-
order analog highpass filter is

S
H s)=
Hp(s) e

> Q. >0

c

* Its gain response is

2

.
(Q) = 10 logo|H yp GQ)? = 10Tog;o| ——2
Gup g10/H gp () 810 P

63

Copyright © 2015, S. K. Mitra

|

64

Analog Highpass Filters

The value of the gain response as Q — o is
GHP(OO) =10 10g10 (1) =0 dB

Gain at Q =Q,. is
G(Q.)=10 log;o(1/2)=-3.0103 dB
 The gain of the filter at Q = Q. is about 3 dB

below the gain at o, Q.. is called the 3-dB
cutoff frequency of the highpass filter
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Analog Highpass Filters

* Plots of the magnitude and gain functions of
a highpass filter with a 3-dB cutoff
frequency of 500 Hz are shown below

a R 0
0.8 -5

3

2 06 € -10

2 <

10° 10° 10° 10° 10° 10
Frequency, in Hz Frequency, in Hz

ain, in dB
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Analog Bandpass Filters

e The transfer function of a stable causal

66

second-order analog bandpass filter with a
frequency response approximating the
frequency response of an ideal bandpass
filter is

Bs
H (S)=7SQ >0,B>0
b s2+Bs+Q% ?
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Analog Bandpass Filters

» The magnitude function has a maximum
value of 1 at Q@ =Q,, , called the center
frequency

o Let Q and Q,, with Q; <Q, <Q, , where
the gain is -3 dB

» Parameter B =Q, —Q, is known as the 3-
dB bandwidth of the passband
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Analog Bandpass Filters

* Plots of the magnitude and gain functions of
a bandpass filter with B =1000 Hz and
Q, = 4000 Hz are shown below

0 2000 4000 6000 8000 10000 "o 2000 4000 6000 8000 10000
Frequency, Hz Frequency, Hz

68
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Analog Bandstop Filters

 The transfer function of a stable causal
second-order analog bandstop filter with a
frequency response approximating the
frequency response of an ideal bandstop
filter is

2.02

ST +Q
Hps(s)=——"2-,Q,>0,B>0
B3 s2+Bs+Qg ’
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Analog Bandstop Filters

The magnitude function has a maximum
value of 0 at Q =9, , called the notch
frequency

Parameter B is known as the 3-dB notch
bandwidth of the stopband

The analog bandstop filter is also called an
analog notch filter
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Analog Bandstop Filters

* Plots of the magnitude and gain functions of

a bandpass filter with B =1000 Hz and
Q, = 4000 Hz are shown below

1 0

08 -10
06 g-20
04 & -3

0.2 -40

o -50
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Frequency, Hz Frequency, Hz
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Analog Allpass Filters

» The analog allpass filter is a causal stable
analog system with a transfer function A(s)
whose magnitude square function is

AR =1, -0 < Q<+
* For a real coefficient JA(s), the above
condition is equivalent to the condition

A(s)A(-s)=1

Copyright © 2015, S. K. Mitra
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Analog Allpass Filters

o If Y(Q) and X(j2) denote the CTFTs of the
output and input analog signals, y(f) and x(%),
respectively, then the condition

AGQP =1, —0<Q <+
implies
YGRP = X()P

73
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Analog Allpass Filters
« Using the Parseval's relation we have
[y@Pd = f|x()d

implying that a stable analog allpass filter is
a lossless analog system

74
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Analog Allpass Filters

» We review next the transform-domain and
time-domain representations of causal stable
first-order and second-order analog allpass
filters

* A higher-order allpass analog filter can be
realized as a cascade of first- and/or second-
order analog allpass filter sections

75
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Analog Allpass Filters

First-Order Analog Allpass Filter

* The transfer function of a stable causal first-
order analog allpass filter with real
coefficients is given by

S—
ﬂl(s)=s+gg "q0 >0

76
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Analog Allpass Filters

Second-Order Analog Allpass Filter

¢ The transfer function of a stable causal
second-order analog allpass filter with real
coefficients is given by

2
ST —-q15+
.ﬂz(é‘) == N5+ 90

sT+q15+qo

,q1>0,g99>0

71
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Analog Allpass Filters

A Simple Application

* One common application is in correcting the
phase response of an analog frequency-
selective filter designed to meet a specific
magnitude response by placing in cascade
with it an analog allpass filter

78
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Analog Allpass Filters

 Let H(s) denote the transfer function of a
frequency-selective causal stable analog
filter

 Consider the cascade of H(s) and a stable
allpass filter with a transfer function “A(s)

e The overall transfer function of the cascade
is

G(s)=H(s)A(s)

79
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Analog Allpass Filters

» The magnitude response of the cascade is
G(jQ)|=[H (AR = |H(JRAGR)
=|H(jQ)|
 The phase response of the cascade is
arg{G(jQ)} = arg{H(jQ)} + arg{ A(/Q)}

80
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Analog Allpass Filters

* Thus, the allpass filter can be designed so
that arg{G(jQ2)} is approximately linear in
the frequency range of interest without
changing the desired magnitude response

H(jQ)

81
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