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•  In the frequency domain 

 and in the s-domain 

€ 

h1(t )

€ 

h2(t )

€ 

h(t )

  

€ 

h(t) = h1(t)O* h2 (t)

€ 

H ( jΩ) = H1( jΩ)H2 ( jΩ)

€ 

H (s) = H1(s)H2 (s)
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•  In the frequency domain 

 and in the s-domain 

€ 

h1(t )

€ 

h(t )

€ 

h2(t )
+ 

€ 

h(t) = h1(t)+ h2 (t)

€ 

H ( jΩ) = H1( jΩ)+H2 ( jΩ)

€ 

H (s) = H1(s)+H2 (s)
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•  Input-output relation 

+ 

€ 

x(t )

€ 

y(t )

€ 

g(t )

€ 

f (t )

€ 

e(t )
Feed-forward path 

Reverse path € 

+

€ 

_

€ 

[δ(t)+ g(t)O* f (t)]O* y(t) = f (t)O* x(t)
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•  Taking the CTFT of both sides we get 

•  Therefore 

•  Hence, in the frequency-domain 

€ 

[1+G( jΩ)F( jΩ)]Y ( jΩ) = F( jΩ)X( jΩ)

€ 

Y ( jΩ) =
F( jΩ)

1+ F( jΩ)G( jΩ)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ X( jΩ)

€ 

H ( jΩ) =
Y ( jΩ)
X( jΩ)

=
F( jΩ)

1+ F( jΩ)G( jΩ)
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 and in the s-domain, 

Example – We determine the impulse 
response h(t) of an analog feedback system 
for which  

€ 

f (t) = 0.25δ(t) + 0.25e−4tµ(t)   

€ 

g(t) = −3δ(t) + 9e−5tµ(t)   
Feed-forward path 

Reverse path 

€ 

H (s) =
F(s)

1+ F(s)G(s)
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•  Corresponding frequency responses are 
given by 

€ 

F( jΩ) = 0.25 +
0.25
jΩ+ 4

=
jΩ+ 5

4( jΩ+ 4)

€ 

G( jΩ) = −3+
9

jΩ+ 5
=
3( jΩ+ 2)
jΩ+ 5
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•  The frequency response of the feedback 
system is thus given by 

•  Its transfer function is given by 

€ 

H ( jΩ) =
F( jΩ)

1− F( jΩ)G( jΩ)
=
jΩ+ 5
jΩ+10

€ 

H (s) =
s + 5
s +10
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•  The partial-fraction expansion form of H(s) 
is given by 

•  The frequency response of the feedback 
system  is thus 

8 

€ 

H (s) =1− 5
s +10

€ 

H ( jΩ) =1− 5
jΩ+10
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•  The inverse CTFT of H(jΩ) yields the 
impulse response 

€ 

h(t) = δ(t)− 5e−10tµ(t)
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•  Two causal LTI analog systems with 
impulse responses g(t) and h(t) are inverses 
of each other if 

•  Using the convolution integral property of 
CTFT we have 

10 

€ 

g(t)O* h(t) = δ(t)

CTFT of g(t) CTFT of h(t) 

€ 

G( jΩ)H ( jΩ) =1
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•  In terms of their transfer functions we have 

•  Hence, for a causal LTI analog system with 
a transfer function H(s), the transfer 
function             of its inverse causal LTI 
analog system is 

11 

€ 

G(s)H (s) =1

€ 

H −1(s) = 1
H (s)

€ 

H −1(s)
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•  Note: If H(s) is causal stable LTI analog 
system, its inverse system will be a stable 
system if it has the same number of zeros as 
poles with all zeros in the left-half s-plane 

•  Example: Consider the causal stable LTI 
analog system with a transfer function 

12 

€ 

H (s) =
s + 4
s + 2
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•  The transfer function of its inverse system is 
therefore given by 

•  Since the zero of H(s) is in the left-half      
s-plane,              is stable 

13 

€ 

H −1(s) =
1

H (s)
=
s + 2
s + 4

€ 

H −1(s)
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•  The output signal y(t) of a stable LTI analog 
system characterized by a constant 
coefficient differential equation consists of 
two parts: 

€ 

y(t) = yc (t)+ yp (t)
particular solution 
output for given 
input x(t) complementary solution 

output for x(t) = 0 
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•  Consider a causal stable LTI system with a 
real valued impulse response h(t) 

•  Let             , 
•  Using the trigonometric identity we have     

        where 
€ 

˜ x (t) = Acos(Ωot +φ)   −∞ < t < +∞

€ 

˜ x (t) = g(t) + g*(t)

€ 

g(t) = 1
2 Ae

jφe jΩot
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•  Now for an input          , the output is given 
by 

•  Hence, linearity property of the system,  
output for an input                               is € 

e jΩot

€ 

H ( jΩo )e jΩot

€ 

g(t) = 1
2 Ae

jφe jΩot

€ 

v(t) = 1
2 Ae

jφH ( jΩo )e jΩot

€ 

= 1
2 Ae

jφ H ( jΩo )e jθ(Ωo )e jΩot
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•  Output for an input                                     is 

€ 

g*(t) = 1
2 Ae

− jφe− jΩot

€ 

v*(t) = 1
2 Ae

− jφH *( jΩo )e− jΩot

€ 

= 1
2 Ae

− jφ H (− jΩo )e− jθ(Ωo )e− jΩot

€ 

= 1
2 Ae

− jφ H ( jΩo )e− jθ(Ωo )e− jΩot
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•  Hence, for an input                                   , 
the output is given by  

€ 

x(t) = Acos(Ωot +φ)

€ 

y(t) = v(t)+ v*(t)

€ 

= 1
2 Ae

jφ H ( jΩo )e jθ(Ωo )e jΩot

€ 

+ 12 Ae
− jφ H ( jΩo )e− jθ(Ωo )e− jΩot

€ 

= AH ( jΩo ) e jφe jθ(Ωo )e jΩot + e− jφe0 jθ(Ωo )e− jΩot( )

€ 

˜ y (t) = A H ( jΩo ) cos Ωot +θ(Ωo ) +φ( )
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•  Therefore, the output is a sinusoidal signal 
of the same frequency as the input except 
for an amplitude scaled by                 and a 
phase lag of             radians 

•  The derivation of the expression for the 
output assumes that the input signal has 
been present for all values of time in the 
range 

€ 

H ( jΩo )

€ 

θ(Ωo )

€ 

−∞ < t < +∞

Copyright © 2015, S. K. Mitra 

•  Example – The frequency response of a 
causal stable analog system is given by 

•  We determine its steady-state response     
for an input given by 

20 

€ 

H ( jΩ) =
2( jΩ)+ 3
( jΩ)+ 6

€ 

˜ x (t) = 5cos(20t + 0.3)
€ 

˜ y (t)
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•  The frequency response for Ω = 20 is given 
by 

•  Its magnitude and phase at Ω = 20 are 

21 

€ 

H ( j20) =
3+ j40
6 + j20

=1.8761+ j0.4128

€ 

H ( j20) = 1.87612 + 0.41282 =1.9210

€ 

arg{H ( j20)} = tan−1(0.4128 /1.8761) = 0.2166
Copyright © 2015, S. K. Mitra 

•  Therefore 

22 

€ 

˜ y (t) = 5×1.921cos(20t + 0.2166 + 0.3)

€ 

= 9.605cos(20t + 0.5166)
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•  Thus, the LTI system is in the steady state 
throughout this range of time 

Response to a Causal Input 
•  In practical applications, the input is a 

causal signal applied at a finite instant of 
time 

•  It is of interest to develop the expression for 
the output signal for a causal input 

Copyright © 2015, S. K. Mitra 
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•  We assume that the input is a causal 
exponential signal applied at time t = 0: 

•  As x(t) = 0 for t < 0, for a causal system the 
output y(t) = 0, for t < 0  

•  Thus we have for  € 

x(t) = e jΩtµ(t)

€ 

y(t) = h(τ )
0

∞
∫ e− jΩ(t−τ )µ(t − τ )dτ

€ 

t ≥ 0
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 which reduces to 

 as µ(t - τ) = 0 for t > τ
•  We rewrite the above equation as 

€ 

y(t) = h(τ )
0

t
∫ e− jΩτdτ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e− jΩt

€ 

y(t) = h(τ )
0

∞
∫ e− jΩτdτ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e jΩt − h(τ )

t

∞
∫ e− jΩτdτ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e jΩt

H(jΩ) 
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•  First term in the expression for y(t)  is the 
steady-state response 

 and the second term is the transient response 

€ 

yss (t) = h(τ )
0

∞
∫ e− jΩτdτ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e jΩt

€ 

ytr (t) = − h(τ )
t

∞
∫ e− jΩτdτ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e jΩt
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•  Note 

•  For a causal and stable LTI analog system, 
the impulse response is absolutely 
integrable, and hence the transient response 

     is a bounded signal 
€ 

ytr (t) = h(τ )
t

∞
∫ e− jΩτdτ ≤ h(τ )

t

∞
∫ dτ ≤ h(τ )

0

∞
∫ dτ

€ 

ytr (t)
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•  As            , 

 indicating that the transient response 
approaches zero value as t gets very large 

•  In most practical situations, the system is 
assumed to have reached the steady-state as 
the transient response becomes extremely 
small after a finite amount of time 

€ 

t→∞

€ 

h(τ )
t

∞
∫ e− jΩtdτ → 0
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•  Recall that for a sinusoidal input signal
      ,                  , the 

output signal of a causal stable LTI analog 
system with a frequency response H(jΩ) is 
given by 

 and thus has a phase lead of  

€ 

˜ x (t) = Acos(Ωot +φ)

€ 

˜ y (t) = A H ( jΩo ) cos Ωot +θ(Ωo ) +φ( )
€ 

−∞ < t <∞

€ 

θ(Ωo ) = arg{H ( jΩo )}
Copyright © 2015, S. K. Mitra 
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•  A measure of the time delay of the phase is 
called the phase delay and is given by 

 where the minus sign indicates phase lag 

€ 

τ p (Ωo ) = −
θ(Ωo )
Ωo
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•  Usually the input signal to a frequency-
selective LTI analog system is composed of 
an weighted combination of many 
sinusoidal signals with different angular 
frequencies that are not harmonically 
related 

•  Each sinusoidal signal present in the input 
undergo different phase delays 

Copyright © 2015, S. K. Mitra 
32 

•  In such cases, the time delay between the 
output and input signals is determined using 
an alternate parameter given by 

•  The parameter            is known as the group 
delay 

€ 

τ g(Ω)

€ 

τ g(Ω) = −
dθ(Ω)
dΩ
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•  For the computation of the group delay, the 
phase function          is assumed to have 
been unwrapped 

•  The physical difference between the phase 
delay and the group delay is illustrated in 
the next slide 

33 

€ 

θ(Ω)
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•  In practice, the analog signal as a linear 
combination of many, often infinite, number 
of sinusoidal analog signals 

•  Some applications require analog filters  
that passes components with frequencies in 
a specified range without distortion and 
block components outside this range 

35 
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•  The key to the design of analog filters is 

 from which it can be seen that the value of 
the magnitude function at a given angular 
frequency        determines the value of the 
output response of the filter at that 
frequency 

36 

€ 

y(t) = AH ( jΩo ) cos Ωot +θ(Ωo )+φ( )

€ 

Ωo

€ 

Ωo
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•  To pass sinusoidal components of the input 
in a specified frequency range, ideally the 
magnitude function should have a value of 1 
in that frequency range 

•  To block signal components outside the 
specified frequency range, the magnitude 
function should have a value 0 in that 
frequency range 

37 
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•  The system implementing the time shifting 
operation                         for a positive value 
of 

•  Its impulse response is 
•  Its frequency response is thus 

•  Note:                     and     

38 

€ 

y(t) = x(t − to )

€ 

to

€ 

h(t) = δ(t − to )

€ 

H ( jΩ) =1

€ 

θ(Ω) = −Ωto

€ 

H ( jΩ) = e− jΩto
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•  Since                   , any input analog signal 
appears at the output of the delay without 
any distortion of its amplitude 

•  The group delay of an ideal analog delay 
system is  

39 

€ 

H ( jΩ) =1

€ 

τ g(Ω) = −
dθ(Ω)
dΩ

= to
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Ideal Lowpass Analog Filter 

•  Passband: 
•  Stopband: 

40 € 

0 ≤Ω ≤Ωc

€ 

Ωc <Ω <∞
Cutoff frequency € 

HLP ( jΩ) =
1, Ω ≤Ωc
0, Ω >Ωc

⎧ 
⎨ 
⎩ 
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Ideal Highpass Analog Filter 

•  Passband: 
•  Stopband: 

41 € 

Ωc <Ω <∞

€ 

0 ≤Ω ≤Ωc
Cutoff frequency € 

HHP ( jΩ) =
0, Ω <Ωc
1, Ω ≥Ωc

⎧ 
⎨ 
⎩ 
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Ideal Bandpass Analog Filter 

•  Passband: 

•  Stopbands: 

42 € 

Ωc1 ≤ Ω ≤Ωc2

€ 

0 ≤Ω <Ωc1

€ 

Ωc2 <Ω <∞ Cutoff frequency 

€ 

HBP ( jΩ) =
1, Ωc1 ≤ Ω ≤Ωc2
0, 0 ≤ Ω <Ωc1  and  Ω >Ωc2

⎧ 
⎨ 
⎩ 
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Ideal Bandstop Analog Filter 

•  Stopband: 

•  Passbands: 

43 € 

Ωc1 ≤ Ω ≤Ωc2

€ 

0 ≤Ω <Ωc1

€ 

Ωc2 <Ω <∞ Cutoff frequency 

€ 

HBS ( jΩ) =
0, Ωc1 < Ω <Ωc2
1, 0 ≤ Ω ≤Ωc1  and  Ω ≤Ωc2

⎧ 
⎨ 
⎩ 
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Impulse Response 
•  Expressions for the impulse responses of the 

above four ideal filters can be computed by 
applying the inverse CTFT to their 
frequency responses 

•  For example, the impulse response of the 
ideal lowpass filter is 

•                                            , 
44 

€ 

hLP (t) =
sin(Ωct)

πt
  −∞ < t <∞
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•  Note:            is not absolutely integrable 
•  Hence, the ideal lowpass analog filter is not 

BIBO stable 
•  Also,             is of doubly infinite length 

from                    ,  implying that the ideal 
lowpass analog filter is not a causal system  

45 

€ 

hLP (t)

€ 

hLP (t)

€ 

−∞ < t <∞
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•  The remaining  three ideal filters also have a 
noncausal impulse response of doubly 
infinite length which are  not absolutely 
summable making these filters unstable 

•  Filters with an ideal “brick wall”  frequency 
response cannot be realized in practice 

46 
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•  To develop a stable and realizable filter, a 
transition band between the passband and 
stopband is included in the frequency 
response specification of the filter 

•  Also the magnitude response characteristic 
in the passband and the stopband are 
allowed to vary within a very small range 
called “ripples” 

47 
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•  This system implements the differentiation 
operation 

•  Taking the CTFT of both sides we arrive at 
its frequency response 

48 

€ 

y(t) =
dx(t)
dt

€ 

HDIFF ( jΩ) = jΩ
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•  Plots of the magnitude and phase functions 
are shown below 

49 
Copyright © 2015, S. K. Mitra 

•  From the magnitude function plot, it can be 
seen that high-frequency components of the 
input signal of a differentiator are amplified 
more compared to the low-frequency 
components 

•  Hence, a differentiator can be used to amplify 
portions of the input signal exhibiting sharp 
transitions 

50 
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•  Consider the ideal highpass filter of Slide 
No. 41 with an input signal given by 

                                                    where 

•  Note:                   is in the stopband of the 
filter and                   is in the passband of 
the filter                        

51 

€ 

˜ x (t) = Acos(Ω1t) + Bcos(Ω2t)

€ 

0 <Ω1 <Ωc <Ω2 <∞

€ 

Acos(Ω1t)

€ 

Bcos(Ω2t)

Copyright © 2015, S. K. Mitra 

•  From Slide No. 29 we note that the output 
of the highpass filter is 

 as                     and    

52 

€ 

˜ y (t) = A H ( jΩ1) cos Ω1t +θ(Ω1)( )

€ 

+BH ( jΩ2 ) cos Ω2t +θ(Ω2 )( )

€ 

= Bcos Ω2t +θ(Ω2 )( )

€ 

H ( jΩ1) = 0

€ 

H ( jΩ2 ) =1
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•  Example: Design a LTI analog lowpass 
filter with a dc gain of 0 dB and a gain of     

  dB at 100 Hz 
•  Assume 

 with a and b real and positive numbers  

53 

€ 

−1

€ 

H ( jΩ) =
a

jΩ+ b
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•  Square-magnitude function is given by 

•  The gain function is given by 

54 

€ 

H ( jΩ) 2 = H ( jΩ)H (− jΩ) =
a2

b2 +Ω2

  

€ 

G(Ω) =10 log10 H ( jΩ)
2 dB 
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•  Design specifications: 

 or, equivalently, 

55 

  

€ 

G(Ω) = 0, Ω = 0
−20, Ω = 2π (100){

€ 

H ( jΩ) 2 = 1, Ω = 0
0.01, Ω = 200π{
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•  Now                                         a = b 

•  Next, we set 

 which yields                                 

56 

€ 

H ( jΩ) 2 =
a2

b2
=1

€ 

H ( j200π ) 2 =
a2

a2 + (200π )2
= 0.01

€ 

a = 63.1484
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•  Thus, the frequency response of the filter is 

57 

€ 

H ( jΩ) =
63.1484

jΩ+ 63.1484
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•  We describe next a few low-order causal 
LTI analog filters with frequency responses 
approximating the ideal frequency 
responses presented earlier 

•  These low-order filters often provide 
satisfactory performances in many 
applications  

58 
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•  Transfer function of a stable causal first-
order analog lowpass filter is 

•  Its gain response is  

59 

  

€ 

GLP (Ω) =10 log10 HLP ( jΩ)
2 =10 log10

Ωc
2

Ω2 +Ωc
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ € 

HLP (s) =
Ωc
s +Ωc

  Ωc > 0, 
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•  dc gain                                           dB 
•  Gain at              is 

•  As the gain of the filter at             is about     
3 dB below the dc gain,      is called the 3-dB 
cutoff frequency of the lowpass filter 

60 

  

€ 

GLP (0) =10  log10(1) = 0

€ 

G(Ωc ) =10  log10 (1/2) = −3.0103

€ 

Ω =Ωc
dB 

€ 

Ω =Ωc

€ 

Ωc
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•  Example: Design a first-order analog 
lowpass filter with a 3-dB cutoff frequency 
of 400 Hz 

•  The 3-dB cutoff angular frequency is thus 

•  Hence, 

61 

  

€ 

Ωc = 2π (400) = 2513.3

  

€ 

HLP (s) =
2513.3

s + 2513.3
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•  Plots of the magnitude and gain functions of 
the lowpass filter are shown below 

62 
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•  Transfer function of a stable causal first-
order analog highpass filter is 

•  Its gain response is  

63 

  

€ 

GHP (Ω) =10 log10 HHP ( jΩ) 2 =10 log10
Ω2

Ω2 +Ωc
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ € 

HHP (s) =
s

s +Ωc
  Ωc > 0, 
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•  The value of the gain response as             is 

•  Gain at              is 

•  The gain of the filter at             is about 3 dB 
below the gain at     ,      is called the 3-dB 
cutoff frequency of the highpass filter  

64 

€ 

Ω→∞

€ 

GHP (∞) =10  log10 (1) = 0 dB 

€ 

Ω =Ωc

€ 

G(Ωc ) =10  log10 (1/2) = −3.0103 dB 

€ 

Ω =Ωc

€ 

∞

€ 

Ωc
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•  Plots of the magnitude and gain functions of 
a highpass filter with a 3-dB cutoff 
frequency of 500 Hz are shown below 

65 
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•  The transfer function of a stable causal 
second-order analog bandpass filter with a 
frequency response approximating the 
frequency response of an ideal bandpass 
filter is 

66 

€ 

HBP (s) =
Bs

s2 + Bs +Ωo
2   Ωo > 0  B > 0, , 
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•  The magnitude function has a maximum 
value of 1 at              , called the center 
frequency 

•  Let       and      , with                        , where 
the gain is       dB 

•  Parameter                      is known as the 3-
dB bandwidth of the passband  
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Ω =Ωo

€ 

Ω1

€ 

Ω2

€ 

Ω1 <Ωo <Ω2

€ 

−3

€ 

B =Ω2 −Ω1
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•  Plots of the magnitude and gain functions of 
a bandpass filter with   Hz and  

      Hz are shown below 
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€ 

Ωo = 4000

€ 

B =1000
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•  The transfer function of a stable causal 
second-order analog bandstop filter with a 
frequency response approximating the 
frequency response of an ideal bandstop 
filter is 
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€ 

HBS (s) =
s2 +Ωo

2

s2 + Bs +Ωo
2   Ωo > 0  B > 0, , 
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•  The magnitude function has a maximum 
value of 0 at              , called the notch 
frequency 

•  Parameter B is known as the 3-dB notch 
bandwidth of the stopband 

•  The analog bandstop filter is also called an 
analog notch filter  

70 

€ 

Ω =Ωo
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•  Plots of the magnitude and gain functions of 
a bandpass filter with   Hz and  

      Hz are shown below 
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Ωo = 4000

€ 

B =1000
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•  The analog allpass filter is a causal stable 
analog system with a transfer function A(s) 
whose magnitude square function is 

•  For a real coefficient A(s), the above 
condition is equivalent to the condition 
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€ 

A( jΩ) 2 =1  −∞ <Ω < +∞, 

  

€ 

A(s)A(−s) =1
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•  If Y(jΩ) and X(jΩ) denote the CTFTs of the 
output and input analog signals, y(t) and x(t), 
respectively, then the condition 

 implies 
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€ 

A( jΩ) 2 =1  −∞ <Ω < +∞

€ 

Y ( jΩ) 2 = X( jΩ) 2

, 
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•  Using the Parseval's relation we have 

 implying that a stable analog allpass filter is 
a lossless analog system 
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y(t) 2
−∞

∞
∫ dt = x(t) 2

−∞

∞
∫ dt
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•  We review next the transform-domain and 
time-domain representations of causal stable 
first-order and second-order  analog allpass 
filters 

•  A higher-order allpass analog filter can be 
realized as a cascade of first- and/or second-
order analog allpass filter sections 

75 
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First-Order Analog Allpass Filter 
•  The transfer function of a stable causal first-

order analog allpass filter with real 
coefficients is given by 
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€ 

A1(s) =
s− q0
s + q0

 q0 > 0, 

Copyright © 2015, S. K. Mitra 

Second-Order Analog Allpass Filter 
•  The transfer function of a stable causal 

second-order analog allpass filter with real 
coefficients is given by 
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€ 

A2 (s) =
s2 − q1s + q0
s2 + q1s + q0

 q1 > 0  q0 > 0, , 
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A Simple Application 
•  One common application is in correcting the 

phase response of an analog frequency-
selective filter designed to meet a specific 
magnitude response by placing in cascade 
with it an analog allpass filter 

78 
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•  Let H(s) denote the transfer function of a 
frequency-selective causal stable analog 
filter 

•  Consider the cascade of H(s) and a stable 
allpass filter with a transfer function A(s) 

•  The overall transfer function of the cascade 
is 
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€ 

G(s) = H (s)A(s)

Copyright © 2015, S. K. Mitra 

•  The magnitude response of the cascade is 

•  The phase response of the cascade is 
   arg{G(jΩ)} = arg{H(jΩ)} + arg{A(jΩ)} 
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€ 

G( jΩ) = H ( jΩ)A( jΩ) = H ( jΩ)A( jΩ)

€ 

= H ( jΩ)
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•  Thus, the allpass filter can be designed so 
that arg{G(jΩ)} is approximately linear in 
the frequency range of interest without 
changing the desired magnitude response  
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H ( jΩ)


